

Appendix B

Hydrogeological, Geotechnical and Contaminated Sites
Assessment Report and
Memorandum

Geotechnical, Hydrogeological and Contaminated Site Assessment Report

Region of Peel Snow Storage

Region of Peel

60646784

June 2024

Statement of Qualifications and Limitations

The attached Report (the "Report") has been prepared by AECOM Canada Ltd. ("AECOM") for the benefit of the Client ("Client") in accordance with the agreement between AECOM and Client, including the scope of work detailed therein (the "Agreement").

The information, data, recommendations and conclusions contained in the Report (collectively, the "Information"):

- is subject to the scope, schedule, and other constraints and limitations in the Agreement and the qualifications contained in the Report (the "Limitations");
- represents AECOM's professional judgement in light of the Limitations and industry standards for the preparation of similar reports;
- may be based on information provided to AECOM which has not been independently verified;
- has not been updated since the date of issuance of the Report and its accuracy is limited to the time period and circumstances in which it was collected, processed, made or issued;
- must be read as a whole and sections thereof should not be read out of such context:
- was prepared for the specific purposes described in the Report and the Agreement; and
- in the case of subsurface, environmental or geotechnical conditions, may be based on limited testing and on the assumption that such conditions are uniform and not variable either geographically or over time.

AECOM shall be entitled to rely upon the accuracy and completeness of information that was provided to it and has no obligation to update such information. AECOM accepts no responsibility for any events or circumstances that may have occurred since the date on which the Report was prepared and, in the case of subsurface, environmental or geotechnical conditions, is not responsible for any variability in such conditions, geographically or over time.

AECOM agrees that the Report represents its professional judgement as described above and that the Information has been prepared for the specific purpose and use described in the Report and the Agreement, but AECOM makes no other representations, or any guarantees or warranties whatsoever, whether express or implied, with respect to the Report, the Information or any part thereof.

Without in any way limiting the generality of the foregoing, any estimates or opinions regarding probable construction costs or construction schedule provided by AECOM represent AECOM's professional judgement in light of its experience and the knowledge and information available to it at the time of preparation. Since AECOM has no control over market or economic conditions, prices for construction labour, equipment or materials or bidding procedures, AECOM, its directors, officers and employees are not able to, nor do they, make any representations, warranties or guarantees whatsoever, whether express or implied, with respect to such estimates or opinions, or their variance from actual construction costs or schedules, and accept no responsibility for any loss or damage arising therefrom or in any way related thereto. Persons relying on such estimates or opinions do so at their own risk.

Except (1) as agreed to in writing by AECOM and Client; (2) as required by-law; or (3) to the extent used by governmental reviewing agencies for the purpose of obtaining permits or approvals, the Report and the Information may be used and relied upon only by Client.

AECOM accepts no responsibility, and denies any liability whatsoever, to parties other than Client who may obtain access to the Report or the Information for any injury, loss or damage suffered by such parties arising from their use of, reliance upon, or decisions or actions based on the Report or any of the Information ("improper use of the Report"), except to the extent those parties have obtained the prior written consent of AECOM to use and rely upon the Report and the Information. Any injury, loss or damages arising from improper use of the Report shall be borne by the party making such use.

This Statement of Qualifications and Limitations is attached to and forms part of the Report and any use of the Report is subject to the terms hereof.

AECOM: 2015-04-13 © 2009-2015 AECOM Canada Ltd. All Rights Reserved.

Quality Information

Prepared by

Jia He, M.Eng., P.Eng. Geotechnical Engineer

Brian Holden, M.Sc., P.Geo.

Hydrogeologist

Arif Chowdhury, P.Eng. Environmental Engineering Verified by

Taesang Ahn, Ph.D., P.Eng. Senior Geotechnical Engineer

Miln Harvey, Ph.D., P.Eng. Senior Hydrogeologist

Sorgiv Tobornikov P.Go

Sergiy Tchernikov, P.Geo., Senior Environmental Scientist

Revision History

Rev #	Revision Date	Revised By:	Revision Description			
0	June 28, 2022	JH/BH/AC	Draft Geotechnical, Hydrogeological and Contaminated Site Assessment Report			
1	June 10, 2024	BH	Final Geotechnical, Hydrogeological and Contaminated Site Assessment Report			

Distribution List

# Hard Copies	PDF Required	Association / Company Name
	✓	Region of Peel
	✓	AECOM Canada Ltd.

Ref: 60646784

Prepared for:

Region of Peel

Prepared by:

Jia He, M.Eng., P.Eng. Geotechnical Engineer

AECOM Canada Ltd. 1000-5090 Explorer Drive Mississauga, ON L4W 4X6 Canada

T: 905 238 0007 www.aecom.com

Table of Contents

1.	Intr	oduction	1
2.	Fiel	d Investigation Methodology	4
	2.1 2.2	Geotechnical Investigation Sampling Methodology and Monitoring Well Installation Soil Sampling Methodology	4
	2.3	Geotechnical Laboratory Testing	
	2.4	Groundwater Level Monitoring	
	2.5	Single Well Response Testing	6
	2.6	Groundwater Quality Sampling	7
3.	Site	#1 – Highway No. 50 Car Pool Lot	8
	3.1	Subsurface Conditions	8
		3.1.1 Topsoil	
		3.1.2 Silty Clay Till	
	3.2	Groundwater Conditions	
	3.3	Environmental Sampling and Test Results	8
4.	Site	#3 – West Brampton Reservoir and Pumping Station	10
	4.1	Subsurface Conditions	
		4.1.1 Topsoil	
		4.1.2 Clayey Silt Fill	10
		4.1.4 Sandy Silt Fill	
		4.1.5 Silty Clay Till	
		4.1.6 Sandy Silt	
		4.1.7 Bedrock (Weathered Shale)	
	4.2	Groundwater Conditions	
	4.3	Environmental Sampling and Test Results	13
5 .	Site	#5 – Johnston Sports Park	14
	5.1	Subsurface Conditions	14
		5.1.1 Silty Clay Fill	
		5.1.2 Silty Clay Till	
	5.2	Groundwater Conditions	
	5.3	Environmental Sampling and Test Results	15
6.	Site	#6 – Tullamore Reservoir and Pumping Station	16
	6.1	Subsurface Conditions	
		6.1.1 Sandy Silt Fill	
		6.1.2 Silty Clay Fill	
	6.2	Groundwater Conditions	
	6.3	Environmental Sampling and Test Results	
7.		#9 – Alloa Reservoir and Pumping Station	
٠.			
	7.1	Subsurface Conditions	
		7.1.1 Sanuy Siit I III	19

		7.1.2 Sand Fill	_
		7.1.3 Silty Clay Fill	
		7.1.5 Silty Clay Till	
	7.2	Groundwater Conditions	
	7.3	Environmental Sampling and Test Results	21
8.	Pav	ement Design Recommendations for Truck Route	22
9.	Geo	technical Design Considerations	23
	9.1	Bearing Capacity	23
	9.2	Lateral Earth Pressure on Structures	23
10.	Con	struction Considerations	25
	10.1	Site Preparation and Engineered Fill Construction	25
	10.2	Subgrade Preparation for Pavement	
		10.2.1 Granular Base/Subbase Placement	
	10.3	10.2.2 Hot Mix Asphaltic Concrete Pavement	
	10.3	Dewatering	
	10.4	Frost Protection	
	10.6	Settlement Considerations	
	10.7	Soil Storage and Disposal	
	10.8	Drainage and Meltwater Management	28
11.	Seis	smic Site Classification	29
12.	Liqu	uefaction Considerations	30
13.		nmary of Environmental Sampling	
14.	Refe	erences	32
Fiaı	ures		
Figure		ocation of Site #1 Highway No. 50 Car Pool Lot	1
Figure		ocation of Site #3 West Brampton Reservoir and Pumping Station	
Figure		ocation of Site #5 Johnston Sports Park	
Figure		ocation of Site #6 Tullamore Reservoir and Pumping Station	
Figure		ocation of Site #9 Alloa Reservoir and Pumping Station	
Figure	6: C	CFEM Recommended Criteria for Liquefaction Assessment of Fine-Grained Soils	30

Tables

Table 1:	Summary of Chemical Analysis for Site #1	9
Table 2:	The Summary of Groundwater Levels in the Open Hole	12
Table 3:	Construction Details and Groundwater Level Measurements (BH3-4/MW)	12
Table 4:	Single Well Response Testing Results (BH3-4/MW)	12
Table 5:	Summary of Chemical Analysis for Site #3	13
Table 6:	Construction Details and Groundwater Level Measurements (BH5-3/MW)	15
Table 7:	Summary of Chemical Analysis for Site #5	15
Table 8:	Construction Details and Groundwater Level Measurements (BH6-1/MW)	17
Table 9:	Summary of Single Well Response Testing Results (BH6-1/MW)	18
Table 10:	Summary of Parameters Exceeding PWQO Guidelines (BH6-1/MW)	18
Table 11:	Construction Details and Groundwater Level Measurements (BH9-3/MW)	20
Table 12:	Single Well Response Testing Results (BH9-3/MW)	21
Table 13:	Summary of Parameters Exceeding PWQO Guidelines (BH9-3/MW)	21
Table 14:	Flexible Pavement Design Recommendations	22
Table 15:	Geotechnical Capacity of Shallow Foundation	23
Table 16:	Material Types and Unfactored Earth Pressure Properties under Static Conditions	24
Table 17:	Soil Frost Susceptibility (MTO)	27
Table 18:	Site Classification for Seismic Site Response (CFEM 2006)	29

Appendices

Appendix A.	Borehole Location Plan
• •	
Appendix B.	Borehole Logs
Appendix C.	Laboratory Test Results
Appendix D.	Single Well Response Test Analysis Reports
Appendix E.	Groundwater Quality Results – Laboratory Certificate of Analysis
Appendix F.	Calculated Un-ionized Ammonia Concentration in Sampled Monitoring Wells
Appendix G.	Soil Quality Results – Laboratory Certificate of Analysis
Appendix H.	Groundwater Quality Results – Laboratory Certificate of Analysis

1. Introduction

The Region of Peel retained AECOM Canada Ltd. (AECOM) to provide preliminary design engineering services for nine (9) proposed snow disposal locations in the Town of Caledon and the City of Brampton, Ontario (the Sites). As per the client's request, four (4) sites (Site #2, 4, 7, and 8) have been cancelled during the completion of the project. The locations of the five (5) sites are shown in **figures 1 to 5** The five (5) are as follows:

- Site #1 Highway No. 50 Carpool Lot
- Site #3 West Brampton Reservoir and Pumping Station
- Site #5 Johnston Sports Park
- Site #6 Tullamore Reservoir and Pumping Station
- Site #9 Alloa Reservoir and Pumping Station.

This report presents the geotechnical investigation undertaken by the AECOM team for Region of Peel. The geotechnical scope of work includes the completion of a field investigation program and the snow storage design recommendations.

This report also describes the hydrogeological conditions for all five (5) sites including summarizing and characterizing the local physical and groundwater setting, estimating infiltration and movement of meltwater through the subsurface. A summary and interpretation, and discussion of the assessment results are provided in the report.

An environmental soil and groundwater sampling program was also completed as a part of the current geotechnical and hydrogeological investigation for evaluating the environmental quality of the fill material and the upper level of native subsurface soil as well as a baseline analysis of the groundwater for the future discharge options during the construction. This sampling/testing program was conducted for the future on-site waste management of excess soil for the waste disposal and re-use options during the construction. A summary, interpretation, and discussion of the environmental quality of soil and groundwater conditions of all the sites are provided in the report.

Figure 1: Location of Site #1 Highway No. 50 Car Pool Lot

Figure 2: Location of Site #3 West Brampton Reservoir and Pumping Station

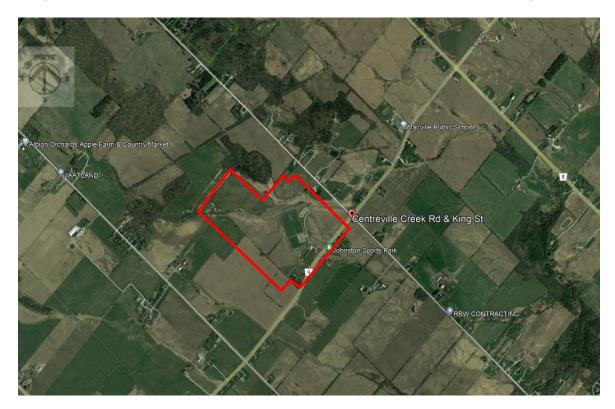


Figure 3: Location of Site #5 Johnston Sports Park

Ref: 60646784

RPT_2024-06-10_Regionofpeelsnowstorageassessmentrpt_60646784_FINAL_Docx

Figure 4: Location of Site #6 Tullamore Reservoir and Pumping Station

Figure 5: Location of Site #9 Alloa Reservoir and Pumping Station

2. Field Investigation Methodology

This section describes the methods and specific procedures which were followed during the completion of geotechnical, hydrogeological and environmental assessment.

The borehole locations were established in the field on October 15, 2021 and December 8, 2021 by AECOM staff. The public utility infrastructure owners were contracted through the Ontario One Call (On1Call) system to request marking of subsurface utilities in the investigation area. A private utility company, UtilityMarx located in Hamilton Ontario, was subcontracted on December 8, 2021, carried out the locates all existing buried underground infrastructures on each site.

2.1 Geotechnical Investigation Sampling Methodology and Monitoring Well Installation

The geotechnical investigation program was executed from November 15 to 16, from December 15 to 20, 2021 and on January 3, 2022 under the full-time supervision of AECOM field staff. The geotechnical investigation program consisted of the sampled boreholes drilling and the installation of monitoring wells. To carry out the program, AECOM retained the drilling services from Altech Drilling & Investigation Services Ltd. (Altech) located in Cambridge, Ontario and Landshark Drilling (Landshark) located in Brantford, Ontario, two Ministry of the Environment, Conservation, and Parks (MECP) licensed drilling contractors.

The boreholes were advanced using a track-mounted Geoprobe and a track-mounted D-50 drill rig using hollow stem augers. Upon completion of the drilling, monitoring well were installed with stick-up protective casing and backfilled in accordance with Ontario Regulation 903, as amended. Excessive soil cuttings generated during the drilling were contained in steel drums with lid, sampled for Toxicity Characteristic Leachate Procedure (TCLP), and disposed of according to O.Reg 406/19.

The location of each monitoring well for Site #3, 5, 6, and 9 was chosen to best reflect the areas of excavation expected at these Sites. The monitoring well that proposed for Site #1 was cancelled due to a lack of groundwater observed/encountered in the open hole upon completion of the drilling in all three (3) boreholes. All borehole and monitoring well locations are presented in **Appendix A**.

In general, the geotechnical field testing and sampling was carried out using ASTM standards modified based on site conditions. Standard Penetration Tests (SPT) were carried out at selected intervals to assess soil compactness/consistency to correlate its strength and to obtain samples for index (laboratory) testing purposes. SPTs were carried out in general accordance with ASTM D1586.

2.2 Soil Sampling Methodology

Forty-three (43) soil samples and four (4) groundwater samples were submitted to laboratories for chemical analysis. This soil and groundwater sampling program was designed to cover the general environmental quality of the soil and groundwater of each Site.

Soil samples were collected at selected intervals and screened for potential impacts, with the intent of the most impacted samples from both fill and native material being submitted for analysis as worst-case conservative assessments. Soil samples were screened for combustible organic vapours using an RKI GX-6000 photoionization detector (PID), which was calibrated using isobutylene. Soil vapours readings were in a range of 0 to less than 10 ppm in all soil samples across the Site. In addition, field observation of impacts of soil contamination including

staining or soil odours during the selection of samples, however, none were observed in the samples. Therefore, representative samples from each stratigraphic unit were submitted for laboratory analysis for selected inorganic parameters and metals, polycyclic aromatic hydrocarbons (PAHs), petroleum hydrocarbons F1 to F4 (PHCs), volatile organic compounds (VOCs), and polychlorinated biphenyls (PCBs).

AECOM staff wore new nitrile gloves during the collection of each soil sample to reduce the potential for cross-contamination. Samples for PHC F1 and VOCs analyses were collected immediately by placing roughly 2 cubic centimeters (cm³) of soil material into an airtight vial containing 3 mL of methanol-based preservative. Samples for other parameters were transferred from the sample collection bag to appropriate laboratory-supplied jars once drilling was completed and PID vapour readings had been collected. All samples were placed on ice for preservation until received by the AGAT laboratories, which is certified to ISO 9001:2015 and accredited to ISO 17025:2005 UKAS ref 4028.

Chain-of-custody (COC) procedures were followed during the submission of samples to the laboratory. Sample packaging and submission procedures were followed per the project sampling procedures, to ensure sample integrity from the point of sampling up until submission to the analytical laboratory. Samples were packaged and submitted to the laboratory as outlined below:

- Sample name, project number, and date were written on each sample container.
- Caps on the sample containers were checked to ensure they are properly sealed.
- Chain-of-custody forms were completed with the required information and signed and dated to document the sample custody transfer.
- Sample containers were protected in bubble wrap in coolers.
- Sample containers were placed in a cooler with ice.
- All samples were delivered by field staff directly to AGAT Laboratories (Mississauga, ON) to be analyzed within the recommended hold times.
- Original chain-of-custody forms accompanied each submission, and copies were retained.

All analytical testing of soil samples was performed by AGAT Laboratory and the Certificates of Analysis are provided in **Appendix G**. The results of the analyses on the soil samples were compared with the Ministry of the Environment, Conservation and Parks (MECP) Table 2 Full Depth Generic Condition Standards (SCS) in a Potable Groundwater Conditions for Industrial/Commercial/Community (ICC) property use, for coarse-textured soil (Table 2 SCS). The SCS was selected based on the site location, the average thickness of the overburdened soil, groundwater conditions, the current property uses, and sieve and hydrometer test results carried out on soil samples.

Groundwater samples were submitted to Bureau Veritas Laboratories of Mississauga, Ontario for analysis for M&I, VOCs, BTEX, and PHCs F1-F4, PAHs, and PCBs. Bureau Veritas Laboratories is a member of the Canadian Association for Laboratory Accreditation Inc. (CALA) and meets the requirements of Section 47 of O.Reg.153/04 certifying that the analytical laboratory is accredited in accordance with the International Standard ISO/IEC 17025 and with standards developed the Standards Council of Canada. The results of the analysis of the groundwater samples were compared with MECP Table 2 Full Depth Generic Site Condition Standards a Potable Groundwater Condition for All Types of Property Uses and coarse-textured soil. Certificates of Analysis provided by Bureau Veritas Laboratories are included in **Appendix H**.

2.3 Geotechnical Laboratory Testing

The soil samples were transported to the AECOM Laboratory in Etobicoke, ON for review and laboratory testing. Selected soil samples were tested for natural moisture content (ASTM D2216), particle size distribution of soils using sieve analysis (ASTM D6913), Atterberg limit determination (ASTM D4318), and unit weight of soils (ASTM D7263). The test results are presented in **Appendix C**.

Groundwater Level Monitoring 2.4

Each monitoring well was developed following installation for the purposes of removing sediment, rectifying possible damage caused to the target formation during the drilling process, and/or improving the hydraulic properties of the filter pack installed around the well screen. The well development process also ensures that collected groundwater samples are representative of in situ conditions of the screened aquifer formation surrounding the monitoring well.

In addition, groundwater level measurements were obtained at each monitoring well within a few weeks of their installation and following the completion of well development. Groundwater levels were subsequently monitored during each groundwater sampling event (where applicable) and at the time of single well response testing (SWRT).

Measured depth to groundwater and groundwater elevation are presented in Tables 7, 9, 10 and 13. Additional groundwater level measurements were completed within the four (4) monitoring wells were further confirmed during subsequent groundwater level monitoring events.

Single Well Response Testing 2.5

Single Well Response Testing (SWRT) was carried out at monitoring wells to provide an estimate of the hydraulic conductivity of the screened geologic materials at each location.

Prior to SWRT the depth to water was measured within each monitoring well and used to determine the static water level for each well. The static water level represents the initial water levels for the single well response testing. The SWRT method involves causing a rapid change in the hydraulic head within a well and measuring the water level response back to a static water level condition. The SWRT method may include one or a combination of rising head or falling head tests, depending on the position of the static groundwater level within the monitoring well being tested. Prior to start of each test, a datalogger was installed within the target well and configured to obtain readings on a regular (i.e., 0.5 to 1 second) interval. Information collected by the datalogger was confirmed through the collection of manual groundwater level measurements using an electronic water level indicator.

Falling head tests were carried out using a solid slug, which was introduced into the well to a depth completely below the static water level causing the water level to initially rise and subsequently fall back to static, and rising head tests were carried out by completely removing the solid slug from the water column causing the water level to initially drop and subsequently rise back to static. Immediately following the introduction of the slug into the well, manual groundwater levels and elapsed time were measured as the water level recovered to its original static elevation. These measurements were supplemented with data collected by the installed datalogger. Each single well response test was concluded when the water level returned to its static elevation.

Analysis of the time-displacement data for unconfined aquifers is typically performed using the Bouwer and Rice method (1976):

$$K = \frac{r_c^2 \ln \left(\frac{R_e}{r_w}\right)}{2Lt} \ln \left(\frac{h_0}{h_t}\right)$$

Where: K = hydraulic conductivity of the tested material (m/s)

 R_e = radius of the test (m)

 r_c = effective casing radius (m)

 r_w = equivalent well radius (m)

L = length of the screen interval (m)

 h_0 = water level displacement at time t_0 (m)

 h_t = water level displacement at time t (m)

t = time(s)

Ref: 60646784 RPT_2024-06-10_Regionofpeelsnowstorageassessmentrpt_60646784_FINAL.Docx

The radius of the test (Re) is defined using the following equation for partially penetrating wells:

$$ln\left(\frac{R_e}{r_w}\right) = \left[\frac{1.1}{ln\left(\frac{b}{r_w}\right)} + \frac{A + B ln\left(\frac{D - b}{r_w}\right)}{\frac{L}{r_w}}\right]^{-1}$$

Where: A, B = fitting parameters that are a function of (L/rw)

D = distance of the water table above the base of aquifer (m)

b = depth of the base of screen below the water table (m)

L = length of the screen interval (m)

Using the Bouwer-Rice method, the time-displacement data are plotted on a semi-logarithmic scale. Values are then taken from the plot and input to the equation above to estimate the hydraulic conductivity (K) of the soil and/or rock formation(s) contacted along the well screen/sand pack length. SWRT results are summarized in **Tables 8, 11 and 14**, with individual analysis reports contained in **Appendix D**.

2.6 Groundwater Quality Sampling

Groundwater samples were collected from monitoring wells within sites between February 11 to March 8, 2022 and submitted to Bureau Veritas Laboratories for water quality analysis. The results of the analyses were compared to the Provincial Water Quality Objectives (PWQO) criteria limits.

The analytical results received from Bureau Veritas Laboratories indicate that the tested groundwater samples were generally below most of the criteria limits for the applicable standards, with the exception of those parameters summarized in **Tables 12 and 15**. Certificates of Analysis provided by Bureau Veritas Laboratories are included in **Appendix E**.

The concentration of Un-ionized Ammonia provided in the certificates of analysis was calculated by the laboratory for each groundwater sample based on measured pH and temperature when the samples were received, rather than the field-measured parameters of pH and temperature at the time of sample collection. As a result, the laboratory calculated and reported Un-ionized Ammonia values do not accurately reflect the actual concentration within each sampled well.

Ammonia is highly soluble in water and its speciation is affected by a wide variety of environmental parameters including pH, temperature, and ionic strength. In aqueous solutions, an equilibrium exists between Un-ionized (NH3) and ionized (NH4+) Ammonia species (Canadian Council of Ministers of the Environment, 2010). The equilibrium constant for this reaction is a function of temperature and solution pH (Florida Department of Environmental Protection, 2001). Thus, if the equilibrium constant is known for a particular temperature and the pH of the solution is also known, the fraction of Un-ionized Ammonia can be calculated. The Un-ionized Ammonia concentration can be calculated if the Total Ammonia concentration is also known from laboratory analysis (Florida Department of Environmental Protection, 2001).

Field measurements of pH and temperature together with the laboratory-derived concentration of Total Ammonia (mg/L) were utilized to calculate the Un-ionized Ammonia concentration for selected sampled monitoring wells. The calculation process followed the procedure and equations provided in Emerson et.al., 1975 and the calculation parameters are presented in **Appendix F**. The calculated concentration of Un-ionized Ammonia for the selected sampled well was compared to the PWQO criteria of 0.02 mg/L. Results indicate that none of the monitoring wells were found to contain a concentration of Un-ionized Ammonia in excess of the PWQO criteria.

3. Site #1 – Highway No. 50 Car Pool Lot

Site #1 is located at the south side of Mayfield Road and the west side of Highway 50 in Brampton, as shown in Figure 1. The site is an undeveloped area covered by grass and bushes. Three (3) boreholes including BH1-1 to BH1-3 on the green land were advanced. During the investigation, no abnormal odour or staining was detected.

3.1 Subsurface Conditions

The subsurface conditions are presented in this section for Site #1. The existing conditions of materials encountered are summarized in this section. The stratigraphic layers were inferred from non-continuous sampling and observation of drilling resistance and typically represents a transition from one soil type to another. These boundaries should not be interpreted to represent the actual planes of geological change. The subsurface conditions have been confirmed at the borehole locations only, and they may vary between and beyond the borehole locations. Refer to **Appendix B** for the borehole logs. Borehole locations are presented in **Appendix A**.

3.1.1 Topsoil

Topsoil was encountered at the ground surface in all three boreholes. The thickness of topsoil ranged from 200 mm to 240 mm (average of 223 mm).

3.1.2 Silty Clay Till

A layer of silty clay till was encountered beneath topsoil in all three boreholes. The thickness of the silty clay till layer was approximate 5.0 m. This layer was encountered at elevations ranging from 226.4 to 226.1 mASL and extended to 221.4 to 221.2 mASL. All three boreholes were terminated in this layer.

SPT testing conducted on this layer had N values ranging from WH to 36 blows per 0.3 m penetration indicating very soft to hard in consistency, but generally a stiff to hard cohesive soil. Moisture content test results ranged from 12.5% to 57.6%. Sieve and hydrometer analysis results on selected samples in this layer indicated gravel sizes ranged from 1% to 2%, sand sizes ranging from 16% to 21%, silt sizes ranging from 47% to 51%, and clay sizes ranging from 31% to 34%. The Atterberg limits test conducted on selected silty clay till samples had plastic limit ranged from 18% to 19% and liquid limit ranged from 27% to 28%, indicating a low plasticity soil. The soil density analysis was conducted on till samples indicating wet unit weight ranging from 21.8 kN/m³ and dry unit weight ranging from 19.2 kN/m³. Results of the laboratory testing are present in **Appendix C**.

3.2 Groundwater Conditions

No groundwater was observed in the open hole upon the completion of the drilling in all three boreholes. Groundwater levels should be expected to fluctuate seasonally and dependent on precipitation events. The supplementary infiltration testing and monitoring well readings will be ongoing and reported separately in the future.

3.3 Environmental Sampling and Test Results

In total, ten (10) soil samples were retrieved and submitted for chemical analysis of metals and inorganics, PHCs, PAHs, VOCs, and PCBs as per the following:

Table 1: Summary of Chemical Analysis for Site #1

Site ID	Sample ID / Parameter Tested							
	Selected Inorganic Parameters and Metals (M&I)	Petroleum Hydrocarbons F1 to F4 (PHCs)	Volatile Organic Compounds (VOCs)	Polycyclic Aromatic Hydrocarbons (PAHs)	Polychlorinated Biphenyls (PCBs)			
SITA 1	BH-1-1 SS2, BH-1-2 SS2, BH-1-2 SS2	•	,	BH-1-2 SS1, BH-1-3 SS1	BH-1-3 SS1			

All soil samples analyzed were either non-detect or detected with parameters well below the MECP Table 2 SCS for one or more contaminants of M&I, PAHs, PCBs, PHCs, and VOCs parameters at the borehole locations. Based on the review of the laboratory QA/QC program, sample results are considered acceptable.

4. Site #3 – West Brampton Reservoir and Pumping Station

Site #3 is located at the west side of Mississauga Road and the south side of Williams Parkway in Brampton, as shown in Figure 2. The entrance of the site has been developed with asphalt pavement structure which connected with an existing structure for agriculture purpose. Both northwest and southeast sides of the structure is undeveloped areas covered by grass and bushes. Six (6) boreholes from BH3-1 to BH3-6 on the green land were advanced. During the investigation, no abnormal odour or staining was detected.

4.1 Subsurface Conditions

The subsurface conditions are presented in this section for Site #3. The existing conditions of materials encountered are summarized in this section. The stratigraphic layers were inferred from non-continuous sampling and observation of drilling resistance and typically represents a transition from one soil type to another. These boundaries should not be interpreted to represent the actual planes of geological change. The subsurface conditions have been confirmed at the borehole locations only, and they may vary between and beyond the borehole locations. Refer to **Appendix B** for the borehole logs. Borehole locations are presented in **Appendix A**.

4.1.1 Topsoil

Topsoil was encountered at the ground surface in all boreholes except for BH3-4/MW, where the soil samples at the ground surface could not be retrieved due to frozen ground. The thickness of topsoil ranged from 50 mm to 230 mm (average of 162 mm).

4.1.2 Clayey Silt Fill

A layer of clayey silt fill was encountered underneath the topsoil in BH3-1, BH3-5 and BH3-6 and underneath sand fill in BH3-4/MW. The thickness of this fill layer ranged from 0.5 to 1.3 m. This layer was encountered at the elevation of 237.2 to 230.4 mASL and extended to 236.6 to 229.5 mASL.

SPT testing conducted on this fill layer had N value ranged from 2 to 21 blows per 0.3 m penetration indicating soft to very stiff in consistency. Moisture content tests result on one selected fill sample ranged from 16.8% to 51.9%. Sieve and hydrometer analysis results on one selected fill sample indicated gravel size of 0%, sand size of 33%, silt size of 44%, and clay size of 23%. Results of the laboratory testing are present in **Appendix C**.

4.1.3 Sand and Gravel/Sand Fill

A layer of sand and gravel/sand fill was encountered underneath the topsoil in BH3-2 and BH3-4/MW. The thickness of this fill layer ranged from 0.4 to 0.6 m. This layer was encountered at the elevation of 236.1 to 230.9 mASL and extended to 235.5 to 230.4 mASL.

SPT testing conducted on this fill layer had N value ranged from 4 to 17 blows per 0.3 m penetration indicating very loose to compact in compactness. Moisture content tests result on one selected fill sample ranged from 21.1% to 23.9%. Results of the laboratory testing are present in **Appendix C**.

4.1.4 Sandy Silt Fill

A layer of sandy silt fill was encountered underneath the clayey silt fill or sand and gravel/sand fill in BH3-1 to BH3-3 and BH3-5. The thickness of this fill layer ranged from 0.7 to 0.8 m. This layer was encountered at the elevation of 234.2 to 236.6 mASL and extended to 234.3 to 234.7 mASL.

SPT testing conducted on this fill layer had N value ranged from 3 to 17 blows per 0.3 m penetration indicating very loose to compact in compactness. Moisture content tests result on selected fill samples ranged from 13.9% to 21.8%. Sieve and hydrometer analysis results on one selected fill sample indicated gravel size of 4%, sand size of 40%, silt size of 37%, and clay size of 19%. Results of the laboratory testing are present in **Appendix C**.

4.1.5 Silty Clay Till

A layer of silty clay till was encountered beneath fill in BH3-1 to BH3-3. The thickness of the silty clay till layer ranged from 0.4 to 1.8 m. This layer was encountered at elevations ranging from 233.5 to 234.6 mASL and extended to 231.7 to 233.7 mASL. BH3-2 and BH3-3 were terminated in this layer.

SPT testing conducted on this layer had N values ranging from 8 to over 50 blows per 0.3 m penetration indicating stiff to hard, but generally very stiff to hard in consistency. Moisture content test results ranged from 5.9% to 21.2%. Sieve and hydrometer analysis results on selected samples in this layer indicated gravel sizes ranged from 3%, sand sizes ranging from 10% to 22%, silt sizes ranging from 48% to 68%, and clay sizes ranging from 19% to 27%. Results of the laboratory testing are present in **Appendix C**.

4.1.6 Sandy Silt

A layer of hydraulic sandy silt was encountered beneath the fill in BH3-4/MW to BH3-6. The thickness of the sandy silt layer ranged from 2.1 to 3.8 m. This layer was encountered at elevations ranging from 229.6 to 229.5 mASL and extended to 227.4 to 225.8 mASL. BH3-4/MW and BH3-5 were terminated in this layer.

SPT testing conducted on this layer had N values ranging from 2 to 36 blows per 0.3 m penetration indicating very loose to compact in compactness, but generally compact soil. Moisture content test results ranged from 6.1% to 26.9%. Sieve and hydrometer analysis results on selected samples in this layer indicated gravel sizes ranged from 3% to 7%, sand sizes ranging from 21% to 22%, and fine sizes ranging from 72% to 75%. Results of the laboratory testing are present in **Appendix C**.

4.1.7 Bedrock (Weathered Shale)

A weathered reddish shale bedrock (Queenston formation) was encountered underneath the layer of silty clay till in boreholes BH3-1. This bedrock was encountered at elevation ranged from 233.7 mASL and extended to 233.6 mASL. Borehole BH3-1 was terminated in this layer.

4.2 Groundwater Conditions

The groundwater levels were observed in the open hole upon the completion of the drilling of select boreholes, and was summarized in **Table 2**.

Table 2: The Summary of Groundwater Levels in the Open Hole

Borehole ID	Groundwater Depth (mbgs)	Groundwater Elevation (mASL)	Date
BH3-1	Dry	Dry	Dec 6, 2021
BH3-2	Dry	Dry	Jan 3, 2022
BH3-3	3.3	231.7	Jan 3, 2022
BH3-4/MW	2.1	233.1	Dec 16, 2021
BH3-5	2.6	228.4	Dec 16, 2021
BH3-6	1.8	229.2	Dec 16, 2021

A groundwater monitoring well (BH3-4/MW) was constructed at the site on December 16, 2021 as part of the geotechnical investigation. Groundwater level monitoring at BH3-4/MW was conducted by AECOM between February 11, 2022 to March 8, 2022. **Table 3** provides a summary of BH3-4/MW including groundwater levels, elevation data, depths, and screen intervals (in mBGS and mASL).

As shown in **Table 3**, observed static groundwater level elevations at BH3-4/MW were ranged from approximately 226.50 mASL to 226.60 mASL. It is expected that the groundwater levels within the Site #3 will be subjected to seasonal fluctuations including response to spring freshet and localized precipitation events.

Long-term groundwater data are also being collected at BH3-4/MW using water level data loggers. The purpose of this monitoring is to assess water level fluctuation over time. It is anticipated that the collected groundwater data will be analyzed and presented in a subsequent memorandum to this report.

Table 3: Construction Details and Groundwater Level Measurements (BH3-4/MW)

Monitoring Well ID	Ground Surface	Screen Interval Depth (mBGS) ¹		Screen Interval Elevation (mASL) ²		Groundwater Level Depth and Elevation		
	Elevation (mASL) ²	Тор	Bottom	Тор	Bottom	Date	Depth to Groundwater (mBGS) ¹	Groundwater Elevation (mASL) ²
BH3-4/MW	231.00	4.00	5.52	227.00	225.48	Feb 11, 2022 Feb 28, 2022	4.50 4.43	226.50 226.57
						Mar 8, 2022	4.40	226.60

Notes: 1. mBGS = metres below ground surface 2. mASL = metres above mean sea level

SWRT was conducted at BH3-4/MW on February 11, 2022. Collected data were analyzed to provide an estimate of the hydraulic conductivity (K) of the stratum surrounding each respective monitoring well screen. SWRT results for BH3-4/MW are summarized in **Table 4**, with the individual analysis reports contained in **Appendix D**.

Infiltration rate testing will be completed using a Guelph Permeameter to evaluate the field saturated vertical hydraulic conductivity within the upper surficial soils at the selected location within Site #3 in Spring 2022. The infiltration testing results will be presented in a subsequent memorandum to this report.

Table 4: Single Well Response Testing Results (BH3-4/MW)

	Monitoring Well ID	Test Date Analytical Method ¹		Top of Test Interval (mBGS) ²	Bottom of Test Interval (mBGS) ²	Test Type	Hydraulic Conductivity (m/s) ³	Geologic Formation
I	BH3-4/MW	Feb 11, 2022	Bouwer and Rice	4.50	F F2	Rising Head	7.88 X 10 ⁻⁶	Sandy Silt
		Feb 11, 2022	Bouwer and Rice	4.50	5.52	Rising Head	6.23 X 10 ⁻⁶	Sariuy Siit

Notes: 1: Bouwer and Rice (1976)

2: mBGS = metres Below Ground Surface

3: m/s = metre per second

Groundwater samples were collected from BH3-4/MW on February 11, 2022 and submitted to Bureau Veritas Laboratories for geochemical analysis. The results of the analysis were compared to Provincial Water Quality Standards (PWQO) criteria limits. Laboratory results indicate no exceedances of the applicable PWQO parameters in BH3-4/MW groundwater results. Certificates of Analysis provided by Bureau Veritas Laboratories are included in **Appendix E**.

4.3 Environmental Sampling and Test Results

In total, six (6) soil samples were retrieved and submitted for chemical analysis of metals and inorganics, PHCs, VOCs, and PCBs as per the following:

Table 5: Summary of Chemical Analysis for Site #3

	Sample ID / Parameter Tested							
Site ID	Selected Inorganic Parameters and Metals (M&I)	Petroleum Hydrocarbons F1 to F4 (PHCs)	Volatile Organic Compounds (VOCs)	Polychlorinated Biphenyls (PCBs)				
Site 3	BH-3-1 SS2, BH-3-2 SS3, BH-3-2 SS2	BH-3-1 SS4	BH-3-1 SS4	BH-3-1 SS1				

All soil samples analyzed were either non-detect or detected with parameters well below the MECP Table 2 SCS for one or more contaminants of M&I, PCBs, PHCs, and VOCs parameters at the borehole locations. Based on the review of the laboratory QA/QC program, sample results are considered acceptable.

Groundwater samples were collected from BH-3-4/MW on February 11, 2022 and submitted to Bureau Veritas Laboratories for chemical analysis. The results of the analysis were compared to Table 2 SCS. The groundwater sample analyzed including metals, VOCs, PHCs F1 - F4, PAHs, and PCBs results indicated that the concentration of all analyzed parameters met the applicable MECP Table 2 SCS Standards.

5. Site #5 – Johnston Sports Park

Site #5 is located at the west side of Centreville Creek Road and the north side of King St in Caledon, as shown in Figure 3. The access road from King Street as well as two parking areas were developed with asphalt pavement. The rest areas of the site are undeveloped areas covered by grass and bushes. Five (5) boreholes including BH5-1 to BH5-5 on the green land were advanced. During the investigation, no abnormal odour or staining was detected.

5.1 Subsurface Conditions

The subsurface conditions are presented in this section for Site #5. The existing conditions of materials encountered are summarized in this section. The stratigraphic layers were inferred from non-continuous sampling and observation of drilling resistance and typically represents a transition from one soil type to another. These boundaries should not be interpreted to represent the actual planes of geological change. The subsurface conditions have been confirmed at the borehole locations only, and they may vary between and beyond the borehole locations. Refer to **Appendix B** for the borehole logs. Borehole locations are presented in **Appendix A**.

5.1.1 Silty Clay Fill

A layer of silty clay fill was encountered at the ground surface in all five boreholes. The thickness of this fill layer ranged from 0.7 to 2.1 m. This layer was encountered at the elevation of 268.2 to 267.5 mASL and extended to 267.5 to 265.6 mASL.

SPT testing conducted on this fill layer had N value ranged from 4 to 13 blows per 0.3 m penetration indicating soft to very stiff in consistency. Moisture content tests result on selected fill sample ranged from 21.0% to 29.3%. Sieve and hydrometer analysis results on one selected fill sample indicated gravel size of 0%, sand size of 17%, silt size of 53%, and clay size of 30%. The Atterberg limits test conducted on one selected silty clay fill sample had plastic limit of 22% and liquid limit of 32%, indicating a medium plasticity soil. Results of the laboratory testing are present in **Appendix C**.

5.1.2 Silty Clay Till

A layer of silty clay till was encountered beneath the layer of fill in all boreholes. The thickness of the silty clay till layer ranged from 1.5 to 4.5 m. This layer was encountered at elevations ranging from 267.5 to 265.6 mASL and extended to 264.5 to 262.3 mASL. All the boreholes were terminated in this layer.

SPT testing conducted on this layer had N values ranging from 13 to 59 blows per 0.3 m penetration indicating stiff to hard in consistency, but generally a very stiff to hard cohesive soil. Moisture content test results ranged from 11.4% to 21.6%. Sieve and hydrometer analysis results on selected samples in this layer indicated gravel sizes ranged from 1%, sand sizes ranging from 15% to 21%, silt sizes ranging from 46% to 48%, and clay sizes ranging from 30% to 38%. The Atterberg limits test conducted on selected silty clay till samples had plastic limit ranged from 19% and liquid limit ranged from 31% to 33%, indicating a medium plasticity soil. The soil density analysis was conducted on till samples indicating wet unit weight ranging from 21.9 to 22.1 kN/m³ and dry unit weight ranging from 19.2 to 19.5 kN/m³. Results of the laboratory testing are present in **Appendix C**.

5.2 Groundwater Conditions

No groundwater levels were observed in the open hole upon the completion of the drilling.

A groundwater monitoring well (BH5-3/MW) was constructed at the site on December 20th, 2021 as part of the geotechnical investigation. Groundwater level monitoring at BH5-3/MW was conducted by AECOM between February 11, 2022 to March 8, 2022. **Table 6** provides a summary of BH5-3/MW including groundwater levels, elevation data, depths, and screen intervals (in mBGS and mASL).

Table 6: Construction Details and Groundwater Level Measurements (BH5-3/MW)

Monitoring	Ground Screen Interval Depth (mBGS) ¹		Screen Interval Elevation (mASL) ²		Groundwater Level Depth and Elevation			
Well ID	Elevation (mASL) ²	Тор	Bottom	Тор	Bottom	Date	Depth to Groundwater (mBGS) ^{1,3}	Groundwater Elevation (mASL) ^{2,3}
	267.50	267.50 2.13	3 5.18	265.37	262.32	Feb 11, 2022	0.14	267.36
BH5-3/MW						Feb 28, 2022	0.32	267.18
DU2-3/INIAA						Mar 7, 2022	0.31	267.19
						Mar 8, 2022	0.31	267.19

Notes: 1. mBGS = metres below ground surface

The Monitoring well BH5-3/MW was frozen during four (4) site visits conducted between February 11, 2022 to March 8, 2022. The monitoring well development, SWRT and groundwater sampling at BH5-3/MW will be completed in Spring 2022. It is anticipated that the collected groundwater data will be analyzed and presented in a subsequent memorandum to this report.

Infiltration rate testing will be completed using a Guelph Permeameter to evaluate the field saturated vertical hydraulic conductivity within the upper surficial soils at the selected location within Site #5 in Spring 2022. The infiltration testing results will be presented in a subsequent memorandum to this report.

5.3 Environmental Sampling and Test Results

In total, twelve (12) soil samples were retrieved and submitted for chemical analysis of metals and inorganics, PHCs, PAHs, VOCs, and PCBs as per the following:

Table 7: Summary of Chemical Analysis for Site #5

		Sample ID / Parameter Tested				
Site ID	Selected Inorganic Parameters and Metals (M&I)	Petroleum Hydrocarbons F1 to F4 (PHCs)	Volatile Organic Compounds (VOCs)	Polycyclic Aromatic Hydrocarbons (PAHs)	Polychlorinated Biphenyls (PCBs)	
Site 5	BH-5-1 SS2, BH-5-2 SS2, BH-5-3 SS1, BH-5-4 SS2, BH-5-5 SS2	BH-5-2 SS2, BH-5-3 SS6A	BH-5-2 SS2, BH- 5-3 SS6A	BH-5-1 SS1, BH-5-2 SS1	BH-5-2 SS1	

All soil samples analyzed were either non-detect or detected with parameters well below the MECP Table 2 SCS for one or more contaminants of M&I, PAHs, PCBs, PHCs, and VOCs parameters at the borehole locations. Based on the review of the laboratory QA/QC program, sample results are considered acceptable.

Groundwater samples were collected from BH5-3/MW on May 9, 2022 and submitted to Bureau Veritas Laboratories for chemical analysis. The results of the analysis were compared to Table 2 SCS. The groundwater sample analyzed including metals, VOCs, PHCs F1 - F4, PAHs, and PCBs results indicated that the concentration of all analyzed parameters met the applicable MECP Table 2 SCS Standards.

^{2.} mASL = metres above mean sea level

^{3.} The monitoring well BH5-3/MW was frozen from February 11, 2022 to March 8, 2022. Groundwater level data collected from February 11, 2022 to March 8, 2022 at BH5-3/MW are pre-development.

Site #6 – Tullamore Reservoir and Pumping Station

Site #6 is located at the west side of Innis Lake Road and the north side of Mayfield Rd in Brampton, as shown in Figure 4. The south part of the site was developed with an existing structure with the asphalt pavement parking area and the access road. An existing stormwater management pond is located at the west side of the structure. The other access loop with asphalt pavement was developed at the north part of the site. The rest areas of the site are undeveloped and covered by grass and bushes. Three (3) boreholes from BH6-1 to BH6-3 on the green land were advanced. During the investigation, no abnormal odour or staining was detected.

6.1 Subsurface Conditions

The subsurface conditions are presented in this section for Site #6. The existing conditions of materials encountered are summarized in this section. The stratigraphic layers were inferred from non-continuous sampling and observation of drilling resistance and typically represents a transition from one soil type to another. These boundaries should not be interpreted to represent the actual planes of geological change. The subsurface conditions have been confirmed at the borehole locations only, and they may vary between and beyond the borehole locations. Refer to **Appendix B** for the borehole logs. Borehole locations are presented in **Appendix A**.

6.1.1 Sandy Silt Fill

A layer of sandy silt fill was encountered at the ground surface only in BH6-1/MW. The thickness of this fill layer was 1.2 m. This layer was encountered at the elevation of 229.8 mASL and extended to 228.3 mASL. SPT testing conducted on this fill layer had N value ranged from 5 to 6 blows per 0.3 m penetration indicating loose in compactness. Moisture content tests result on selected fill samples ranged from 16.8% to 75.0%. Results of the laboratory testing are present in **Appendix C**.

6.1.2 Silty Clay Fill

A layer of silty clay fill was encountered at the ground surface in BH6-2 and BH6-3. The thickness of this fill layer ranged from 1.2 to 2.3 m. This layer was encountered at the elevation of 231.0 mASL and extended to 229.8 to 228.7 mASL.

SPT testing conducted on this fill layer had N value ranged from 6 to 22 blows per 0.3 m penetration indicating firm to very stiff soil in consistency. Moisture content tests result on selected fill samples ranged from 14.7% to 27.8%. Sieve and hydrometer analysis results on one selected fill sample indicated gravel size of 1%, sand size of 20%, silt size of 38%, and clay size of 41%. The Atterberg limits test conducted on one selected silty clay fill sample had plastic limit ranged from 21% and liquid limit ranged from 33%, indicating a low to medium plasticity soil. The soil density analysis was conducted on a fill sample indicating wet unit weight of 21.6 kN/m³ and dry unit weight of 19.1 kN/m³. Results of the laboratory testing are present in **Appendix C**.

6.1.3 Silty Clay Till

A layer of silty clay till was encountered beneath the fill layers in all three boreholes. The thickness of the silty clay till layer ranged from 0.4 to 1.9 m. This layer was encountered at elevations ranging from 229.8 to 228.7 mASL and extended to 228.9 to 228.3 mASL. All the boreholes were terminated in this layer.

SPT testing conducted on this layer had N values ranging from 13 to over 50 blows per 0.3 m penetration indicating stiff to hard in consistency, but generally a very stiff to hard cohesive soil. Moisture content test results ranged from 13.8% to 24.1%. Sieve and hydrometer analysis results on selected samples in this layer indicated gravel sizes ranged from 0 to 3%, sand sizes ranging from 16% to 36%, silt sizes ranging from 33% to 39%, and clay sizes ranging from 28% to 45%. The Atterberg limits test conducted on selected silty clay till samples had plastic limit ranged from 18% too 21% and liquid limit ranged from 28% to 35%, indicating a low to medium plasticity soil. The soil density analysis was conducted on till samples indicating wet unit weight of 21.0 kN/m³ and dry unit weight of 18.0 kN/m³. Results of the laboratory testing are present in **Appendix C**.

6.2 Groundwater Conditions

No groundwater levels were observed in the open hole upon the completion of the drilling.

A groundwater monitoring well (BH6-1/MW) was constructed at the site on November 15, 2021 as part of the project-related geotechnical investigation. Groundwater level monitoring at BH6-1/MW was conducted by AECOM between March 7, 2022 to March 8, 2022. **Table 8** provides a summary of BH6-1/MW including groundwater levels, elevation data, depths, and screen intervals (in mBGS and mASL).

Table 8: Construction Details and Groundwater Level Measurements (BH6-1/
--

Manitarina	Ground		Interval mBGS)¹		Interval n (mASL)²	Groundwate	er Level Depth a	nd Elevation
Monitoring Well ID	Surface Elevation (mASL) ²	Тор	Bottom	Тор	Bottom	Date	Depth to Groundwater (mBGS) ^{1,3,4}	Groundwater Elevation (mASL) ^{2,3,4}
BH6-1/MW	231.00	1.50	2.41	229.50	228.59	Mar 7, 2022	0.66	230.34
BHO-1/IVIVV	231.00	1.50	2.41	229.50	228.59	Mar 8, 2022	1.83	229.17

Notes: 1. mBGS = metres below ground surface

- 2. mASL = metres above mean sea level
- 3. Groundwater level data collected on March 7, 2022 was pre-development.
- 4. Groundwater level data collected on March 8, 2022 are not static as the well was recovering from the following development and/or groundwater sampling.

Long-term groundwater data are also being collected at BH6-1/MW using water level data loggers. The purpose of this monitoring is to assess water level fluctuation over time. It is expected that the groundwater levels within the site will be subjected to seasonal fluctuations including response to spring freshet and localized precipitation events. It is anticipated that the collected groundwater data will be analyzed and presented in a subsequent memorandum to this report.

SWRT was conducted at BH6-1/MW on March 7, 2022. Collected data were analyzed to provide an estimate of the hydraulic conductivity (K) of the stratum surrounding each respective monitoring well screen. SWRT results for BH6-1/MW are summarized in **Table 9**, with the individual analysis reports contained in **Appendix D**.

Infiltration rate testing will be completed using a Guelph Permeameter to evaluate the field saturated vertical hydraulic conductivity within the upper surficial soils at the selected location within Site #6 in Spring 2022. The infiltration testing results will be presented in a subsequent memorandum to this report.

Table 9: Summary of Single Well Response Testing Results (BH6-1/MW)

Monitoring Well ID	Test Date	Analytical Method ¹	Top of Test Interval (mBGS) ²	Test Interval	Type of Slug Test	Hydraulic Conductivity (m/s) ³	Geologic Formation
BH6-1/MW	Mar 7, 2022	Bouwer and Rice	1.83	2.41	Rising Head	1.99 X 10 ⁻⁸	Silty Clay (Till) with trace gravel and sandy

Notes: 1 – Bouwer and Rice (1976)

2 - mBGS = metres Below Ground Surface

3 - m/s = metre per second

Groundwater samples were collected from BH6-1/MW on March 7, 2022 and submitted to Bureau Veritas Laboratories for geochemical analysis. The results of the analysis were compared to Provincial Water Quality Standards (PWQO) criteria limits. As shown in **Table 10**, dissolved uranium exceeded the PWQO guidelines limits. Given these exceedances, the use of water treatment prior to the discharge to the natural environment should be included as part of the dewatering plan. Certificates of Analysis provided by Bureau Veritas Laboratories are included in **Appendix E**.

Table 10: Summary of Parameters Exceeding PWQO Guidelines (BH6-1/MW)

Parameter Group	Monitoring Well	Parameter	PWQO Guideline	Reported Value (ug/L)
Inorganics	BH6-1MW	Dissolved Uranium	5.0	5.6

Notes: ug/L = micrograms per Litre

6.3 Environmental Sampling and Test Results

In total, five (5) soil samples were retrieved and submitted for chemical analysis of metals and inorganics, and PCBs.

All soil samples analyzed were either non-detect or detected with parameters well below the MECP Table 2 SCS for one or more contaminants of M&I and PCBs parameters at the borehole locations. Based on the review of the laboratory QA/QC program, sample results are considered acceptable.

Groundwater samples were collected from BH6-1/MW on March 7, 2022 and submitted to Bureau Veritas Laboratories for chemical analysis of metals, VOCs, PHCs F1 - F4, PAHs, and PCBs. The results of the analysis were compared to Table 2 SCS. The groundwater sample analyzed including metals, VOCs, PHCs F1 - F4, PAHs, and PCBs results indicated that the concentration of all analyzed parameters met the applicable MECP Table 2 SCS Standards.

Ref: 60646784

Site #9 – Alloa Reservoir and Pumping Station

Site #9 is located at the west side of Creditview Road and the north side of Mayfield Rd in Brampton, as shown in Figure 5. The south half part of the site has been developed with an existing structure with asphalt pavement parking area and access road. The north half of the site are undeveloped areas covered by grass. Three (3) boreholes including BH9-1 to BH9-3/MW on the green land were advanced.

7.1 Subsurface Conditions

The subsurface conditions are presented in this section for Site #9. The existing conditions of materials encountered are summarized in this section. The stratigraphic layers were inferred from non-continuous sampling and observation of drilling resistance and typically represents a transition from one soil type to another. These boundaries should not be interpreted to represent the actual planes of geological change. The subsurface conditions have been confirmed at the borehole locations only, and they may vary between and beyond the borehole locations. Refer to **Appendix B** for the borehole logs. Borehole locations are presented in **Appendix A**.

7.1.1 Sandy Silt Fill

A layer of sandy silt fill was encountered at the ground surface in BH9-1 and BH9-3/MW. The thickness of this fill layer ranged from 0.6 to 1.2 m. This layer was encountered at the elevation of 262.0 mASL and extended to 261.4 to 260.8 mASL.

SPT testing conducted on this fill layer had N value ranged from 7 to 15 blows per 0.3 m penetration indicating loose to compact in compactness. Moisture content tests result on selected fill samples ranged from 14.1% to 26.3%. Results of the laboratory testing are present in **Appendix C**.

7.1.2 Sand Fill

A layer of sand fill was encountered below sandy silt fill only in BH9-3/MW. The thickness of this fill layer was 0.6 m. This layer was encountered at the elevation of 261.4 mASL and extended to 260.8 mASL.

One SPT testing conducted on this fill layer had N value of 4 blows per 0.3 m penetration indicating verry loose in compactness. A moisture content test result on one selected fill sample was13.7%. Results of the laboratory testing are present in **Appendix C**.

7.1.3 Silty Clay Fill

A layer of silty clay fill was encountered at the ground surface in BH9-2 and below the layer sand fill in BH9-3/MW. The thickness of this fill layer ranged from 1.9 to 3.7 m. This layer was encountered at the elevation of 262.0 to 260.8 mASL and extended to 259.0 to 258.3 mASL.

SPT testing conducted on this fill layer had N value ranged from 3 to 18 blows per 0.3 m penetration indicating soft to very stiff in consistency, but generally a firm to stiff soil. Moisture content tests result on selected fill samples ranged from 12.3% to 23.5%. Results of the laboratory testing are present in **Appendix C**.

7.1.4 Silty Clay

A layer of silty clay was encountered beneath the layer of sandy silt fill in BH9-1. The thickness of the silty clay till layer was 1.2 m. This layer was encountered at elevations ranging from 260.8 mASL and extended to 259.6 mASL. SPT testing conducted on this layer had N values ranging from 6 to 8 blows per 0.3 m penetration indicating a stiff to hard in consistency. Moisture content test results ranged from 12.6% to 16.0%. Sieve and hydrometer analysis results on one selected sample in this layer indicated gravel sizes of 3%, sand sizes of 29%, silt of 39%, and clay sizes of 29%. Results of the laboratory testing are present in **Appendix C**.

7.1.5 Silty Clay Till

A layer of silty clay till was encountered beneath fill in BH9-2 and BH9-3/MW and beneath silty clay in BH9-1. The thickness of the silty clay till layer ranged from 3.0 to 4.3 m. This layer was encountered at elevations ranging from 259.6 to 258.3 mASL and extended to 255.3 mASL. All the boreholes were terminated in this layer.

SPT testing conducted on this layer had N values ranging from 11 to 44 blows per 0.3 m penetration indicating a stiff to hard in consistency. Moisture content test results ranged from 10.4% to 21.9%. Sieve and hydrometer analysis results on selected samples in this layer indicated gravel sizes ranged from 2% to 3%, sand sizes ranging from 23% to 24%, silt sizes ranging from 47% to 56%, and clay sizes ranging from 18% to 27%. The Atterberg limits test conducted on selected silty clay till samples had plastic limit ranged from 19% to 26% and liquid limit ranged from 27% to 35%, indicating a low to medium plasticity soil. The soil density analysis was conducted on selected till samples indicating wet unit weight ranging from 20.5 to 21.8 kN/m³ and dry unit weight ranging from 17.8 to 19.1 kN/m³. Results of the laboratory testing are present in **Appendix C**.

7.2 Groundwater Conditions

No groundwater levels were observed in the open hole upon the completion of the drilling.

A groundwater monitoring well (BH9-3/MW) was constructed at the site on November 16, 2021 as part of the geotechnical investigation. Groundwater level monitoring at BH9-3/MW was conducted by AECOM between March 7, 2022 to March 8, 2022. **Table 11** provides a summary of BH9-3/MW including groundwater levels, elevation data, depths, and screen intervals (in mBGS and mASL).

Table 11: Construction Details and Groundwater Level Measurements (BH9-3/MW)

Monitoring	Ground Surface	Screen Interval Depth (mBGS) ₁		Screen Interval Elevation (mASL) ²		Groundwater Level Depth and Elevation		
Monitoring Well ID	Elevation (mASL) ²	Тор	Bottom	Тор	Bottom	Date	Depth to Groundwater (mBGS) ^{1,3,4}	Groundwater Elevation (mASL) ^{2,3,4}
BH9-3/MW	262.00	3.26	6.31	250.74	255.60	Mar 7, 2022	3.23	258.77
DU3-3/IAIAA	202.00	3.20	0.31	258.74 25	255.69	Mar 8, 2022	5.25	256.76

Notes: 1. mBGS = metres below ground surface

2. mASL = metres above mean sea level

3. Groundwater level data collected on March 7, 2022 was pre-development.

4. Groundwater level data collected on March 8, 2022 are not static as the well was recovering from the following development and/or groundwater sampling.

Long-term groundwater data are also being collected at BH9-3/MW using water level data loggers. The purpose of this monitoring is to assess water level fluctuation over time. It is expected that the groundwater levels within the

site will be subjected to seasonal fluctuations including response to spring freshet and localized precipitation events. It is anticipated that the collected groundwater data will be analyzed and presented in a subsequent memorandum to this report.

SWRT was conducted at BH9-3/MW on March 7, 2022. Collected data were analyzed to provide an estimate of the hydraulic conductivity (K) of the stratum surrounding each respective monitoring well screen. SWRT results for BH9-3/MW are summarized in **Table 12** with the individual analysis reports contained in **Appendix D**.

Infiltration testing will be completed using a Guelph Permeameter to evaluate the field saturated vertical hydraulic conductivity within the upper surficial soils at the selected location within Site #9 in Spring 2022. The infiltration testing results will be presented in a subsequent memorandum to this report.

Table 12: Single Well Response Testing Results (BH9-3/MW)

Monitoring Well ID	Test Date	Analytical Method ¹	Top of Test Interval (mBGS) ²	Bottom of Test Interval (mBGS) ²	Type of Slug Test	Hydraulic Conductivity (m/s) ³	Geologic Formation
BH9-3/MW	Mar 7, 2022	Bouwer and Rice	5.25	6.31	Rising Head	1.55 X 10 ⁻⁸	Silty Clay (Till) with some sand and trace gravel

Notes: 1 – Bouwer and Rice (1976)

2 - mBGS = metres Below Ground Surface

3 - m/s = metre per second

Groundwater samples were collected from BH9-3/MW on March 8, 2022 and submitted to Bureau Veritas Laboratories for geochemical analysis. The results of the analysis were compared to Provincial Water Quality Standards (PWQO) criteria limits. As shown in **Table 13**, dissolved uranium exceeded the PWQO guidelines limits. Given these exceedances, the use of water treatment prior to the discharge to the natural environment should be included as part of the dewatering plan. Certificates of Analysis provided by Bureau Veritas Laboratories are included in **Appendix E**.

Table 13: Summary of Parameters Exceeding PWQO Guidelines (BH9-3/MW)

Parameter Group	Monitoring Well	Parameter	PWQO Guideline	Reported Value (ug/L)
Inorganics	BH9-3MW	Dissolved Uranium	5.0	5.4

Notes: ug/L = micrograms per Litre

7.3 Environmental Sampling and Test Results

Nine (9) soil samples were retrieved and submitted for chemical analysis of metals and inorganics, and PCBs.

Groundwater samples were collected from BH-9-3/MW on March 8, 2022 and submitted to Bureau Veritas Laboratories for chemical analysis of metals, VOCs, PHCs F1 - F4, PAHs, and PCBs.

All nine (9) soil samples analyzed were either non-detect or detected with parameters well below the MECP Table 2 SCS for one or more contaminants of M&I and PCBs parameters at the borehole locations. Based on the review of the laboratory QA/QC program, sample results are considered acceptable.

The results of the analysis for groundwater samples were compared to Table 2 SCS. The groundwater sample analyzed including metals, VOCs, PHCs F1 - F4, PAHs, and PCBs results indicated that the concentration of all analyzed parameters met the applicable MECP Table 2 SCS Standards.

8. Pavement Design Recommendations for Truck Route

Based on the current investigation, the following recommendation is suggested for all the sites (#1, #3, #5, #6 and #9). It is recommended that the site be cleared and grubbed, topsoil stripped and earth graded to allow for placement of the light duty pavement structure indicated in Table 14 as per the typical pavement structure requirements for the Region of Peel.

Table 14: Flexible Pavement Design Recommendations

Pavement Structure	Light Duty Pavement Structure Layer ¹⁾ Thickness (mm)	Heavy Duty Pavement Structure Layer ¹⁾ Thickness (mm)	Compaction Minimum Requirement
HL3 or Superpave 12.5 mm	50	50	92% MRD (OPSS 310)
Surface Course			
HL8 or Superpave 19.0 Binder	70	110	92% MRD (OPSS 310)
Course	(one lift)	(two lifts)	
Granular Base: Granular 'A'	150	150	100% SPMDD (OPSS 501)
Granular Base: Granular 'B'	450	450	100% SPMDD (OPSS 501)
Total Thickness	720	760	

Pavement Design Notes:

- 1. Light Duty Pavement Structure shown in Table 2 is based on 15 years of service life
- 2. PGAC Grade 58-28
- 3. Superpave mix design traffic, category B

Ref: 60646784

RPT_2024-06-10_Regionofpeelsnowstorageassessmentrpt_60646784_FINAL.Docx

9. Geotechnical Design Considerations

9.1 Bearing Capacity

This section of the report provides geotechnical design recommendations for the proposed snow storage structures. The recommendations are based on the subsurface conditions encountered during the current geotechnical investigation. It is assumed that shallow foundations (e.g., square or spread footing) supports the snow storage structure for all the site locations. The calculation does not consider any eccentric loading cases. The following design values presented in **Table 15** for all five (5) sites. The founding depth is assumed to be 1.2 mbgs frost depth below the final grade.

Table 15: Geotechnical Capacity of Shallow Foundation

Footing Size (m)	Founding Soil	Factored Geotechnical Resistance at ULS (kPa)*	Geotechnical Reaction at SLS (kPa)**
Site 1	Stiff to hard silty clay till	250	160
Site 3	Very stiff to hard silty clay till	350	230
Site 5	Very stiff to hard silty clay till	350	230
Site 6	Very stiff to hard silty clay till	350	230
Site 9	Firm to stiff silty clay fill over stiff to hard silty clay till	200	130

Notes: * - Factored Geotechnical Resistance at ULS uses a Geotechnical Resistance factor of 0.5.

9.2 Lateral Earth Pressure on Structures

The peat type snow storage system, retaining wall and temporary roadway protection, if any, should be designed to resist lateral earth pressure. Where the snow storage system can be drained effectively to eliminated hydrostatic pressure on the walls, earth pressures equation can be simplified in accordance with the CHBDC. The expression for calculating lateral earth pressure is given by:

 $P = K(\Upsilon h + q)$ for non-braced cut

P = earth pressure intensity at depth h, kPa

K = earth pressure coefficient

 Υ = unit weight of retained soil, kN/m3

q = surcharge near wall, kPa

h = depth to point of interest, m

H = depth of excavation (m)

The mobilization of full active or passive resistance requires a measurable and perhaps significant wall movement or rotation. Therefore, unless the structural element can tolerate these deflections, the at-rest earth pressure should be used in design.

The effect of compaction surcharge should be taken into account in the calculations of active and at- rest earth pressures. The lateral pressure due to compaction should be taken as at least 12 kPa at the surface, and its magnitude should be assumed to diminish linearly with depth to zero at the depth where the active (or at rest) pressure is equal to 12 kPa. This pressure distribution should be added to the calculated active (or at rest) pressure. Notwithstanding, lighter compaction equipment and smaller lifts should be used adjacent to walls to prevent overstressing.

^{** -} The geotechnical resistance at SLS for 25 mm of settlement is considered.

For design purposes, the unfactored static earth pressure parameters given in **Table 16** can be used (assuming wall friction is neglected, the back wall is vertical and the ground surface is horizontal both on the retained side as well as in front of the toe):

Table 16: Material Types and Unfactored Earth Pressure Properties under Static Conditions

Material	Unfactored Friction Angle φ' (°)	Coefficient of Active Earth Pressure (Ka)	Coefficient of Passive Earth Pressure (K _p)	Coefficient of Earth Pressure at Rest (K ₀)	Unit Weight 7 (kN/m³)
Granular A	35	0.27	3.69	0.43	22
Granular B, Type II	32	0.31	3.25	0.47	21
Firm to stiff silty clay fill	27	0.38	2.67	0.55	20
Very stiff to hard silty clay till	29	0.35	2.88	0.52	21

10. Construction Considerations

The available preliminary traffic data from the City consist of Average Annual Daily Traffic (AADT) for 2022 and it is presented below:

10.1 Site Preparation and Engineered Fill Construction

The area within the limits of the proposed snow storage locations should be stripped and cleared of surface vegetation, topsoil and debris prior to construction. Any soil containing excessive organics or loose/disturbed materials are not suitable for the subgrade of structure **foundations or** engineered fill. Therefore, the areas with those soils should be excavated and replace with engineered fill comprised of Granular A or Granular B, Type I or Type II. Granular B Type II would be a preferred engineered fill if any high groundwater table is encountered. In order to prevent migration of fine soil particles a geotextile can be used underneath Granular B.

Engineered fill could be placed after stripping all topsoil, organic matter, fill and other compressible, weak and deleterious material within an area extending at least 1.0 m beyond the outside edge of the founding level of any footings, after stripping, the entire area should be heavily proof-rolled inspected and approved by a Geotechnical Engineer. Engineered fill should be placed in accordance with OPSS 501. The fill material should be placed in thin layers not exceeding approximately 300 mm when loose, oversize particles larger than 120 mm should be discarded, and each fill layer should be uniformly compacted with heavy compactors, suitable for the type of fill used, the engineered fill below the footing and floor slab should be compacted to 100% of its SPMDD, while within outside/exterior paved areas, the fill should be compacted to 98% of its SPMDD.

Full-time geotechnical inspection and quality control (by means of frequent field density of laboratory testing) should be provided by the Geotechnical Engineer. Every lift should be evaluated by a sufficient number of tests to ensure that the level of compaction is constantly achieved, and the compaction procedure is applied.

10.2 Subgrade Preparation for Pavement

After all removals of incompetent soils including vegetation, topsoil and debris, the contractor shall compact and/or proof roll the remaining existing subgrade/fill. This material shall be inspected by a qualified Geotechnical Engineer prior to adding base or subbase material placement. any earth fill material below granular base or subbase shall be placed and compacted in lifts no more than 300 mm thick. The Geotechnical Engineer shall identify any poorly performing areas (i.e. wet areas, areas of poor compactness, areas of unsuitable cohesive material) and direct the contractor to remove the poorly performing areas by sub-excavating and backfilling with Granular A.

10.2.1 Granular Base/Subbase Placement

The granular base / subbase course(s) shall conform to the OPSS.MUNI 1010 for select granular materials and shall be compacted to at least 100% of the SPMDD as indicated in Table 2. The material lifts shall not exceed 300 mm in thickness.

Compaction testing of the granular base / subbase lift(s) shall be conducted according to OPSS.MUNI 501 and required document (i.e., gradation of materials, proctor test results, compaction reports) should be submitted to the Contract Admin (CA) and the region.

10.2.2 Hot Mix Asphaltic Concrete Pavement

Hot Mix Asphaltic Concrete (HMAC) used for the new pavement construction (whether new material or recycled material) shall conform to the OPSS.MUNI 310 requirements. The asphaltic concrete courses shall use Performance Grade Asphalt Cement (PGAC) PG 58-28 and be designed to traffic category C in case of Superior Performance Asphalt Pavement (Superpave) to be used.

The asphaltic concrete shall conform to OPSS.MUNI 1050 and be placed and compacted to at least 92% MRD as indicated in Table 2. The asphalt mix design shall be submitted to the consultant for their review prior to the start of pavement construction.

10.3 Temporary Excavation

All excavations should be carried out in accordance with the Ontario Occupational Health and Safety Act (OHSA). The soils of the Site can be classified as Type 1, 2, 3 or 4 depending on the subsurface soil conditions and groundwater conditions.

According to Section 3, for Site #1, the native very stiff soil indicates Type 2 soil at the proposed snow storage area so a side slope of 1H: 1V is required for the excavation in accordance with the OHSA. The slope will be adjusted based on the site and construction conditions according to OHSA.

According to Section 3, for Site #3, #5, #6 and #9, the existing fill soil indicates Type 4 soil at the proposed snow storage area so a side slope of 3H: 1V is required for the excavation in accordance with the OHSA. The slope will be adjusted based on the site and construction conditions according to OHSA.

Stockpiles of excavated materials should be kept at least 3.0 m or the length of 1 excavation depth, whichever is larger, away from the edge of the excavation to avoid slope instability. The slope stability of any excavations is subject to confirmation by the geotechnical engineer onsite. Care should also be taken to avoid the overloading of any underground services/structures by stockpiles, where applicable.

10.4 Dewatering

Since the groundwater level encountered at higher level in the open hole at Site #3, dewatering effort may be anticipated during the excavation work. The groundwater level needs to be controlled to 0.5 m below the final excavation level to avoid adverse effect such basal heave, foundation disturbance and any surface or groundwater seepage should be controlled from the excavation prior to any material being placed. In general, pumping using properly filtered sumps, and/or filtered drains placed along the base of the excavation should provide sufficient groundwater control during the construction. Please refer to the Hydrogeological report for the detailed dewatering plan.

For all other sites (#1, #5, #6 and #9), as no groundwater was observed in the open hole upon the completion of the drilling, dewatering may not be required during any excavation works. However, this will be confirmed once the groundwater data in the monitoring wells are available.

10.5 Frost Protection

The frost penetration depth for Region of Peel is considered as 1.2 m in accordance with Ontario Provincial Standard Drawing (OPSD) 3090.101.

The existing subgrade soil, silty clay, based on the sieve and hydrometer analyses and the MTO Frost Protection Criteria (**Table 17**) is considered a moderately to highly frost susceptible soil. Therefore, a relatively thick granular base has been recommended. The installation of a sub-drain system would reduce the potential for frost heave of the pavement structure.

Table 17: Soil Frost Susceptibility (MTO)

Grain Size (Silt and Clay Portion)	Susceptibility to Frost heave
0 to 40%	Low
40 to 55%	Moderate
55 to 100%	High

10.6 Settlement Considerations

As the snow storage will be founded on very stiff to hard silty clay till, with the assumption of 10.0 m height snow piles last about 4 months storage period, the settlement will be minor (less than 25 mm) which will not be an issue.

10.7 Soil Storage and Disposal

Work included under this item shall be for the complete excavation, hauling, and disposal off-site of cut material as per the engineering plans. The material is to be tested and disposed of off-site at a suitable location based on the test results.

Quantities for all earth and topsoil items shall be calculated using the pre and post survey information and calculated using computer volume modeling software. The Contractor to ensure that CA is provided adequate notice a minimum of 48 hours, and ample time to conduct the required survey work.

The new Soil Storage Rules (Part I – the Rules for Soil Management and Part II – the Excess Soil Quality Standards) shall be followed. A procedure to manage soil that is encountered during excavation that is observed to be likely contaminated shall be applied. The excess soil generated shall follow transportation safety guidelines and transportation records shall be generated accurately to document the movement of the excess soil. The excess soil designated for reused must meet the Excess Soil Quality Standards or site-specific Soil Quality Standards and must be used for a Beneficial Purpose. Specific processing methods can be utilized to reduce concentrations of contaminates to levels that are suitable for reuse. All records generated under O. Reg. 406/19 must be kept on file for 7 years.

All excess earth excavation remaining after use as fill shall be removed from the site to locations arranged for and at the sole expense of the Contractor, all included in the unit price bid for these items.

The excess soil is to be disposed of off-site, at locations (reuse site, a Class 1 soil management site, a Class 2 soil management site or a local waste transfer facility) arranged for and at the sole expense of the Contractor. The unit price shall include excavation, loading, hauling, and disposing offsite at the sole expense of the Contractor, including any environmental or weigh ticket requirements.

Disposal locations will depend on the soil type as determined by the testing carried out as part of MOE O. Reg. 153/04 and MOE O. Reg. 406/19. Refer to the environmental report regarding the detailed requirements of contaminated and soil disposal.

10.8 Drainage and Meltwater Management

Site drainage and meltwater should be directed to a meltwater collection pond. Site meltwater should be directed away from the snow piles and dumping area to reduce ponding/rutting. The meltwater collection pond should be designed with an impermeable base, a forebay to collect litter and settle coarse sediments and a larger secondary area (polishing pond) to settle finer particles. The uncontaminated drainage should be isolated from the meltwater. the meltwater collection pond should be designed large enough to handle the expected meltwater volume, other site drainage and the periodic additional load from precipitation events. The outlet should be controlled to regulate the release to the receiving water body. The point of discharge should be protected to prevent scour. Adequate access to the pond needs to be provided to allow for periodic cleanout of sediments. The polishing pond should be designed to encourage complete circulation to avoid salt stratification and the potential for higher releasees during wet weather flows.

11. Seismic Site Classification

Table 18 Site Classification for Seismic Site Response (CFEM 2006) summarizes the site classification based on the soil properties in the top 20 m of subsurface. Considering the undrained shear strength and SPT values of the stiff to hard silty clay till encountered, a seismic site classification of the building and proposed snow storage facilities at all the sites (#1, #3, #5, #6 and #9) is Site Class D.

Table 18: Site Classification for Seismic Site Response (CFEM 2006)

Average	Properties in top 20 m			
Site Class	Ground Profile Name	Shear Wave Velocity $\overline{V_s}$ (m/s)	Standard Penetration Resistance \bar{N}_{60}	Soil Undrained Shear Strength s_u (kPa)
Α	Hard Rock	$\overline{V_s} > 1500$	Not Applicable	Not Applicable
В	Rock	$760 < \overline{V}_s \le 1500$	Not Applicable	Not Applicable
С	Very Dense Soil and Soft Rock	$360 < \overline{V}_s \le 760$	$ \overline{N}_{60} > 50$	$s_u > 100$
D	Stiff Soil	$180 < \overline{V}_s \le 360$	$15 \le \overline{N}_{60} \le 50$	$50 < s_u \le 100$
Е	Soft Soil	$\overline{V_s} \le 180$	$\bar{N}_{60} < 15$	$s_u < 50$
		 Any profile with more that Plasticity Index PI > 2 Moisture Content w ≥ Undrained Shear Street 	40%; and	aracteristics:
F	Other Soil	Site Specific Evaluation	Required	

The adjust of the spectral accelerations and PGA values should be referred to Tables 4.2 to 4.9 in CHBDC S6-14. Design PGA and Sa (T), and these should be selected based on project specific requirements as described in the minimum performance level in CHBDC S6-14. Seismic earth pressures acting on the structure may be estimated using Mononobe-Okabe or Wood methods depending on the rigidity or tolerable movement of the structures.

Ref: 60646784 AECOM

Liquefaction Considerations

The subsurface soil at the proposed snow storage locations from approximately 0.2 to 6.7 m below the ground surface at this site mainly comprises silty clay till with SPT N-values ranging from 8 to over 50. Based on the observed SPT values, the subsoil could potentially be susceptible to liquefaction.

In addition, silty clay till may be classified as fine-grained soils. As shown in the grain size distribution analysis, they have a significant portion (over 70%) of fines passing through the #200 sieve. To delineate liquefaction susceptibility, this report adopted the empirical criteria recommended in the CFEM:

- $w/w_L \ge 0.85$ and $I_P \le 12$: Susceptible to liquefaction or cyclic mobility;
- $w/w_L \ge 0.80$ and $10 \le I_P \le 12$: Moderately susceptible to liquefaction;
- $w/w_L < 0.85$ and $I_P \ge 12$: No liquefaction or cyclic mobility.

Where w is the in-situ soil water content, w_L is the liquid limit of the soil and I_P is the plasticity index of the soil. The results of the soil liquefaction susceptibility encountered within the proposed structure are shown in **Figure 6**. Based on the above criteria, the liquefaction potential for the silty clay till is 'no liquefaction'.

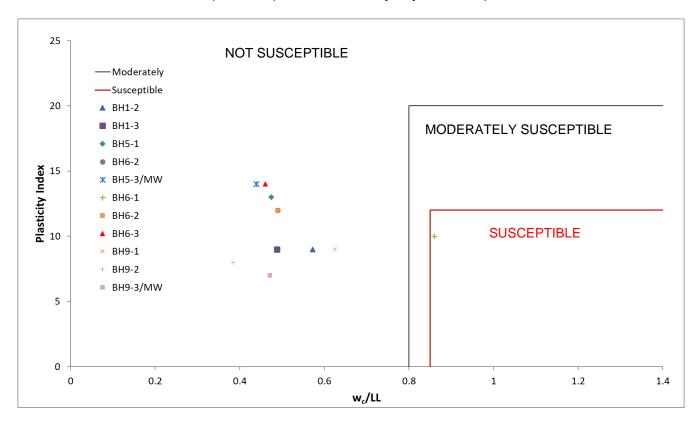


Figure 6: CFEM Recommended Criteria for Liquefaction Assessment of Fine-Grained Soils

Ref: 60646784 AECOM

13. Summary of Environmental Sampling

In total forty-three (43) soil samples were retrieved during Geotechnical and Hydrogeological Investigation to evaluate the general environmental quality of the fill material and the upper level of native subsurface soil as well as a baseline analysis of the groundwater for the future discharge options during the construction. This sampling/testing program was conducted for the future on-site waste management of excess soil for the waste disposal and re-use options during the construction.

Based on the background soil analytical results, all soil samples analyzed were either non-detect or detected with parameters well below the MECP Table 2 SCS for one or more contaminants of M&I, PAHs, PCBs, PHCs, and VOCs parameters.

Groundwater samples were collected from Sites #3, #5, #6, and #9, and submitted to Bureau Veritas Laboratories for chemical analysis. The results of the analysis were compared to Table 2 SCS. The groundwater sample analyzed including metals, VOCs, PHCs F1 - F4, PAHs, and PCBs results indicated that the concentration of all analyzed parameters met the applicable MECP Table 2 SCS Standards.

Any monitoring wells that are not in use must be decommissioned as per applicable regulations.

As part of the project, construction activities may include excavation which may generate more soil than can be reused on the Site, material that is termed "excess soil. It is noted that the quantity of soil to be excavated and the quantity of excess soil to be removed from the Project Sites are not known at this time. If the volume of excess soil exceeds 2000 m³ a formal filing of a notice with MECP would be required.

Ontario Regulation 406/19 requires a project leader for a project to comply with specific requirements before removing excess soil from a project area. These obligations apply to the projects and in the circumstances set out in the regulation. Generally, the requirements include the following:

- Preparation of an assessment of past uses (APU);
- Preparation and implementation of a sampling and analysis plan (SAP);
- Preparation of a soil characterization report;
- Preparation of an excess soil destination assessment report; and
- Development and implementation of a tracking system.

Ref: 60646784 AECOM

14. References

Bouwer, H and R.C. Rice, 1976:

A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resource Research 52(2): 311 – 316.

Canadian council of Ministers of the Environment, 2010:

Canadian Water Quality guidelines for the Protection of Aquatic Life - Ammonia.

Florida Department of Environmental Protection, 2001:

Calculation of un-ionized ammonia in fresh water. February 12, 2001.

Ministry of the Environment, 1996:

Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario, May 1996 (MOE 1996 Guidance Manual)

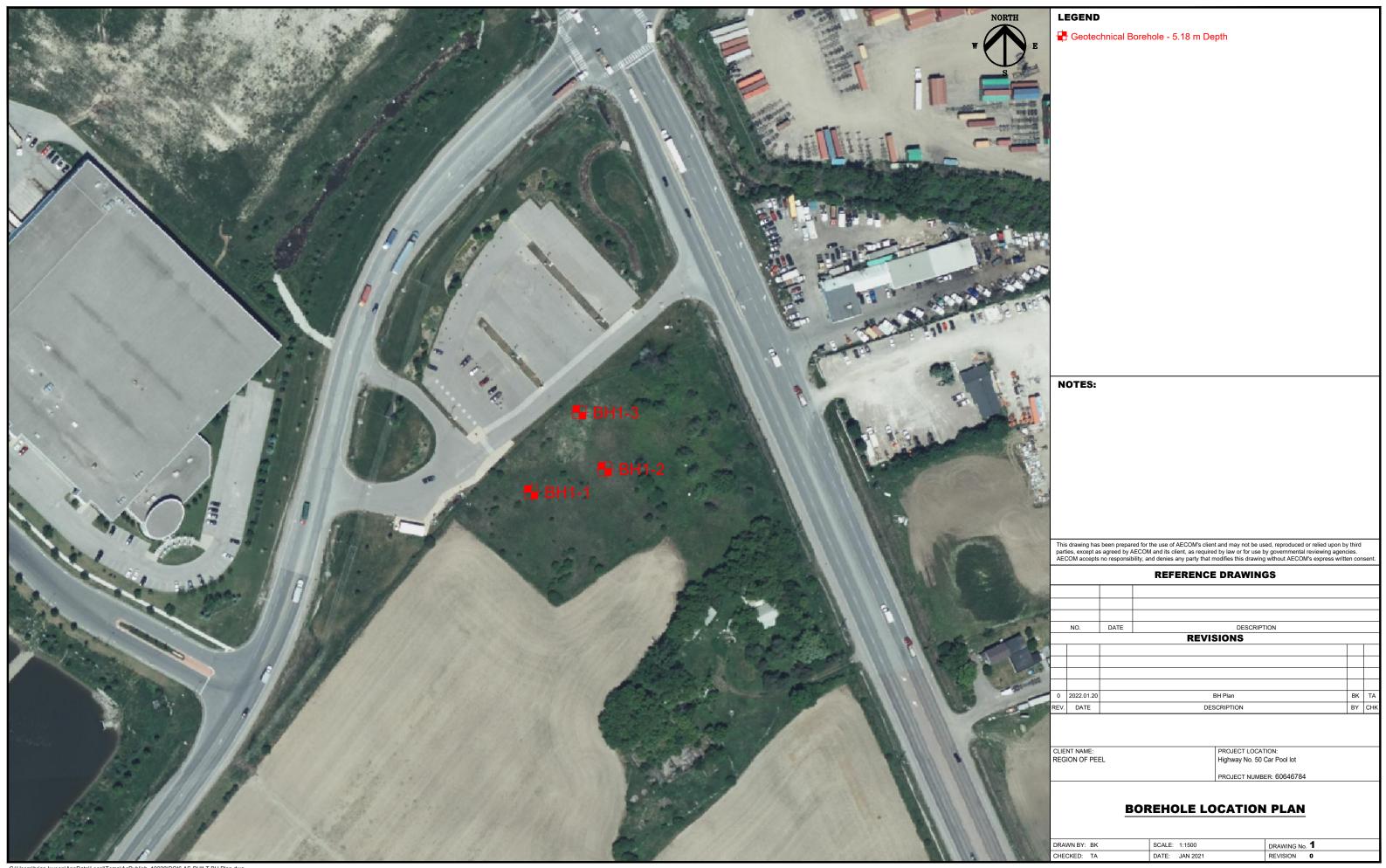
Ministry of the Environment, Conservation, and Parks (MECP), 2011:

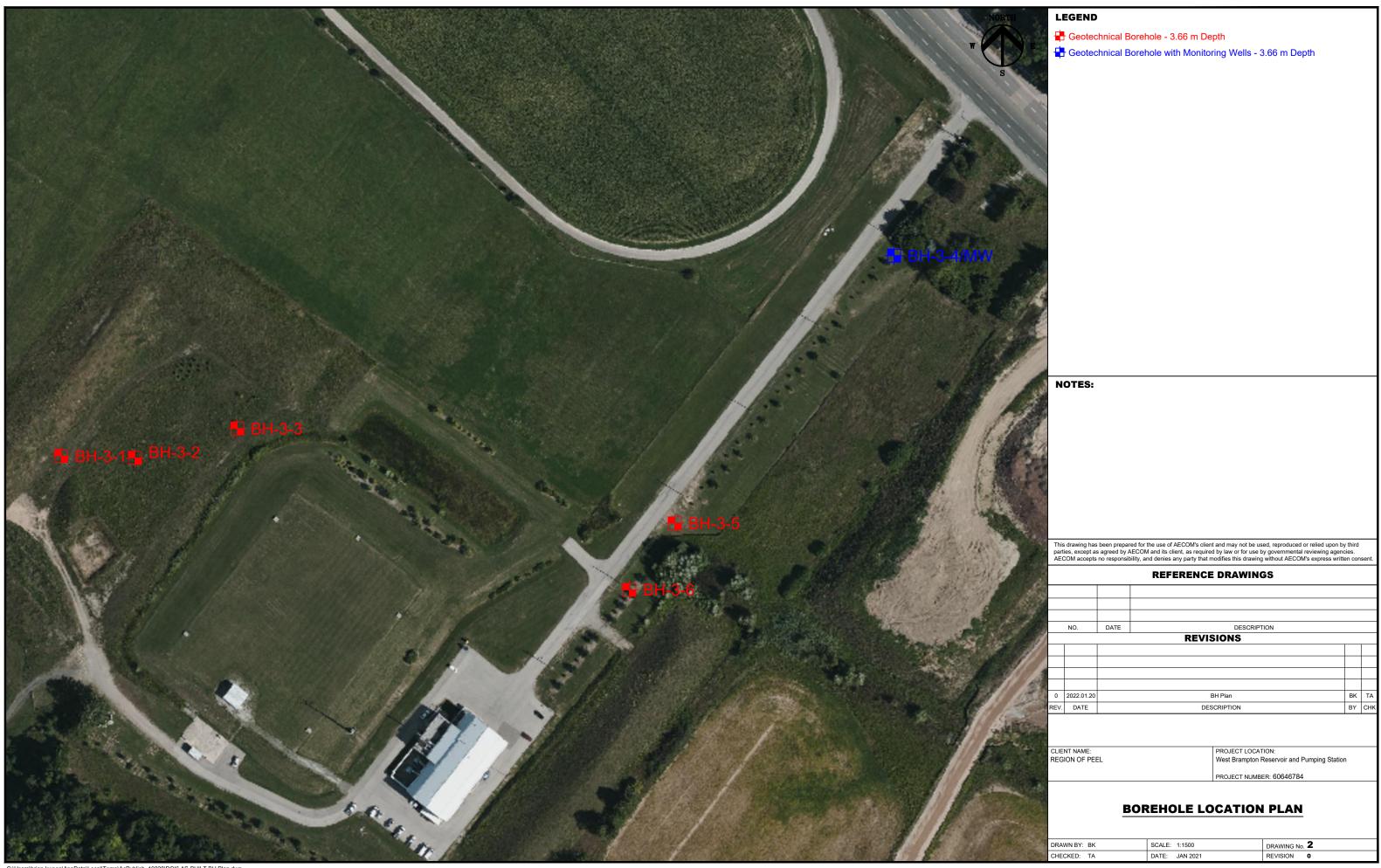
Environmental Protection Act – Ontario Regulation 153/04 (as amended) – Record of Site Condition regulation - Part XV.1 of the Environmental Protection Act

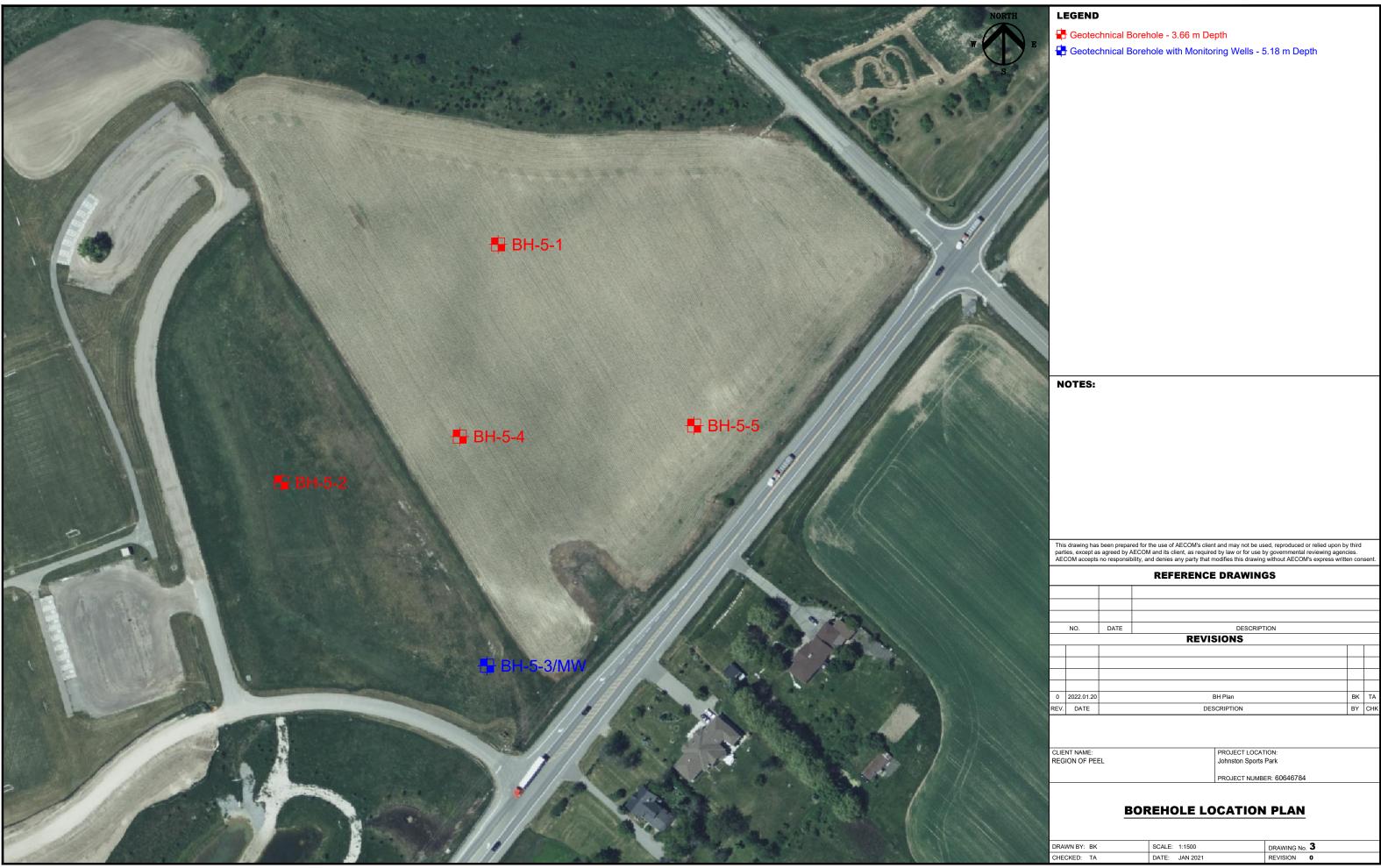
Ministry of the Environment, Conservation, and Parks (MECP), 2011:

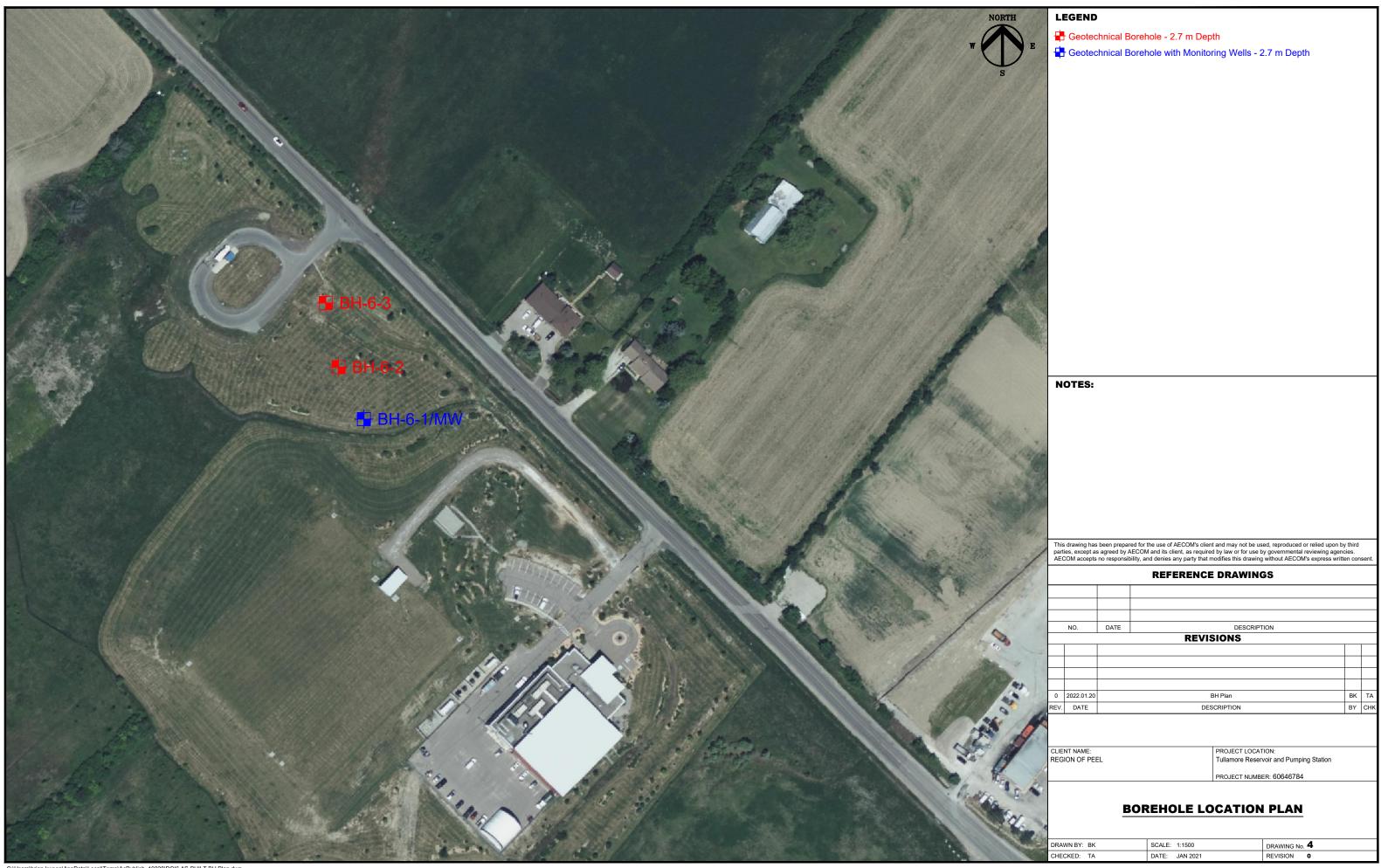
Soil, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011

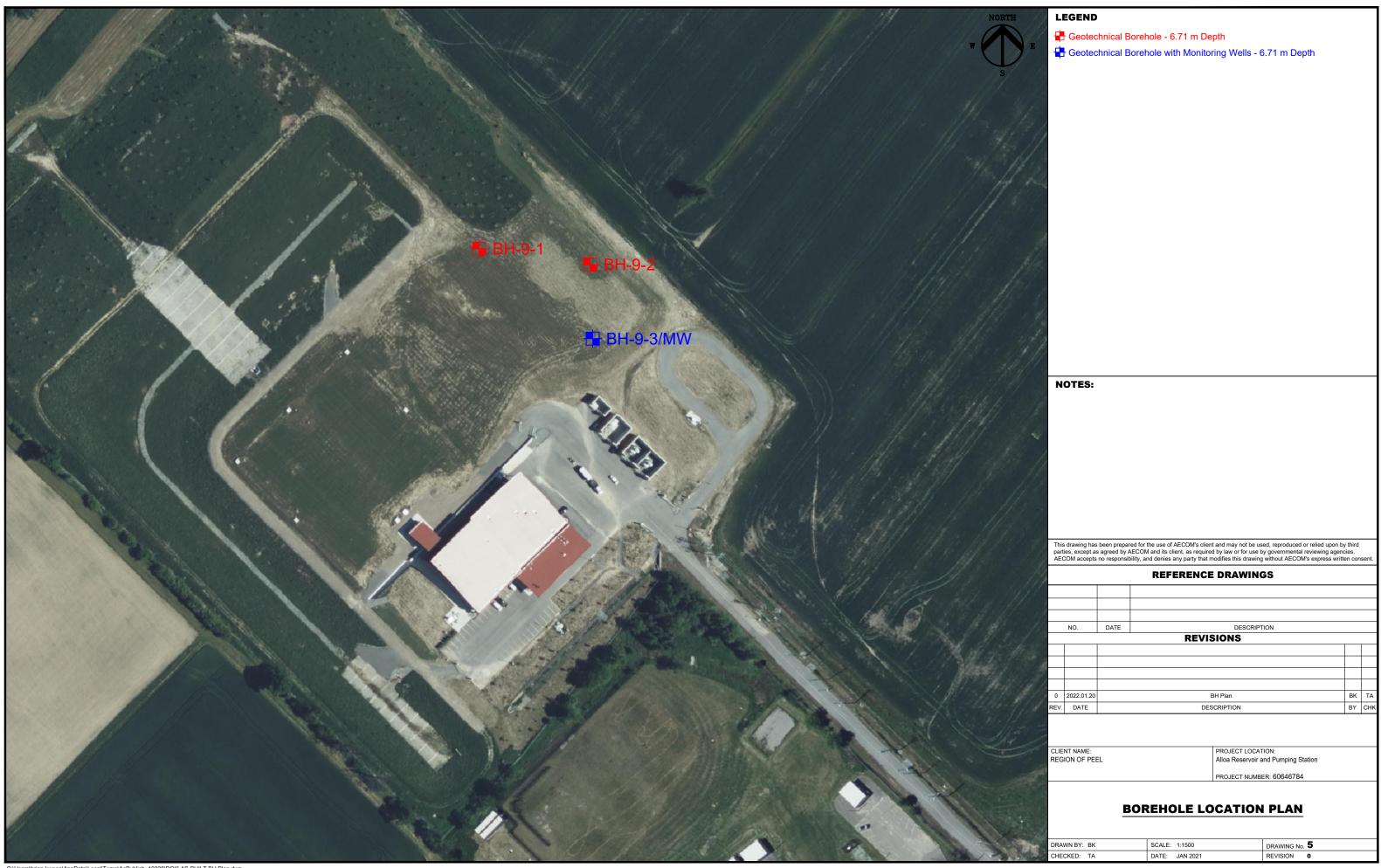
Ministry of the Environment, Conservation, and Parks (MECP), 2021:


Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality March 9, 2004 (PIBS 4696), amended as of July 1, 2011 and as of February 19, 2021 Version 3.1


Ref: 60646784 AECOM




Appendix A


Borehole Location Plan

Appendix B

Borehole Logs

AECOM

Till:

TERMINOLOGY USED IN BOREHOLE LOGS

Topsoil: Mixture of soil and humus capable of supporting

good vegetative growth.

Peat: A mass of organic matter usually fibrous in texture in various stages of decomposition,

generally dark brown to black in colour and of

spongy consistency.

concrete/steel structures.

Fill: The term fill has been used to describe materials which have been placed by non-natural processes. Fills can often be heterogeneous in nature and those relying on this report should expect them to contain deleterious materials. Such materials can include wood, bricks, slag, porcelain, organics, and obstructions such as scrap metal, storage tanks, and abandoned

Due to the uncertainty of the placement method of the material, the boring samples obtained for this report are not expected to represent other materials at any horizontal or vertical distance from where the sample was obtained.

material may Fill be contaminated by toxic/hazardous waste that renders it unacceptable for deposition in any but designated land fill site. Unless specifically stated, the fill on this site has not been tested for contaminants that can be considered toxic or hazardous. Testing to determine the toxicity of fill materials can be conducted, if requested.

The term till on the borehole logs indicates that the material originates from a geological process associated with glaciation. Till must be considered heterogeneous in composition and containing pockets and/or seams of material such as sand, gravel, silt or clay. Till often contains cobbles (60 to 200 mm) and boulders Contractors may therefore (over 200 mm). encounter cobbles and boulders durina excavation, even if they are not indicated by the logs. It should be appreciated that normal sampling equipment cannot differentiate the size or type of any obstruction. Due to the horizontal and vertical variability of till, the sample description may be applicable to a very limited zone. Caution is essential when dealing with sensitive excavations or dewatering programs in till materials.

Terminology describing soil structure

Desiccated: having visible signs of weathering by

oxidization of clay minerals,

shrinkage cracks, etc.

Stratified: alternating layers of varying material

or color with the layers greater than 6

mm thick.

Laminated: alternating layers of varying material

or color with the layers less than 6

mm thick.

Fissured: material breaks along plane of

fracture.

Varved: composed of regular alternating

layers of silt and clay.

Slickensided: fracture planes appear polished or

glossy, sometimes striated.

Blocky: cohesive soil that can be broken

down into small angular lumps which

resist further breakdown.

Lensed: inclusion of small pockets of different

soil, such as small lenses of sand scattered through a mass of clay; not

thickness.

Seam: a thin, confined layer of soil having

different particle size, texture, or color from materials above and

below.

Homogeneous: same color and appearance

throughout.

Well Graded: having wide range in grain sized and

substantial amounts of all

predominantly on grain size.

Uniformly Graded: predominantly on grain size.

Residual: completed weathered sedimentary

rock mixed with native soils.

AECOM

All soil sample descriptions included in this report generally follow the Canadian Foundations Engineering Manual and the Unified Soil Classification System. These systems follow the standard proposed by the International Society for Soil Mechanics and Foundation Engineering. Laboratory grain size analyses provided by AECOM follow the same system. Note that, with exception of those samples where a grain size distribution analysis has been completed, all samples have been classified by visual inspection. Visual inspection classification is not sufficient to provide exact gain sizing.

ISSMFE / USCS SOIL CLASSIFICATION

CLAY	SILT		SAND		GRA	VEL	COBBLES	BOULDERS
		FINE	MEDIUM	COARSE	FINE	COARSE		
0.00)2 0.0	75 (.475	2.0 4	.75 2	6.5	75 20	0
	-	ĺ	i i	Ĭ	Ī	ĺ		•

EQUIVALENT GRAIN DIAMETER IN MILLIMETRES

The standard terminology to describe cohesive soils includes consistency, which is based on undrained shear strength as measured by in-situ vane tests, penetrometer tests, unconfined compression tests or similar field and laboratory analysis. Standard Penetration Test 'N' values can also be used to provide an approximate indication of the consistency and shear strength of fine grained, cohesive soils.

The standard terminology to describe cohesionless soils includes the compactness condition as determined by the Standard Penetration Test 'N' value.

Cohesio	nless Soils		Cohesive Soil	S		Composition
Compactness Condition	SPT N-Index (blows per 0.3 m)	Consistency	Undrained Shear Strength (kPa)	SPT N-Index (blows per 0.3 m)	Term	Criteria
Very loose	0 – 4	Very soft	< 12	< 2	Trace	1% - 10%
Loose	4 – 10	Soft	12 - 25	2 – 4	Some	10% - 20%
Compact	10 – 30	Firm	25 - 50	4 – 8	Adjective	20% - 35%
Dense	30 – 50	Stiff	50 – 100	8 – 15	And	> 35%
Very Dense	> 50	Very Stiff	100 - 200	15 – 30	Noun	> 35% & largest fraction
		Hard	> 200	> 30		_

Standard Penetration Test (SPT):

The number of blows required to drive a 50 mm (2 in.) open split spoon sampler from a depth of 150 mm (6 in.) to 450 mm (18 in.) in undisturbed soil. Each blow is driven by a 63.6 kg (140 lb.) hammer free falling a distance of 0.76 m (30 in.).

Sample &	Soil Abbreviations	Contaminant	Abbreviations	Stra	ta/Grap	hic I	Plot		
CORE AS	Rock core sample Auger sample	BNAE BTEX	base/neutral/acid extractables benzene, toluene, ethylbenzene, xylenes		Fill		Asphalt		Cobbles
FV	Field vane	OCP	organochlorine pesticides	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Topsoil	4 4 4 4 4 4 4 4 4 4	Concrete	0,00	Sandy Silt Till
PP	Pocket penetrometer	MI	metals & inorganics	24 2	·	Δ_{Δ}^{Δ}			1 111
SG	Specific Gravity	PAH	polycyclic aromatic hydrocarbons		Clay		Silty Clay		Silty Clay Til
GS	Grab sample	PCB	polychlorinated biphenyls			22	•		
SS	Split spoon sample	PHC	CCME petroleum hydrocarbons (fractions 1 – 4)		Silt		Clayey Silt		Clayey Silt Till
DCPT	Dynamic cone penetration test	VOC	volatile organic compounds (includes BTEX)				Silty		
GR	Gravel	Plasticity Description	Liquid Limit (w _I)		Sand		Sand	, O	Silty Gravel
SA	Sand	Low	$w_1 < 30$			0.0	Sand &	9	Clayey
SI	Silt	Medium	$30 < w_i < 50$		Gravel	0 0 0 0	Gravel		Gravel
CL	Clay	High	50 < W ₁		Clayey Sand		Shale		Limestone

Explanatory Sheet To Rock Core Log

Column No.	Description		
1.	Description Elevation and Depth of Ge	otochnical	Roundary in Roroholo
2.	Drilling Method Used	eoleciiiicai	boundary in borenole
3.	ŭ	entechnica	Il Unit: Quantitative description including rock type (s), percentage of rock
J.	types, frequency and size		ds, colour, texture, weathering, strength and general joint spacing
	Hardness H1 Extremely	, Hard	Cannot be coratched with a packet knife or charp pick. Can only be
	TTI LXIIEIIIei	/ I lalu	Cannot be scratched with a pocket knife or sharp pick. Can only be chipped with repeated heavy hammer blows
	H2 Very Hard	4	Cannot be scratched with a pocket knife or sharp pick. Breaks with
	112 Voly Hait	•	repeated heavy hammer blows
	H3 Hard		Can be scratched with a pocket knife or sharp pick with difficulty (heavy
			pressure) Breaks with heavy hammer blows
	H4 Moderate	ly Hard	Can be scratched with a pocket knife or sharp pick with light or moderate
		,	pressure. Breaks with moderate hammer blows
	H5 Moderate	ly Soft	Can be grooved 1.6 mm (1/16 in) with a pocket knife or sharp pick
	H6 Soft		Can be grooved or gouged easily with a pocket knife or sharp pick with
			slight pressure, can be scratech with a finger nail. Breaks with light or
			moderate manual pressure
	H7 Very Soft		Can readily be indented, grooved or gouged with a finger nail, or Carved
			with pocket knife. Breaks with light manual pressure
	Strength (from ISRM)		Approx UCS
	Svh Very High	Strength	>200 MPa
	Sh High Stre	ngth	50 to 200 MPa
	Sm Medium S	Strength	15 to 50 MPa
	SI Low Strei	ngth	4 to 15 MPa
	Svl Very Low	Strength	1 to 4 MPa
4	Geological Symbol for Ro	ck or Soil M	Material Page 1997
5.	Elevation of Geotechnical	Boundary	
6.	Run Number: Drill run nur	nber	
7.	Penetration Rate: meters	per min	
8.	Colour & Return Percenta	ge:	
9.	•	-	total length of core pieces, irrespective of their individual lengths, obtained in a age of the length of that core run.
10.			he total length of those pieces of sound core which are 10 cm (4 inches) or
10.	, ,	` '	ssed as a percentage of the total length of that core run. Sound pieces of rack
			al breaks and not machine breaks or subsequent artificial breaks.
		, Poor Qualit	
	•	Quality	•
		Quality	
	75 - 90 percent Good	Quality	
	90 - 100 percent Very	Good Quali	ity
11.	Fracturing:		
	Fu Unfractured	N	o Fractures
	Fvs Very Slightly Fra	ctured Co	re length greater than 0.9 m (3 ft)
	Fsl Slightly Fracture		ore length from 0.3 to 0.9 m (1 to 3 ft)
	Fm Moderately Frac	tured C	ore length from 0.1 to 0.3 m (4 in. to 1 ft)
	Fi Intensely Fractu	red Co	ore lengths from 0.25 to 0.1 m (1 in. to 4 in.)
	Fvi Very Intensely F	ractured M	lostly chips and fragments
12.	Degreed of dip of disconti	nuity meas	ured from the axis of rock core.

AECOM

13. Discontinuity Description

Fracture Width (FW)

FWt Tight No visible separation FWs Slightly Open FW< 0.8 mm (1/32 in.)

FWm Moderately Open 0.8 mm (1/32 in.)≤FW<3.2 mm (1/8 in.) FWo Open 3.2 mm (1/8 in.) ≤FW<9.7 mm (3/8 in.) FWmw Moderatley Wide 9.7 mm(3/8 in.) ≤FW<25.4 mm (1 in.)

FWw Wide FW≥25.4 mm(1 in.)

Fracture Filling or Coating Thickness(FF)

FFc Clean No film coating
FFvt Very Thin FF< 0.8 mm (1/32 in.)

FFm Moderately Thin 0.8 mm (1/32 in.)≤FF<3.2 mm (1/8 in.) FFt Thin 3.2 mm (1/8 in.) ≤FF<9.7 mm (3/8 in.) FFmt Moderately Thick 9.7 mm(3/8 in.) ≤FF<25.4 mm (1 in.)

FFw Thick FF≥25.4 mm(1 in.)

Roughness

Rst Stepped Near normal steps and ridges occur on the fracture surface

Rr Rough Large angular asperities can be seen

Rm Moderately Rough Asperities are cleanly visible and fracture surface feels abrasive
Rs Slightly Rough Small asperities on the fracture surface are visible and can be felt

Rsm Smooth No asperities, smooth to the touch

Bedding Spacing (Sb)

Bm Massive \leq Sb > 3 m (10 ft)

BI Laminated SB \leq 6 mm (1/4 in.)

Orientation

Of Flat = $0 - 20^{\circ}$ Od Dipping = $20 - 50^{\circ}$ Ov Vertical = $50 - 90^{\circ}$

Surface Shape

Planar Flat surface
Wavy Undulating surface

Fracture Type:

B Bedding
J Fault
C Joint
F Foliation
S Shear Plane
M Mechanical Breaks

14. Hydraulic Conductivity (cm/sec)

15. Point Load Index:

 $\begin{array}{lll} \text{Extremely Strong} & > 10 \\ \text{Very Strong} & 4 - 10 \\ \text{Strong} & 2 - 4 \\ \text{Medium Strong} & 1 - 2 \\ \end{array}$

RECORD OF BOREHOLE: BH1-1

SHEET 1 OF 1

LOCATION: Hwy 50 Car Pool Lot COORDINATES: N 4855681.3; E 604793.4

START DATE: Dec 15, 2021 END DATE: Dec 15, 2021

DATUM: Geodetic

BORING METHOD: 203 mm O.D. Hollow Stem Auger

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

AECOM PROJECT#: 60646784 CLIENT: Region of Peel CONTRACTOR: Altech Drilling&Investigation Service Ltd. SAMPLER HAMMER, 64kg; DROP, 760mm SHEAR STRENGTH Cu, kPa nat V. - + Q - ● rem V. - ⊕ U - △ SOIL PROFILE SAMPLES BORING METHOD DEPTH SCALE (METRES) ADDITIONAL LAB. TESTING & GRAIN SIZE STRATA PLOT 80 WELL INSTALLATION 40 60 80 NUMBER N VALUE AND WATER LEVELS ELEV. TYPE WATER CONTENT PERCENT DESCRIPTION DISTRIBUTION (%) DEPTH OW Wp -(m) 300 400 200 20 TOPSOIL GR SA SI CL 226.62 TOPSOIL: 240 mm thick 226.38 0.24 SILTY CLAY (TILL): trace gravel, some ss wh 0 sand, brown to grey, moist. very soft to 2 SS 21 0 SS 22 3 \circ 16 51 31 Power Auger Drilling hard SS 0 5 SS 35 0 very stiff SS 22 0 END OF BOREHOLE This log is to be read with the subject report and project number as presented 2. Interpretation assistance by AECOM is required for projects excluding the above mentioned project. 3. No abnormal odour or staining was observed unless otherwise indicated. 4. No groundwater was observed in the 60646784 REGION OF PEEL_LAB UPDATED.GPJ GAL-MISS.GDT 22-2-7 open hole to 5.18 mbgs upon completion of the drilling. 9 00 BH (LOG TO BE READ IN CONJUNCTION WITH REPORT)

DEPTH SCALE

1:50

AECOM

LOGGED: DP

RECORD OF BOREHOLE: BH1-2

SHEET 1 OF 1

LOCATION: Hwy 50 Car Pool Lot COORDINATES: N 4855691.8; E 604826.9

START DATE: Dec 15, 2021

AECOM PROJECT#: 60646784

DATUM: Geodetic

END DATE: Dec 15, 2021 BORING METHOD: 203 mm O.D. Hollow Stem Auger

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

ا _ إ	Ç		SOIL PROFILE			SAI	MPLE	3					SHE	AR STRI	nat V.	Cu, kPa - + C	ğ - 🍑	ADDITIONAL	
(METRES)	POPING METHOD			L01		œ	١,	ш	20	40	60	80	2	20 4	rem V 0 6	⊕ u ¡0 8¦) - <u>A</u>	ADDITIONAL LAB. TESTING & GRAIN SIZE DISTRIBUTION	WELL INSTALLATION
	(5	DESCRIPTION	₽	ELEV.	/BE	TYPE						WA	TER CO	NTEN	PERC	ENT	& GRAIN SIZE DISTRIBUTION	AND WATER LEVEL
	ā	5	-	STRATA PLOT	ELEV. DEPTH (m)	N N	F	N VALUE					Wp	-	-OW		WI	(%)	
	à	n	70000	S	()		\perp	_	100	200	300	400	1 1	0 2	0 3	0 4	0		
0		\dashv	TOPSOIL	86.87	226.62		_											GR SA SI CL	
			TOPSOIL: 200 mm thick	7 77 7 27 27	0.00 226.42														
			SILTY CLAY (TILL): trace gravel, some sand to sandy, brown to grey, moist, soft		0.20	1	SS	2								∮)		
			to very stiff																
							_												
1			very stiff					_											
						2	SS	'						0					
						_	+												
							\dashv												
						3	SS .	6											
2		Auger																	
	ng	m At																	
	. Drilli	w Stem																	
	Auge	Hollow 8				4	SS	7						ОН				1 21 47 31 Wet UW 21.80KN/cum Dry UW 19.18KN/cum	
	Power Auger Drilling	mm O.D.																Dry UW 19.18KN/cum	
3	ď	3 mm					+	-											
		203				_													
						Э	SS 2	.1						0					
							+	+											
4																			
			stiff																
5						6	SS	4											
Ī		Ц	END OF DODELLOLE		221.44 5.18		4						-						
			END OF BOREHOLE Notes:		5.16														
			1. This log is to be read with the subject report and project number as presented																
			ahove																
6			2. Interpretation assistance by AECOM is required for projects excluding the above mentioned project. 3. No abnormal odour or staining was observed unless otherwise indicated.																
			3. No abnormal odour or staining was																
			observed unless otherwise indicated. 4. No groundwater was observed in the																
			open hole to 5.18 mbgs upon completion of the drilling.																
			o. a.o unimig.																
7																			
_																			
8																			
9																			
Ĭ																			
10																			
		- 1		1									1	1					

1:50

A=COM

RECORD OF BOREHOLE: BH1-3

SHEET 1 OF 1

LOCATION: Hwy 50 Car Pool Lot

COORDINATES: N 4855717.6; E 604815.2

DATUM: Geodetic

START DATE: Dec 15, 2021 END DATE: Dec 15, 2021

BORING METHOD: 203 mm O.D. Hollow Stem Auger AECOM PROJECT#: 60646784 PENETRATION TEST HAMMER, 64kg; DROP, 760mm CLIENT: Region of Peel CONTRACTOR: Altech Drilling&Investigation Service Ltd. SAMPLER HAMMER, 64kg; DROP, 760mm SHEAR STRENGTH Cu, kPa nat V. - + Q - ● rem V. - ⊕ U - △ SOIL PROFILE SAMPLES BORING METHOD DEPTH SCALE (METRES) ADDITIONAL LAB. TESTING & GRAIN SIZE WELL INSTALLATION STRATA PLOT 80 40 60 80 NUMBER N VALUE AND WATER LEVELS ELEV. TYPE WATER CONTENT PERCENT DESCRIPTION DISTRIBUTION (%) DEPTH OW Wp -(m) 300 400 200 20 TOPSOIL GR SA SI CL 226.34 TOPSOIL: 230 mm thick 226.11 57.56 SILTY CLAY (TILL): trace gravel, some 0.23 SS sand, brown to grey, moist, very soft to 2 SS 11 0 SS 3 14 0 Power Auger Drilling very stiff SS 0 Wet UW 21.78KN/cum Dry UW 19.30KN/cum 5 SS 32 18 47 34 0 SS 30 0 END OF BOREHOLE This log is to be read with the subject report and project number as presented 2. Interpretation assistance by AECOM is required for projects excluding the above mentioned project. 3. No abnormal odour or staining was observed unless otherwise indicated. 4. No groundwater was observed in the 60646784 REGION OF PEEL_LAB UPDATED.GPJ GAL-MISS.GDT 22-2-7 open hole to 5.18 mbgs upon completion of the drilling. 9

(LOG TO BE READ IN CONJUNCTION WITH REPORT)

DEPTH SCALE

1:50

BH 001

LOGGED: DP

LOCATION: West Brampton Reservoir and Pumping Station

RECORD OF BOREHOLE: BH3-1

COORDINATES: N 4834560.1; E 594764.0

DATUM: Geodetic

AECOM PROJECT#: 60646784

START DATE: Dec 16, 2021

END DATE: Dec 16, 2021 BORING METHOD: 203 mm O.D. Hollow Stem Auger

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

SHEET 1 OF 1

ا _ ا	9	╒┃	SOIL PROFILE			SAI	MPLE	3						SHE	AR STR	RENGTH nat V. rem V	I Cu, kP	a Q - ●		TION::	
(METRES)	Ė	BORING METHOD		LOT		2			20	40) 6	0 8	0	:	20 4	rem V 1 _, 0 6	⊕ io 8	U - △ ¦0	ADDI LAB. T	TIONAL ESTING AIN SIZE IBUTION	WELL INSTALLATION
		<u> </u>	DESCRIPTION	ĕ	ELEV.	ABE	TYPE	N VALUE						WA	TER CO	ONTEN	PERC	ENT	DISTR	IBUTION	AND WATER LEVEL
ם ב	0	<u></u> 8		STRATA PLOT	ELEV. DEPTH (m)	N	-	2						Wp		- O w		WI	(%)	
	Ľ		TOPSOIL	(S)	<u> </u>		+	+	100	200	0 30	00 4	00 	<u> </u>	10 2	20 3	0 4	0	GP SA	SI CL	
0		Н	TOPSOIL: 180 mm thick	2 27 2 20 25	237.33 0.00 237.15			-											OIX OA	OI OL	
			FILL: clayey silt, trace gravel, trace sand, dark brown, moist, soft		0.18	1	ss	2								0					
			sand, dark brown, moist, soft	\bowtie																	
				\bowtie	236.63																
			FILL: sandy silt, some organics, trace gravel, trace clay, red, moist, compact to	\bowtie	0.70																
1			very loose	\bowtie		2	ss	0							0						
		Auger		\bowtie																	
	lling	tem A		\bowtie																	
	er Dri	Hollow Stem	loose	\bowtie			_														
2	r Aug	. 님		\bowtie		3	SS	9							0						
	Power Auger Drilling	mm O.D.		\bowtie			-														
		203 m		\bowtie																	
			very loose	\bowtie		4	ss	4							0						
3			SILTY CLAY (TILL): trace gravel, some sand, red, moist, hard		234.33 3.00	\exists	\dashv	-													
			sand, red, moist, hard			_	ss :												, ,,	CO 10	
					233.73	5	35								0				3 10	68 19	
		Н	ROCK FRAGMENT: red, moist, very dense	F-1	3.66		+	+	+	\dashv											
4			AUGER REFUSAL																		
			END OF BOREHOLE Notes:																		
			1. This log is to be read with the subject report and project number as presented																		
			above																		
			2. Interpretation assistance by AECOM is required for projects excluding the above mentioned project.																		
5			No abnormal odour or staining was observed unless otherwise indicated.																		
			No groundwater was observed in the open hole to 3.66 mbgs upon completion																		
			of the drilling.																		
6																					
7																					
8																					
9																					
40																					
10																					
		0.55	READ IN CONJUNCTION WITH REPORT)	1										L			<u> </u>				

1:50

A=COM

RECORD OF BOREHOLE: BH3-2

SHEET 1 OF 1

LOCATION: West Brampton Reservoir and Pumping Station COORDINATES: N 4834559.2; E 594797.5

DATUM: Geodetic

AECOM PROJECT#: 60646784 CLIENT: Region of Peel

START DATE: Jan 3, 2022 END DATE: Jan 3, 2022

BORING METHOD: 107 mm O.D. Hollow Stem Auger

PENETRATION TEST HAMMER, 64kg; DROP, 760mm SAMPLER HAMMER, 64kg; DROP, 760mm

 ${\tt CONTRACTOR:} \quad {\tt Altech Drilling\&Investigation Service \ Ltd.}$

CLI			Region of Peel						R: AILE	ecn L	Jrilling	&INVE	estig	ation	Service					VIIVIER	(, 64	ikg, L	JKUI	2, 760mm
ų	1	₽│	SOIL PROFILE			SA	MPLES	S							SHEA	RSIF	RENGTH nat V. rem V	Cu, ki	oa Q-●					
(METRES)		BORING METHOD		Ъ					20	2	40	60	80)	20) .	rem V 40 6	⊕ 30 :	U - △ 8,0	AC	DIT B. TI	IONAI ESTIN IN SIZ BUTIC	L IG	WELL INSTALLATION
ETR		∑ ປ	DECORPTION	ŀP	ELEV.	BER		<u> </u>					<u> </u>		-		ONTEN	_		- & G	3RAI	IN SIZ	ZE NO	AND WATER LEVE
Ž		〗	DESCRIPTION	STRATA PLOT	DEPTH	NUMBER	TYPE	N VALUE							Wp		OW OW		-I WI	ال	(%	6)	J14	
		8		STR	(m)	z	2	-	100	2	:00	300	40	0	10 VVP F				→ VVI 40					
T			TOPSOIL	Ė	236.15		\sqcap	T	1		Ť,	Ť	Ĭ		ΠÏ		Ť	Ī	Ī	GR	SA	SI	CL	
0		П	TOPSOIL: 50 mm thick		0.05																			
			FILL: sand and gravel, some organics,	\bowtie	8	1	SS 1	7									b							
			some silt and clay, brown, moist, compact	\bowtie	X .	l '	33 1	<u> </u>									٢							
			oo.npaot	\bowtie	235.45																			
			FILL: sandy silt, some organics, some	\bowtie	0.70			_																
1		<u>_</u>	clay, trace gravel, brown, moist, compact	\bowtie	8																			
		Auge		\bowtie		2	SS 1	7									φ			4	40	37	19	
	ing	ten 3		\bowtie	X .																			
	r Dri	ow S	SILTY CLAY (TILL): troop cond. grov	 	234.65 1.50																			
	Aug	일	SILTY CLAY (TILL): trace sand, grey, moist, stiff to hard																					
	Power Auger Drilling	mm O.D. Hollow Stem Auger			1	3	SS	В								0	'							
2	ď	E			1																			
		107	occasional cobbles, very stiff																					
			occasional cobbles, very suit			4A	SS 2	24									þ							
			red, moist, hard				-	0/																
						4B	SS ₁₂₇	mm							1 1)								
3																								
			some rock fragment		232.90			\perp												\perp				
			AUGER REFUSAL	1	3.25																			
			END OF BOREHOLE Notes:																					
			1. This log is to be read with the subject report and project number as presented																					
4			above.																					
			Interpretation assistance by AECOM is required for projects excluding the above																					
			mentioned project.																					
			No abnormal odour or staining was observed unless otherwise indicated.																					
			No groundwater was observed in the																					
5			open hole to 3.25 mbgs upon completion of the drilling.																					
J			-																					
6																								
7																								
8																								
9																								
Э																								
10																								
			READ IN CONJUNCTION WITH REPORT)							_			_		_									200ED 14"
			CALE							4				N	1									OGGED: WH
1:	50)								-		`	_		_								CHE	ECKED: TA

RECORD OF BOREHOLE: BH3-3

LOCATION: West Brampton Reservoir and Pumping Station

COORDINATES: N 4834572.5; E 594844.0

DATUM: Geodetic

AECOM PROJECT#: 60646784 CLIENT: Region of Peel

START DATE: Jan 3, 2022 END DATE: Jan 3, 2022

BORING METHOD: 107 mm O.D. Hollow Stem Auger

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

SHEET 1 OF 1

 ${\tt CONTRACTOR:} \quad {\tt Altech Drilling\&Investigation Service \ Ltd.}$ SAMPLER HAMMER, 64kg; DROP, 760mm

## SOLENDER SOLENDER	8	SOIL PROFILE			SA	MPLES					_	SHEA	AR STF	RENGTH	l Cu, kP	Pa 💂	, 0,	
FROZEN no sample: FROZEN no sample:	H SCALE TRES)		PLOT	ELEV.	3ER	m =	2	0 40	60	8	30	2	20 4	rem V 40 6	⊕ i0 8	U - Δ 30	ADDITIONAL LAB. TESTING & GRAIN SIZE	
Through the same of the same o	(ME BORING	DESCRIPTION	STRATA	DEPTH	NUME	TYP		n 200	300	4		Wpl	-	-OW		l WI	DISTRIBUTION (%)	
FILL: sendy all, some organics, teach growth from the subject send with the subject send with the subject send of the defining. A LIGHT REFISAL END OF GORENOLE 1. This log is to be read with the subject send of the defining was cheered in project anumber as presented a commentation of project southerly the above mentioned project. 1. This log is to be read with the subject send of the defining was cheered an expectation as estationated by ACCOM is commented to the project southerly the above mentioned project. 2. The project southerly the above mentioned in the subject of the defining.	0		<u> </u>				10	00 200	300	- 4		'		20 3	4	10	GR SA SI CL	
augustific to hard 2 SS 21 AMGER REFUSAL END OF BOREHOLE Toport and project number as presented above. 2 Integretation sealations by AECOM is above memorationed project. 3 No abnormal colour or staining was observed unless offerwhere indicated, or special colours or staining was observed unless offerwhere indicated, or special colours or staining was observed unless offerwhere indicated, or special colours	Jaôn	FILL: sandy silt, some organics, trace gravel, trace clay, brown, moist, very		234.20	1	SS 3								0				
Auder Refusal 2016 2016 2016 2016 2016 2016 2016 2016	Power Auger Drilling	sand, brown to reddish brown, moist,											0				3 22 48 27	∑ Jan 3, 2022
AUGER REFUSAL END OF BORREHOLE Notes: 1. This log is to be read with the subject report and project number as presented above. Required for projects excluding the above mentioned project. 3. No abnormal odour or staining was observed unless otherwise indication of open hote at the depth of a stay of the depth of a stay of the depth of a stay of the defining.		hard	0 0000000000000000000000000000000000000		3	SS 50	/ m						0					
END OF BOREHOLE Notes: 1. This log is to be read with the subject report and project rumber as presented as required for projects excluding the above mentioned project. 3. No abnormal color or staining was observed unless otherwise indicated. 4. One hole at the depth of 3.28 mbgs upon completion of the drilling.	ĬШ	ALICED DEFLICAT			4	SS 3m	/ m					0						
	. 5	END OF BOREHOLE Notes: 1. This log is to be read with the subject report and project number as presented above. 2. Interpretation assistance by AECOM is required for projects excluding the above mentioned project. 3. No abnormal odour or staining was observed unless otherwise indicated. 4. The groundwater was observed in the open hole at the depth of 3.28 mbgs		3.20														

RECORD OF BOREHOLE: BH3-4/MW

LOCATION: West Brampton Reservoir and Pumping Station

COORDINATES: N 4834651.2; E 595142.4

DATUM: Geodetic

AECOM PROJECT#: 60646784

START DATE: Dec 16, 2021 END DATE: Dec 16, 2021

BORING METHOD: 203 mm O.D. Hollow Stem Auger

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

SHEET 1 OF 1

CLIENT: Region of Peel CONTRACTOR: Altech Drilling&Investigation Service Ltd. SAMPLER HAMMER, 64kg; DROP, 760mm SHEAR STRENGTH Cu, kPa nat V. - + Q - ● rem V. - ⊕ U - △ SOIL PROFILE SAMPLES BORING METHOD DEPTH SCALE (METRES) ADDITIONAL LAB. TESTING & GRAIN SIZE WELL INSTALLATION STRATA PLOT 80 40 60 80 NUMBER N VALUE AND WATER LEVELS ELEV. TYPE WATER CONTENT PERCENT DESCRIPTION DISTRIBUTION (%) DEPTH OW Wp I (m) 300 400 200 20 TOPSOIL GR SA SI CL 231.00 TOPSOIL: 150 mm thick 230:89 0.1 FILL: sand, some rootlets, some SS 4 0 organics, trace gravel, brown, moist, very 230.39 0.6 FILL: clayey silt, some rock pieces, sandy, brown, moist, loose 2 SS 5 33 44 23 SANDY SILT: hydraulic, brown, wet to moist, very loose to compact SS 3 0 Power Auger Drilling SS 5 SS 2 0 compact SS 29 0 END OF BOREHOLE 1. This log is to be read with the subject report and project number as presented 2. Interpretation assistance by AECOM is required for projects excluding the above mentioned project. 3. No abnormal odour or staining was observed unless otherwise indicated. 4. The groundwater was observed in the 60646784 REGION OF PEEL_LAB UPDATED.GPJ GAL-MISS.GDT 22-2-7 open hole at the depth of 2.13 mbgs upon completion of the drilling.

5. A 51-mm I.D. PVC monitoring well was installed upon completion of the drilling. The monitoring wells screened interval was constructed overserved groundwater between 2.13 and 5.18 6. The groundwater level was observed in the monitoring well as follows:

Date Depth E Elevation 9 00 (LOG TO BE READ IN CONJUNCTION WITH REPORT)

DEPTH SCALE

1:50

H

AECOM

LOGGED: DP

RECORD OF BOREHOLE: BH3-5

LOCATION: West Brampton Reservoir and Pumping Station

COORDINATES: N 4834499.3; E 595022.1

DATUM: Geodetic

AECOM PROJECT#: 60646784

START DATE: Dec 16, 2021 END DATE: Dec 16, 2021

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

SHEET 1 OF 1

BORING METHOD: 203 mm O.D. Hollow Stem Auger CLIENT: Region of Peel CONTRACTOR: Altech Drilling&Investigation Service Ltd. SAMPLER HAMMER, 64kg; DROP, 760mm SHEAR STRENGTH Cu, kPa nat V. - + Q - ● rem V. - ⊕ U - △ SOIL PROFILE SAMPLES BORING METHOD DEPTH SCALE (METRES) ADDITIONAL LAB. TESTING & GRAIN SIZE STRATA PLOT 80 WELL INSTALLATION 40 60 80 NUMBER N VALUE AND WATER LEVELS ELEV. TYPE WATER CONTENT PERCENT DESCRIPTION DISTRIBUTION (%) DEPTH OW Wp -(m) 300 400 200 20 TOPSOIL GR SA SI CL 231.00 TOPSOIL: 230 mm thick 0.00 230.77 FILL: silty clay, some organics, trace 0.23 SS 7 gravel, trace sand, brown, moist, firm 230.30 FILL: sandy silt, some organics, trace gravel, trace clay, brown, moist, loose 2 SS 9 0 Power Auger Drilling SANDY SILT: hydraulic, trace gravel, brown, wet, compact to dense SS 13 3 0 7 21 (72) dense SS 32 0 5 SS 0 36 END OF BOREHOLE 1. This log is to be read with the subject report and project number as presented 2. Interpretation assistance by AECOM is required for projects excluding the above mentioned project.

3. No abnormal odour or staining was observed unless otherwise indicated.

4. The groundwater was observed in the open hole at the depth of 2.6 mbgs upon completion of the drilling. 60646784 REGION OF PEEL_LAB UPDATED.GPJ GAL-MISS.GDT 22-2-7 9 00 BH

(LOG TO BE READ IN CONJUNCTION WITH REPORT)

DEPTH SCALE

1:50

AECOM

LOGGED: DP

RECORD OF BOREHOLE: BH3-6

LOCATION: West Brampton Reservoir and Pumping Station

COORDINATES: N 4834529.5; E 595042.7

DATUM: Geodetic

AECOM PROJECT#: 60646784

START DATE: Dec 16, 2021

END DATE: Dec 16, 2021 BORING METHOD: 203 mm O.D. Hollow Stem Auger

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

SHEET 1 OF 1

ų	ç	<u></u>	SOIL PROFILE			SA	MPLE	≣S					ı s	HEAR	STRE	NGTH nat V.	Cu, kP: - + (- ⊕ (a Q - ●			
IRES)	H	MEIH		PLOT	ELEV	ER		Э.	20	40	60	80		20	40	6	0 8	0	ADDITIONA LAB. TESTII & GRAIN SI DISTRIBUTI (%)	AL NG ZE	WELL INSTALLATIO
(METRES)	CONTENT OFFICE	OKING	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMB	TYPE	N VALUE					1 I	WATE Np I —		OW OW	PERC	ENT WI	DISTRIBUTI (%)	ON	THE WHILL LEVE
	٥	<u>n</u>	TOPSOIL	S	()				100	200	300	400	+	10	20	3	0 4	0	00.04.01	01	
0		\dashv	TOPSOIL: 200 mm thick	77. 77. 5	231.00 0.00 230.80			\dashv			+		+	+	\dashv				GR SA SI	UL	
		-	FILL: silty clay, some organics, trace gravel, trace sand, brown to redish brown, moist to wet, soft to very stiff		0.20	1	SS	2							0						
1		Auger	some rock fragments, very stiff			2	SS	21										51.89 ()		
2	Power Auger Drilling	Stem	SANDY SILT: hydrolic, occasional cobbles, trace gravel, red, wet, very loose		229.50 1.50	3	SS	3							0						∑_ Dec 16, 2021
	Powe	203 mm O.D. Hollow	brown to reddish brown, compact			4	ss	23							5				3 22	(75)	2021
3			occasional cobbles, some rock fragments			5	SS	22						0							
			GRAVELLY SAND: brown, wet,		227.42																
5			compact END OF BOREHOLE Notes: 1. This log is to be read with the subject report and project number as presented above. 2. Interpretation assistance by AECOM is required for projects excluding the above mentioned project. 3. No abnormal odour or staining was observed unless otherwise indicated. 4. The groundwater was observed in the open hole at the depth of 1.83 mbgs upon completion of the drilling.																		
7																					
9																					
10			READ IN CONJUNCTION WITH REPORT)																		

1:50

A=COM

RECORD OF BOREHOLE: BH5-1

SHEET 1 OF 1

LOCATION: Johnston Sports Park

COORDINATES: N 4855854.3; E 596921.0 DATUM: Geodetic

START DATE: Dec 20, 2021 END DATE: Dec 20, 2021

AECOM PROJECT#: 60646784

BORING METHOD: 127 mm O.D. Hollow Stem Auger

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

CLIENT: Region of Peel CONTRACTOR: Altech Drilling&Investigation Service Ltd. SAMPLER HAMMER, 64kg; DROP, 760mm SHEAR STRENGTH Cu, kPa nat V. - + Q - ● rem V. - ⊕ U - △ SOIL PROFILE SAMPLES BORING METHOD DEPTH SCALE (METRES) ADDITIONAL LAB. TESTING & GRAIN SIZE STRATA PLOT 80 WELL INSTALLATION 40 60 80 N VALUE NUMBER AND WATER LEVELS ELEV. TYPE WATER CONTENT PERCENT DESCRIPTION DISTRIBUTION (%) DEPTH OW Wp -(m) 300 400 20 200 TOPSOIL GR SA SI CL 268.17 **FILL:** silty clay, some organics, brown, moist, firm SS 7 0 SILTY CLAY (TILL): occasional cobbles, trace gravel, some sand, brown to grey, moist, stiff to hard 2 SS 13 0 Power Auger Drilling SS 20 3 0 13 44 42 Wet UW 21.89KN/cum Dry UW 19.15KN/cum very stiff SS 0 grey, hard 5 SS 59 END OF BOREHOLE Notes: 1. This log is to be read with the subject report and project number as presented 2. Interpretation assistance by AECOM is required for projects excluding the above mentioned project.

3. No abnormal odour or staining was observed unless otherwise indicated.

4. No groundwater was observed in the open hole to 3.66 mbgs upon completion of the drilling. 6 60646784 REGION OF PEEL_LAB UPDATED.GPJ GAL-MISS.GDT 22-2-7 9 00 BH

(LOG TO BE READ IN CONJUNCTION WITH REPORT)

DEPTH SCALE

1:50

AECOM

LOGGED: DP

RECORD OF BOREHOLE: BH5-2

SHEET 1 OF 1

LOCATION: Johnston Sports Park COORDINATES: N 4855746.5; E 596822.9

START DATE: Dec 20, 2021

DATUM: Geodetic AECOM PROJECT#: 60646784 END DATE: Dec 20, 2021
BORING METHOD: 203 mm O.D. Hollow Stem Auger CONTRACTOR: Altech Drilling&Investigation Service Ltd.

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

			Region of Peel SOIL PROFILE				MPLES							AR STI	RENGTH nat V. rem V	l Cu, kF	Pa O r 🗪			
DEPTH SCALE (METRES)	COUTTING DIVIDOR	VG ME I HC	DESCRIPTION	STRATA PLOT	ELEV.	~	TYPE	١ ,	0 4	0 6	60	80		20	40 (ONTEN	FPERC	30	DISTRI	TIONAL ESTING IN SIZE BUTION	WELL INSTALLATIO
7		BORIN	BESONII HON	STRAT	DEPTH (m)	N N	∠ 3		00 20	00 3	00 4	100	Wp		<mark>ow</mark> 20 ∶		-l WI 10	('	%)	
0			TOPSOIL		267.75													GR SA	SI CL	
			FILL: silty clay, some organics, trace sand, trace gravel, brown, moist, firm		0.00	1	SS 4									 				
1		Auger				2	SS 5								0					
2	Power Auger Drilling	D.D. Hollow Stem			265.62	3	SS 5								0					
	₫.	203 mm	SILTY CLAY (TILL): trace gravel, some sand, brown, moist, hard		2.13	4	SS 45							0	1	 		1 15	46 38	
3						5	SS 34							0						
5			END OF BOREHOLE Notes: 1. This log is to be read with the subject report and project number as presented above. 2. Interpretation assistance by AECOM is required for projects excluding the above mentioned project. 3. No abnormal odour or staining was observed unless otherwise indicated. 4. No groundwater was observed in the open hole to 3.66 mbgs upon completion of the drilling.		3.66															
7																				
9																				
			READ IN CONJUNCTION WITH REPORT)						Λ :)/\	4						L	OGGED: DP

RECORD OF BOREHOLE: BH5-3/MW

SHEET 1 OF 1

LOCATION: Johnston Sports Park

COORDINATES: N 4855663.6; E 596916.0

DATUM: Geodetic

AECOM PROJECT#: 60646784

START DATE: Dec 20, 2021 END DATE: Dec 20, 2021

BORING METHOD: 203 mm O.D. Hollow Stem Auger

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

S)	THO I		SOIL PROFILE	 T⊢		SAI	MPLE	s						SHE	AR STE	RENGTH nat V. rem V	l Cu, kF - + ' ⊕	Pa Q - ● U - Δ	ADDITIONAL	
(METRES)	BOPING METHOD	SORING ME	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	N VALUE	20	40	60			WA Wp	TER C	40 6 ONTEN	0 E T PERC	BO ENT WI	LAB. TESTING & GRAIN SIZE DISTRIBUTION (%)	WELL INSTALLATION AND WATER LEVE
		_	TOPSOIL	ίν	267.50				100	200	300) 40	00	1	10	20 3	30 4	10	GR SA SI CL	
0			FILL: silty clay, some organics, trace sand, trace gravel, brown, moist, firm		0.00	1	ss	5								0				, , , , , , , , , , , , , , , , , , ,
1			SILTY CLAY (TILL): trace gravel, some sand, brown, moist, very stiff to hard		0.70	2	SS	23								0				
2		nger				3	SS	18							0	,				ryaryaryaryaryaryaryaryaryaryaryaryaryar
	lling	tem A																		15324
3	Power Auger Drilling	203 mm O.D. Hollow Stem Auger				4	SS	25							0					
		203 r	hard			5	ss	32							0	H	-		1 21 48 30	
4																				
5			grey, very stiff		262.32	6	SS	25							0					
6			END OF BOREHOLE Notes: 1. This log is to be read with the subject report and project number as presented above. 2. Interpretation assistance by AECOM is required for projects excluding the above mentioned project. 3. No abnormal odour or staining was		5.18															
7			3. No abilionina double of stailing was observed unless otherwise indicated. 4. No groundwater was observed in the open hole to 5.18 mbgs upon completion of the drilling. 5. A 51-mm I.D. PVC monitoring well was installed upon completion of the drilling. The monitoring wells screened interval was constructed overserved groundwater between 2.13 and 5.18																	
8			groundwater between 2.13 and 3.16 mbgs. 6. The groundwater level was observed in the monitoring well as follows: Date Depth Elevation																	
9																				
10																				
		_			L									L				L		

1:50

AECOM

LOGGED: DP

RECORD OF BOREHOLE: BH5-4

SHEET 1 OF 1

LOCATION: Johnston Sports Park

DATUM: Geodetic

COORDINATES: N 4855767.3; E 596903.6

START DATE: Dec 20, 2021 END DATE: Dec 20, 2021

BORING METHOD: 203 mm O.D. Hollow Stem Auger

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

AECOM PROJECT#: 60646784 CLIENT: Region of Peel CONTRACTOR: Altech Drilling&Investigation Service Ltd. SAMPLER HAMMER, 64kg; DROP, 760mm

CLI	IENT	Region of Peel			CON	ITR/	ACTO	DR: A	Altech	Drillin	ıg&lr	nvesti	gation	Servic	e Ltd.	S	AMPLE	R HAN	MER, 64kg; DRO	P, 760mm
S)	ТНОБ	SOIL PROFILE	Ι _Ε			MPL		,	20	40	60		•	SHE	AR STR	ENGTH nat V. rem V	l Cu, kF - + ⊕	Pa Q - ● U - Δ	ADDITIONAL	WELL INSTALLATION
(METRES)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	N VALUE		20	40	60		0	W <i>i</i>	ATER CO	OW OW	T PERC	l WI	ADDITIONAL LAB. TESTING & GRAIN SIZE DISTRIBUTION (%)	WELL INSTALLATION AND WATER LEVELS
		TOPSOIL	ί					1	00	200	300) 41	00		10 2	20 3	80 4	10	GR SA SI CL	
0		FILL: silty clay, some organics, trace sand, trace gravel, brown, moist, stiff		267.57 0.00	1	ss	13									0				
1		SILTY CLAY (TILL): occasional cobbles, trace gravel, brown to grey, moist, very stiff to hard		266.87 0.70		ss	15								0					
2	Power Auger Drilling	ברו המוסא מיבוו אלו			3	SS	19								0					
۷	Power	hard			4	SS	31								0					
3		grey		263.91	5	SS	30								0				Wet UW 22.11KN/cum Dry UW 19.47KN/cum	
		END OF BOREHOLE Notes:	W V N	3.66			П				\dagger									
5		This log is to be read with the subject report and project number as presented above. Interpretation assistance by AECOM is required for projects excluding the above mentioned project. No abnormal odour or staining was observed unless otherwise indicated. No groundwater was observed in the																		
ÿ		open hole to 3.66 mbgs upon completion of the drilling.																		
6																				
7																				
8																				
9																				
10 (LOC	3 TO I	BE READ IN CONJUNCTION WITH REPORT)																		

1:50

AECOM_BH_001 60646784 REGION OF PEEL_LAB UPDATED.GPJ GAL-MISS.GDT 22-2-7

RECORD OF BOREHOLE: BH5-5

SHEET 1 OF 1

LOCATION: Johnston Sports Park

AECOM PROJECT#: 60646784

COORDINATES: N 4855772.2; E 597009.7

DATUM: Geodetic

START DATE: Dec 20, 2021 END DATE: Dec 20, 2021

BORING METHOD: 127 mm O.D. Hollow Stem Auger

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

ц	6	<u> </u>	SOIL PROFILE			SAM	/IPLES	3						SHEA	AR STR	ENGTH nat V.	I Cu, kF - +	Pa Q-●			
(METRES)	T L L L L L L L L L L L L L L L L L L L	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	TYPE	- APLOE	20	40	60	80		2	TER CC	0 6	i0 ε ΓPERC	30	ADDITIO LAB. TES' & GRAIN DISTRIBU (%)	TING SIZE	WELL INSTALLATIO AND WATER LEVEL
_	Ľ	ă	TOPSOIL	STI	(m)	_	1		100	200	300	40	0					40	00.00	N C:	
0		\dashv		 	267.71 0.00		+												GR SA S	SI CL	
			FILL: silty clay, some organics, some sand, trace gravel, brown, moist, firm		267.01	1	ss	5								⊢∈	H		0 17 5	3 30	
1		nger	SILTY CLAY (TILL): trace gravel, trace sand, brown to grey, moist, very stiff to hard		0.70	2	SS 1	8							0						
2	Power Auger Drilling	D. Hollow Stem Auger				3	SS 2	0							0						
	Powe	127 mm O.D.	 hard																		
3						4	SS 3	5							0						
			some rock fragments, very stiff, grey		224.25	5	SS 2	5							0						
		┪	END OF BOREHOLE Notes:	1911 K	264.05 3.66																
4			1. This log is to be read with the subject report and project number as presented above. 2. Interpretation assistance by AECOM is required for projects excluding the above																		
5			mentioned project. 3. No abnormal odour or staining was observed unless otherwise indicated. 4. No groundwater was observed in the open hole to 3.66 mbgs upon completion of the drilling.																		
6																					
7																					
8																					
9																					
10																					
10																					

1:50

AECOM

LOGGED: DP

RECORD OF BOREHOLE: BH6-1/MW

SHEET 1 OF 1

LOCATION: Tullamore Reservoir and Pumping Station

COORDINATES: N 4850703.4; E 600325.3

DATUM: Geodetic

AECOM PROJECT#: 60646784 CLIENT: Region of Peel

START DATE: Nov 15, 2021

END DATE: Nov 15, 2021 BORING METHOD: 152 mm O.D. Hollow Stem Auger

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

CONTRACTOR: Landshark Drilling SAMPLER HAMMER, 64kg; DROP, 760mm

Power Auger Drilling 152 mm O.D. Hollow Stem Auger	DESCRIPTION TOPSOIL FILL: sandy silt, some organics, some cross trace clay gray brown moist	STRATA PLOT	ELEV. DEPTH (m)	BER	TYPE	N VALUE B	2	20	40	60	80			4	0 6 NTENT	0 8 PERC	0 ENT	ADDITIONAL LAB. TESTING & GRAIN SIZE DISTRIBUTION (%)	WELL INSTALLATION
Power Auger Drilling 152 mm O.D. Hollow Stem Auger	TOPSOIL FILL: sandy silt, some organics, some	STRATA PLOT	DEPTH (m)	NUMBER	TYPE	N VALUE	2	20	40	60	80		20 WATE	4	0 6 NTENT	0 8 PERC	0 ENT	LAB. TESTING & GRAIN SIZE DISTRIBUTION	
Dower Auger Drilling 152 mm O.D. Hollow Stem Auger	TOPSOIL FILL: sandy silt, some organics, some	STRATAP	DEPTH (m)	NUMBE	TYPE	N VALU					·			ER CO				DISTRIBUTION	AND WATER LEVEL
Power Auger Drilling 152 mm O.D. Hollow Stem Auger	TOPSOIL FILL: sandy silt, some organics, some	STRAI	(m)	N		z						ш						(%)	
Power Auger Drilling 152 mm O.D. Hollow Stem Auger	FILL: sandy silt, some organics, some	S			I I							_	Wp 🛏		O _W		WI	(70)	
Dower Auger Drilling 152 mm O.D. Hollow Stern Auger 152 mm O.D. Hollow Stern Auger	FILL: sandy silt, some organics, some	1					1	00	200	300	400		10	2	0 3	0 4	0		
Dower Auger Drilling 152 mm O.D. Hollow Stem Auger 152 mm O.D. Hollow Stem Auger	gravel trace clay grave brown maint	$\times\!\!\times\!\!\times$	231.00									\dashv						GR SA SI CL	
Dower Auger D Power Auger D 152 mm O.D. Hollow	gravel, trace clay, grey, brown, moist, firm		0.00	1	SS	5											75.03 (>	
2 2 3 3			229.78	2	SS	6								0					ुस्रुस्
3	SILTY CLAY (TILL): trace gravel, sandy, grey and brown, moist, stiff to very stiff		1.22	3	ss	13								⊢				3 36 33 28 Wet UW 20.99KN/cun Dry UW 18.03KN/cum	יאי, אי, אי, אי, אי, אי, אי, אי, אי, אי,
3	very stiff			4	ss	21								0					(Alakarana)
3	AUGER REFUSAL		228.26 2.74		SS	29								0					S. S. S.
5	END OF BOREHOLE Notes: 1. This log is to be read with the subject report and project number as presented above. 2. Interpretation assistance by AECOM is required for projects excluding the above mentioned project. 3. No abnormal odour or staining was observed unless otherwise indicated. 4. No groundwater was observed in the open hole to 2.74 mbgs upon completion of the drilling. 5. A 51-mm l.D. PVC monitoring well was installed upon completion of the drilling. The monitoring wells screened interval was constructed overserved groundwater between 1.83 and 2.74 mbgs. 6. The groundwater level was observed in the monitoring well as follows: Date Depth Elevation																		
8																			
9																			
(LOG TO BE F																			

RECORD OF BOREHOLE: BH6-2

LOCATION: Tullamore Reservoir and Pumping Station

COORDINATES: N 4850727.0; E 600313.8

DATUM: Geodetic AECOM PROJECT#: 60646784

START DATE: Nov 15, 2021 END DATE: Nov 15, 2021

BORING METHOD: 152 mm O.D. Hollow Stem Auger

PENETRATION TEST HAMMER, 64kg; DROP, 760mm SAMPLER HAMMER, 64kg; DROP, 760mm

SHEET 1 OF 1

CLIENT: Region of Peel CONTRACTOR: Landshark Drilling SHEAR STRENGTH Cu, kPa nat V. - + Q - ● rem V. - ⊕ U - △ SOIL PROFILE SAMPLES BORING METHOD DEPTH SCALE (METRES) ADDITIONAL LAB. TESTING & GRAIN SIZE STRATA PLOT 60 80 WELL INSTALLATION 40 60 80 NUMBER N VALUE AND WATER LEVELS ELEV. TYPE WATER CONTENT PERCENT DESCRIPTION DISTRIBUTION (%) DEPTH OW Wp -(m) 300 400 200 20 TOPSOIL GR SA SI CL 231.00 FILL: silty clay, some organics, some 0.00 rock pieces, trace gravel, some sand to sandy, grey, moist, very stiff to stiff SS 17 0 stiff SS 2 12 0 20 38 41 Power Auger Drilling grey to brown, very stiff 3 SS 22 0 Wet UW 21.59KN/cum Dry UW 19.10KN/cum 152 SS 0 2 23 38 37 19 SILTY CLAY (TILL): trace gravel, sandy, brown, moist, very stiff to hard SS 50/ 5 228.30 AUGER REFUSAL END OF BOREHOLE Notes:

1. This log is to be read with the subject report and project number as presented above.

2. Interpretation assistance by AECOM is required for projects excluding the above mentioned project.
3. No abnormal odour or staining was observed unless otherwise indicated.

4. No groundwater was observed in the open hole to 2.7 mbgs upon completion of the drilling. 5 60646784 REGION OF PEEL_LAB UPDATED.GPJ GAL-MISS.GDT 22-2-7 9 00 (LOG TO BE READ IN CONJUNCTION WITH REPORT)

DEPTH SCALE

1:50

BH

AECOM

LOGGED: BK

RECORD OF BOREHOLE: BH6-3

LOCATION: Tullamore Reservoir and Pumping Station START DATE: Nov 15, 2021

COORDINATES: N 4850756.2; E 600308.0

DATUM: Geodetic AECOM PROJECT#: 60646784 END DATE: Nov 15, 2021 BORING METHOD: 152 mm O.D. Hollow Stem Auger

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

SHEET 1 OF 1

		: Region of Peel			CO	NIK	ACTO	JR: L	andsha	ark Dril	ing							MER, 64kg; DRO	P, 760mm
ш	00	SOIL PROFILE			SA	MPL	ES						SHEA	R STR	ENGTH nat V. rem V.	Cu, kP	a Q - ●		
DEPTH SCALE (METRES)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	N VALUE			1	•	0	WAT Wp I	0 4 FER CC	0 6 ONTENT	0 8 PERC	0 ENT I WI	ADDITIONAL LAB. TESTING & GRAIN SIZE DISTRIBUTION (%)	WELL INSTALLATION AND WATER LEVELS
		TOPSOIL	0,	221.00				10	00 2	00 3	00 4	00	1	0 2	0 3	0 4	0	GR SA SI CL	
- 0	1001	FILL: silty clay, some organics, brown and grey, moist, firm to stiff		0.00	1	ss	6							0					
1	Power Auger Drilling	Stiff SiLTY CLAY (TILL): some sand, brown and grey, moist, very stiff to hard		229.78	2	ss	14							0					
	Powe	SILTY CLAY (TILL): some sand, brown and grey, moist, very stiff to hard		1.22	3	ss	18							0					
2		hard		228.87	4	SS	>50							0	1	-		0 16 39 45	
. 2		AUGER REFUSAL END OF BOREHOLE Notes: 1. This log is to be read with the subject report and project number as presented above. 2. Interpretation assistance by AECOM is required for projects excluding the above mentioned project. 3. No abnormal odour or staining was observed unless otherwise indicated. 4. No groundwater was observed in the open hole to 2.13 mbgs upon completion of the drilling.		228.87 2.13	4	ss	>50							0		<u> </u>		0 16 39 45	
9																			
I								1											

DEPTH SCALE

1:50

AECOM_BH_001 60646784 REGION OF PEEL_LAB UPDATED.GPJ GAL-MISS.GDT 22-2-7

AECOM

LOGGED: BK

PROJECT: Region of Peel Snow Storage LOCATION: Alloa Reservoir and Pumping Station **RECORD OF BOREHOLE: BH9-1**

SHEET 1 OF 1

COORDINATES: N 4839583.9; E 591534.2 DATUM: Geodetic

AECOM PROJECT#: 60646784

CLIENT: Region of Peel

START DATE: Nov 16, 2021 END DATE: Nov 16, 2021 BORING METHOD: 152 mm O.D. Hollow Stem Auger

PENETRATION TEST HAMMER, 64kg; DROP, 760mm SAMPLER HAMMER, 64kg; DROP, 760mm

CONTRACTOR: Landshark Drilling

CLI	□IN	···	Region of Peel			CON	IRAC	101	R: Lan	dshark	k Drilli	ng							MMER, 64kg; DRO	P, 760mm
ا <u>س</u>	Ç	3	SOIL PROFILE			SAN	/PLES	S						SHE	AR STF	RENGTH nat V.	l Cu, kl	Pa Q-●		
(METRES)	BORING METHOD			LOT		2		٦	20	40	60)	80	1		rem V	′ ⊕	Ũ - △ 80	ADDITIONAL LAB. TESTING	WELL INSTALLATIO
WET	Ü	5	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	ALO						WA	TER C	ONTEN		CENT	& GRAIN SIZE DISTRIBUTION	AND WATER LEVEL
, L	ROR			TRA	DEPTH (m)	N	<u>- </u> 2	ź				_		1 '	-	OW		H WI	(%)	
\dashv		1	TOPSOIL	W	200 00				100	200	30	0 4	100		10 :	20 ;	30	40	GR SA SI CL	
0			FILL: sandy silt, some organics, trace gravel, trace clay, dark brown, moist, stiff to very stiff		262.00 0.00	1 :	SS 1	4								0				
1			brown to grey, very stiff			2 5	SS 1	5							0					
		-	CLAYEY SILT: sandy, trace gravel, some organics, dark brown, moist, firm to stiff		260.78 1.22	3 :	SS 6	6							0				3 29 39 29	
2			light brown, stiff			4 :	SS 8	8							0					
		Auger	SILTY CLAY (TILL): some sand, trace gravel, light brown, grey, moist, stiff to hard		259.56 2.44	5 :	SS 1	1								o F			1 18 42 39 Wet UW 20.45KN/cum Dry UW 17.75KN/cum	
3	Auger D	. Hollow Stem Auger	hard			6 :	SS 3	12								0			IDry UW 17.75KN/cum	
4		152 mm O.D.																		
5						7 :	SS 3	32							0					
6																				
			grey to brown, very stiff		255.29	8 :	SS 2	22							0					
7			END OF BOREHOLE Notes: 1. This log is to be read with the subject report and project number as presented above. 2. Interpretation assistance by AECOM is required for projects excluding the above mentioned project.		6.71															
8			No abnormal odour or staining was observed unless otherwise indicated. No groundwater was observed in the open hole to 6.71 mbgs upon completion of the drilling.																	
9																				
10																				
			READ IN CONJUNCTION WITH REPORT) CALE				- 1			\ =	-(~)/(1	1	1	•	1	L	OGGED: BK

RECORD OF BOREHOLE: BH9-2

SHEET 1 OF 1

LOCATION: Alloa Reservoir and Pumping Station COORDINATES: N 4839576.8; E 591584.6

DATUM: Geodetic AECOM PROJECT#: 60646784 CLIENT: Region of Peel

START DATE: Nov 16, 2021 END DATE: Nov 16, 2021 BORING METHOD: 152 mm O.D. Hollow Stem Auger CONTRACTOR: Landshark Drilling

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

SAMPLER HAMMER, 64kg; DROP, 760mm

		-	Region of Peel								k Drillin	9		CUE	AD CTD				ИMER, 64kg; DRC T	
ļ (BORING METHOD		SOIL PROFILE	1.		SAN	MPLE	S						SHE	AR STR	nat V. rem V	HCu,kH -+ '-⊕	o Q - ● U - ∧	ADDITIONAL	
(METRES)	A			STRATA PLOT	ELEV.	띪		삙	20	40	60	8	0	2	0 4	0 6	0	80	LAB. TESTING & GRAIN SIZE	WELL INSTALLATION AND WATER LEVEL
WE	UNIC		DESCRIPTION	ΑŢ	DEPTH	NUMBER	TYPE	N VALUE							TER CO				DISTRIBUTION (%)	7445 17711211212121
5	ä			STR/	(m)	ž	.	z	100	200	300	40		Wp I		0 3		⊣ WI 40		
_			TOPSOIL		262.00				100	1			,,,	<u> </u>	Ĭ			Ĭ	GR SA SI CL	
0			FILL: silty clay, trace sand, trace gravel, dark brown to grey, moist, soft to very stiff		0.00	1	ss	3								0				
1						2	SS	13							0					
						3	ss	8							0					
2			very stiff			4	SS	18												
						4	55	18							0					
3	£ Bu	n Auger	firm			5	ss	7							0					
	Power Auger Drilling	mm O.D. Hollow Stem Auger	some shale segments			6	ss	11							0					
	Power	152 mm O.D.	SILTY CLAY (TILL): sandy, trace gravel, trace rock pieces, brown, grey, white,		258.34 3.66															
4		1	moist, hard																	
5						7	SS	26							0					
6																				
			brown, light brown		255 20	8	ss	44						,))				3 23 56 18	
7			END OF BOREHOLE Notes: 1. This log is to be read with the subject	T I	255.29 6.71															
			report and project number as presented above. 2. Interpretation assistance by AECOM is required for projects excluding the above																	
8			mentioned project. 3. No abnormal odour or staining was observed unless otherwise indicated. 4. No groundwater was observed in the																	
-			open hole to 6.71 mbgs upon completion of the drilling.																	
9																				
10																				

1:50

A=COM

PROJECT: Region of Peel Snow Storage LOCATION: Alloa Reservoir and Pumping Station

RECORD OF BOREHOLE: BH9-3/MW

SHEET 1 OF 1

COORDINATES: N 4839543.1; E 591585.8 DATUM: Geodetic

START DATE: Nov 16, 2021

AECOM PROJECT#: 60646784

END DATE: Nov 16, 2021 BORING METHOD: 127 mm O.D. Hollow Stem Auger

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

Щ	۶	₈	SOIL PROFILE			SAN	//PLE	s				ling			SHEA	AR STR	ENGTH			MMER, 64kg; DRO	
DEPTH SCALE (METRES)	H	BORING METHOD		LOT		~	1	ш	20	40) (30	80	_				⊕ 50 8	Ũ - Δ 30	ADDITIONAL LAB. TESTING	WELL INSTALLATIO
METE		NG	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	N VALUE							WA	TER CO			ENT	& GRAIN SIZE DISTRIBUTION	AND WATER LEVEL
DE (BOR		TRA	DEPTH (m)	N	- :	ź	100	00/		00	400	П	Wp				-l WI	(%)	
		+	TOPSOIL	0)	262.00				100	200	0 3	00	400		1	0 2	20 :	30 4	10	GR SA SI CL	
0		П	FILL: sandy silt, trace gravel, some		0.00																ğ
			sand, dark brown, moist, firm	\bowtie		1	ss	7									0				F
				\bowtie	261.39																
			FILL: sand, trace gravel, grey, wet, very loose		0.61																
1				\bowtie		2	SS	4								0					
			FILL: silty clay, trace gravel, natural	₩	260.78 1.22																
			organics, brown, moist, firm to very stiff			3	ss	4								0					8
																					Į.
2		ger	some sand, grey, stiff	\bowtie																	<u>ૡૺૺૹૡૺૹઌૺૹૺૺૺૺ</u>
	ng	tem Auger	7.3 7.	\bowtie		4	SS	12								0					G.
	r Drill	ow Ste					_														Ş
	Power Auger Drilling	D. Hollow	very stiff			5	ss -	18								0					[a]
3	Powe	mm O.D			258.95																
		127 n	SILTY CLAY (TILL): some sand, trace gravel, brown and black, moist, stiff to		3.05																7
			hard		1	6	SS	9								0	1				Ç
							_														[4]
																					ß
4					}																G.
																					Ş
]																ß
			very stiff]	7	ss 2	24								0	 			2 24 47 27	1/2
5																				Wet UW 21.81KN/cum Dry UW 19.08KN/cum	Į.
					1																ß
]																3
					1																[3]
6					1																[2]
			hard			8	ss 4	41													Ä
					255.29																,
			END OF BOREHOLE Notes:		6.71		\top	\top													123
7			This log is to be read with the subject report and project number as presented																		
			above. 2. Interpretation assistance by AECOM is																		
			required for projects excluding the above mentioned project.																		
			No abnormal odour or staining was observed unless otherwise indicated.																		
8			4. No groundwater was observed in the open hole to 6.71 mbgs upon completion																		
			of the drilling																		
			5. A 51-mm l.D. PVC monitoring well was installed upon completion of the drilling. The monitoring wells screened																		
			interval was constructed overserved groundwater between 3.05 and 6.10																		
9			mbgs. 6. The groundwater level was observed																		
			in the monitoring well as follows: Date Depth Elevation																		
			,																		
10																					
			READ IN CONJUNCTION WITH REPORT) CALE						4						4					17	OGGED: BK
טב		110	O/ LL							1	=(_((N	1					L	JUGLD. DR

Appendix C

Laboratory Test Results

MOISTURE CONTENT DETERMINATION

CLIENT A			АЕСОМ				DATE	December 16, 2021	
PROJECT NUMBER			60646784				TESTED BY	SAM	
		PROJ	ECT NAME	Peel Region Sno	w Storgae Site 1			REVIEWED BY	Ramana M
			LOCATION	Peel Region, On	tario				
					Observations	I		Formula	
Borehole Name	Sample Id	Depth (feet)	Can Id	Weight of Empty Can (g) W ₁	Weight of Wet Soil + Can (g) W ₂	Weight of Dry Soil + Can (g) W ₃	Weight of Water (g) W _w = (W ₂ -W ₃)	Weight of Dry soil (g) W _s = (W ₃ -W ₁)	Moisture Content (%) w = (W _w /W _s)*100
	SS1	0-2	61	13.48	50.39	39.80	10.59	26.32	40.24
	SS2	2.5-4.5	91	13.63	65.45	57.31	8.14	43.68	18.64
BH-1-2/MW	SS3	5-7	145	13.97	77.58	68.74	8.84	54.77	16.14
DIP-1-Z/WW	SS4	7.5-9.5	69	13.65	72.05	64.24	7.81	50.59	15.44
	SS5	10-12	120	13.58	72.10	63.70	8.40	50.12	16.76
	SS6	15-17	80	13.51	67.46	58.53	8.93	45.02	19.84
	SS1	0-2	58	13.53	82.40	68.02	14.38	54.49	26.39
	SS2	2.5-4.5	171	13.66	66.62	58.33	8.29	44.67	18.56
BH-1-1	SS3	5-7	185	13.55	86.59	75.53	11.06	61.98	17.84
BIFFF	SS4	7.5-9.5	101	13.51	86.66	77.41	9.25	63.90	14.48
	SS5	10-12	114	13.40	78.88	70.02	8.86	56.62	15.65
	SS6	15-17	118	13.65	102.98	91.54	11.44	77.89	14.69
	SS1	0-2	193	13.46	73.71	51.70	22.01	38.24	57.56
	SS2	2.5-4.5	152	13.31	79.08	65.87	13.21	52.56	25.13
BH-1-3	SS3	5-7	108	13.63	79.00	69.69	9.31	56.06	16.61
DIT-1-3	SS4	7.5-9.5	127	13.68	95.13	85.14	9.99	71.46	13.98
	SS5	10-12	132	13.55	70.48	63.64	6.84	50.09	13.66
	SS6	15-17	81	13.80	74.44	67.69	6.75	53.89	12.53
								Total Camples	

Total Samples 18

										7	
DETERMINATION OF UNIT WEIGHT - ASTM D7263											
Pro	ject Number	606	46784		Date Tested	18-Dec-21			Tested by	Tested by	
Р	roject Name				Location				Checked by	Ramana M	
						Water Conte	nt				
		Lab Number		2021	12017S	20211	12018S				
		Borehole Name		Bł	l 1-3	BH1-	-2 MW				
Test Info		Sample ID		<u> </u>	SS5	s	S4				
		Depth		11	0.00	7	.50				
		Trial			В		В	Δ.	В	Δ.	В
		Tare ID		A 75		A 89		A	В	A	В
		Tare ID		75	66	89	62				
		Tare Wt		13.62	13.33	13.59	13.55				
	-	Tare + Wet Soil		52.74	51.72	65.23	56.20				
Mass in Grams		Tare + Dry Soil		48.31	47.35	58.56	51.46				
		Water	M _w	4.43	4.37	6.67	4.74				
		Dry Soil	M _d	34.69	34.02	44.97	37.91				
	Wate	er Content %	w	12.77	12.85	14.82	12.51				
	F	Average %		1:	2.81	13	3.66				
					V	/eight- Volume R	elations				
	Temp of	water (C)		25.3	25.3	25.5	25.5				
Density of W	/ater			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
		Wet Soil	M _t	131.67	110.54	123.56	106.61				
	s	Soil + Wax in Air		136.99	116.30	130.63	110.76				
Mass in Grams	Wax			5.32	5.76	7.07	4.15				
	Wet	Soil + Wax in water		72.30	59.75	67.01	58.41				
	Dry Soil ^A		M _d	116.76	97.96	107.61	94.76				
		Soil (assumed)	Gs	2.72	2.72	2.72	2.72				
	Wet Soil + Wa	x ^B		64.69	56.55	63.62	52.35				
Volume in	Wax			5.86	6.34	7.79	4.57				
CC	Wet Soil		٧	58.83	50.21	55.83	47.78				
	Dry Soil = M _d /	G _s	Vs	43.01	36.08	39.63	34.90				
	Wet Unit Weig	ht = (M _i /V)x9.81	Ym	21.96	21.60	21.71	21.89				
KN/cum	Average	Wet Unit Weight	-m	2	1.78	21	.80				
	Dry Unit Weigh	$t = (M_d/V)x9.81$	Y _d	19.47	19.14	18.91	19.46				
	Average	Dry Unit Weight	_	1!	9.30	19	1.18				Γ
Void Ratio =	(V-V _S)/V _S		е	0.37	0.39	0.41	0.37				
	= [(V-V _S)/V]x100		n	26.90	28.14	29.01	26.95				
Degree of S	aturation = [V _w /	(V-V _s)] x100	S	94.22	89.07	98.47	92.03				

202112019 Lab No Snow Storage Project Site 1 Project Name 60646784 Project Number PEEL Region, Ontario

	Hydrometer Analysis							
Borehole No	BH 1 -1	Tested by	Dharmik P					
Sample Id	SS3	Reviewed by	Ramana M					
Depth (feet)	5-7	Date	19-Dec-21					
Soil Classification	Lean Clay with Sand, trace gravel (CL)							

7	Soil Hydrometer Used								
	151 H SN#	993585	•						
	151 H SN#	115105	0						

Liquid Limit Plasticity Index 2.70 Specific Gravity of Soil (Gs) Specific Gravity of Water (Gw) 0.989 Sg Correction Factor (a) 204.8 Total Mass of sample 9.50 Soil Particles Greater Than This Are Excluded From Graph

Hydrometer Details							
Volume of Bulb	(V _B)	63.1	cm ³				
Length of Bulb	(L ₂)	14.15	cm				
Length from '1.0' reading to top of Bulb	(Ls)	10.5	cm				
Scale Dimension	(hs)	0.27	cm/Div				
Cross-sectional Area of Cylinder	(A)	28.1351	cm ²				
Meniscus Correction	(Hm)	0.0005	Divisions				

Calculation of	f Dry Soil Ma	ass	
Oven Dried Mass	(Wo)	20.27	ç
Air Dried Mass	(Wa)	20.37	_ (
Hygroscopic Corr Factor	(F)	0.995	
Air Dried Mass in Analysis	(Ma)	50	_ (
Oven Dried Mass in Analysis	(Mo)	49.8	ç
% Passing 2.0 mm Sieve	(P10)	96.9	
Sample Represented	(W)	51.4	_ (

Sieve Analys	is of Retained	on 2 0 mm	Sieve (M2)

Dieve Analysis of Retained on 2.0 min Dieve (MZ)								
Sieve Size (mm)	Cummulative Mass Retained (g)	Mass Passing (g)	% Passing					
75.0								
63.0								
53.0								
37.5								
26.5								
19.0								
13.2								
9.5								
4.75	3.7	201.0	98.2					
2.0	6.4	198.3	96.9					

	Sieve Analysis of Hydrometer Material (M7)									
Sieve Size (mm)	Comulative Mass Retained (g)	Mass Passing (g)	% Passing							
2.00	0.0	49.7	96.8							
0.850	0.9	48.8	95.1							
0.425	1.8	47.9	93.3							
0.25	3.0	46.8	91.0							
0.106	6.3	43.4	84.5							
0.075	7.7	42.0	81.8							
Pass 0.075	0.4									

Percent In Suspension (P) as per Section 14.3 of ASTM D 422

P = [(100000/W) * (Gs/(Gs - Gw))] * (R - Gw) in percent (for Soil Hydrometer 151 H)

Where R = Corrected Hydrometer Reading = Hs - Hc

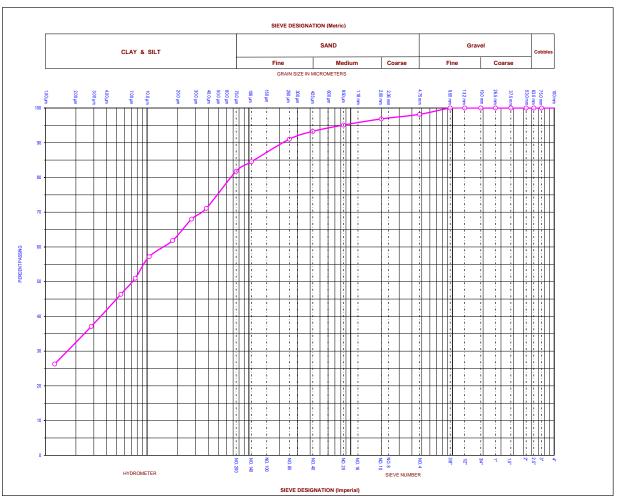
Hs = Actual Hydrometer Reading Hc= Composite Correction to be determined as per Section 7 of ASTM D 422

Diameter of Soil Particles (D) as per Section 15 of ASTM D 422

 $D = SQRT \text{ of } \{[(30*\eta)/(980*(Gs-Gw)]*(L/T)\} \text{ in mm}$

Where η = Viscosity of suspending Medium (Water) in poises L = Effective Depth = L1+ 0.5*[L₂ - V_B /A)] in cm L1 = distance from the top of the bulb to Recorded Hydrometer Reading in cm

Date	Time	Elaspsed Time (minutes)	Hs in Divisions	Hc in Divisions	Temp Tc in C	R=Hs-Hc	P in %	Lincm	n in Poise	к	D in mm
20-Dec-21	10:32:00 AM	1.0	1.0260	0.0030	25.9	1.0230	71.1	9.19	8.79435	0.01258456	0.0382
	10:33:00 AM	2.0	1.0250	0.0030	25.9	1.0220	68.0	9.46	8.79435	0.01258456	0.0274
	10:36:00 AM	5.0	1.0230	0.0030	25.9	1.0200	61.8	10.00	8.79435	0.01258456	0.0178
	10:46:00 AM	15.0	1.0215	0.0030	25.8	1.0185	57.2	10.41	8.81384	0.0125985	0.0105
	11:01:00 AM	30.0	1.0195	0.0030	25.3	1.0165	51.0	10.95	8.91247	0.01266879	0.0077
	11:31:00 AM	60.0	1.0180	0.0030	25.0	1.0150	46.4	11.35	8.97259	0.01271145	0.0055
	2:41:00 PM	250.0	1.0150	0.0030	24.2	1.0120	37.1	12.16	9.13649	0.01282703	0.0028
21-Dec-21	10:31:00 AM	1440.0	1.0115	0.0030	23.4	1.0085	26.3	13.11	9.30578	0.01294531	0.0012


	Viscosiity	к
L1 cm	С	(η/(Gs-1)
3.24	-0.518485	5.1731466
3.51	-0.518485	5.1731466
4.05	-0.518485	5.1731466
4.45	-0.516271	5.1846127
4.99	-0.505144	5.2426281
5.40	-0.498420	5.2779944
6.21	-0.480318	5.3744072
7.15	-0.461960	5 4739861

Mass Retained on Seive # 10	16.73
Mass Passed Seive # 10	188.03
Jar Number	

Data	Can Id	143
pic D	Empty Can Weight (g)	13.57
Hygroscopic	Can+ Air Dried Soil (g)	33.94
H	Can + Oven Dried Soil (g)	33.84

UNIFIED SOIL CLASSIFICATION SYSTEM

	Client	AECOM Date December 19, 2021 Project Number 60646784		AECOM Date December 19, 2021 Project Number 60646784			Gravel (%)	2			
	Sample ID	BH 1 -1	SS3	Depth (feet)	5-7	Project Name Snow Storage Project Site 1		e 1	Sand (%)	16	
AECOM CANADA LTD. 83 Galaxy Blvd, Unit 6 Toronto, Ontario	Lab Sample No:	202112019 Project Location PEEL Region, Ontario					Silt (%)	51			
Toronto, Ontano		Le	an Clay with Sa	nd, trace gra	avel (CL)					Clay (%)	31
	Figure No.		D10 N/A D30 0.002 D60 0.015 Cu N/A					N/A	Cc	N/A	

Hydrometer Analysis

	nyurometer Analysis							
Borehole No	BH 1-2MW	Tested by	Dharmik P					
Sample Id	SS4	Reviewed by	Ramana M					
Depth (feet)	7.5-9.5	Date	19-Dec-21					
Soil Classification	Lean Clay with Sand, trace gravel (CL)							

₹	Soil Hydrometer Used								
	151 H SN#	993585	0						
L	151 H SN#	115105	•						

Soil Informatio	n		
Liquid Limit	(LL)		
Plasticity Index	(PI)		
Specific Gravity of Soil	(Gs)	2.70	
Specific Gravity of Water	(Gw)	1	
Sg Correction Factor	(a)	0.989	
Total Mass of sample		467.3	g
Soil Particles Greater Than This Are Excluded From	Graph	9.50	mm

Hydrometer Details									
Volume of Bulb	(V _B)	61.1	cm ³						
Length of Bulb	(L ₂)	14.44	cm						
Length from '1.0' reading to top of Bulb	(Ls)	10.17	cm						
Scale Dimension	(hs)	0.27	cm/Div						
Cross-sectional Area of Cylinder	(A)	28.3535	cm ²						
Meniscus Correction	(Hm)	0.0005	Divisions						

Calculation of	f Dry Soil Ma	ISS	
Oven Dried Mass	(Wo)	25.93	ç
Air Dried Mass	(Wa)	26.06	9
Hygroscopic Corr Factor	(F)	0.995	
Air Dried Mass in Analysis	(Ma)	50	
Oven Dried Mass in Analysis	(Mo)	49.8	ç
% Passing 2.0 mm Sieve	(P10)	97.1	
Sample Represented	(W)	51.2	_ (

Sieve Anal	ysis of Retained	on 2.0 mm Sieve (M2)

Sieve Size (mm)	Cummulative Mass Retained (g)	Mass Passing (g)	% Passing
75.0			
63.0			
53.0			
37.5			
26.5			
19.0			
13.2			
9.5			
4.75	4.5	462.8	99.0
2.0	13.4	453.9	97.1

Sieve Analysis of Hydrometer Material (M7)									
Sieve Size (mm)	Comulative Mass Retained (g)	Mass Passing (g)	% Passing						
2.00	0.0	49.7	97.1						
0.850	0.8	49.0	95.6						
0.425	2.1	47.7	93.1						
0.25	3.6	46.1	90.1						
0.106	7.9	41.8	81.7						
0.075	9.8	40.0	78.1						
Pass 0.075	0.7								

Percent In Suspension (P) as per Section 14.3 of ASTM D 422

 $P = [\ (100000/W) * (Gs/(Gs - Gw))] * (R - Gw) \ in \ percent \ \ (for \ Soil \ Hydrometer \ 151 \ H)$

Where R = Corrected Hydrometer Reading = Hs - Hc

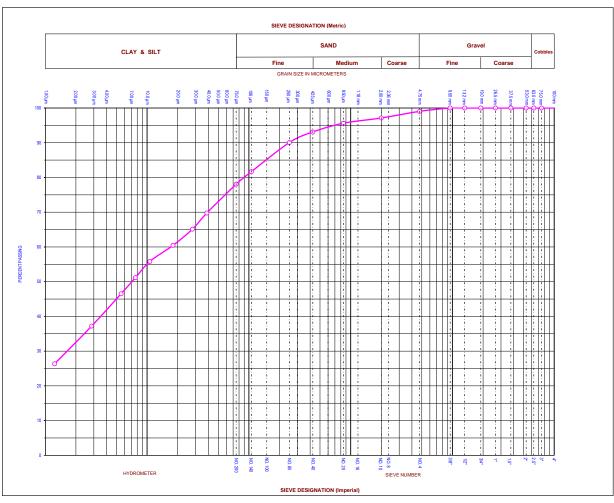
Hs = Actual Hydrometer Reading Hc= Composite Correction to be determined as per Section 7 of ASTM D 422

Diameter of Soil Particles (D) as per Section 15 of ASTM D 422

 $D = SQRT \ of \{ [(30*\eta)/(980*(Gs\text{-}Gw)] \ * \ (L/T) \} \ in \ mm$

Where η = Viscosity of suspending Medium (Water) in poises L = Effective Depth = L1+ 0.5*[L₂ - V_B /A)] in cm L1 = distance from the top of the bulb to Recorded Hydrometer Reading in cm

Date	Time	Elaspsed Time (minutes)	Hs in Divisions	Hc in Divisions	Temp Tc in C	R=Hs-Hc	P in %	L in cm	η in Poise	к	D in mm
20-Dec-21	10:32:00 AM	1.0	1.0255	0.0030	26.3	1.0225	69.8	9.52	8.71714	0.0125292	0.0387
	10:33:00 AM	2.0	1.0240	0.0030	26.3	1.0210	65.1	9.92	8.71714	0.0125292	0.0279
	10:36:00 AM	5.0	1.0225	0.0030	26.3	1.0195	60.5	10.33	8.71714	0.0125292	0.0180
	10:46:00 AM	15.0	1.0210	0.0030	26.0	1.0180	55.8	10.73	8.77493	0.01257066	
	11:01:00 AM	30.0	1.0195	0.0030	25.7	1.0165	51.2	11.14	8.83341	0.01261248	0.0077
	11:31:00 AM	60.0	1.0180	0.0030	25.3	1.0150	46.5	11.54		0.01266879	
	2:41:00 PM	250.0	1.0150	0.0030	24.2	1.0120	37.2	12.35	9.13649	0.01282703	
21-Dec-21	10:31:00 AM	1440.0	1.0115	0.0030	24.0	1.0085	26.4	13.30		0.01285634	


	Viscosiity	к
L1 cm	С	(η/(Gs-1)
3.37	-0.527303	5.1277306
3.78	-0.527303	5.1277306
4.19	-0.527303	5.1277306
4.59	-0.520695	5.1617255
4.99	-0.514053	5.1961241
5.40	-0.505144	5.2426281
6.21	-0.480318	5.3744072
7 15	-0 475753	5 3989998

Mass Retained on Seive # 10	164.28
Mass Passed Seive # 10	303.03
Jar Number	

ata	Can Id	156
pic D	Empty Can Weight (g)	13.55
Hygroscopic Data	Can+ Air Dried Soil (g)	39.61
Ę	Can + Oven Dried Soil (g)	39.48

UNIFIED SOIL CLASSIFICATION SYSTEM

	Client	AECOM Date Decei		Date Decemb	r 19, 2021 Project Number		60646784			Gravel (%)	1		
	Sample ID	BH 1-2MW	SS4	Depth (feet)	7.5-9.5	Project Name		Snow Storage Project Site 1		Sand (%)	21		
AECOM CANADA LTD. 83 Galaxy Blvd, Unit 6 Toronto, Ontario	Lab Sample No:		202112018 Project Location PEEL Region, Ontar						on, Ontario		Silt (%)	47	
	Soil Classification			L	ean Clay with Sa	nd, trace gra	avel (CL)					Clay (%)	31
	Figure No.			D10	N/A	D30	0.002	D60	0.017	Cu	N/A	Cc	N/A

Hydrometer Analysis

202112017 Lab No Snow Storage Project Site 1 Project Name 60646784 Project Number PEEL Region, Ontario

	nydrometer Analysis			
Borehole No	BH 1-3	Tested by	Dharmik P	▼
Sample Id	SS5	Reviewed by	Ramana M	,
Depth (feet)	10-12	Date	19-Dec-21	
Soil Classification	Lean Clay with Sai	nd, trace gravel (CL)		•

Soil Hydrometer Used							
151 H SN#	993585	•					
	115105	0					

Liquid Limit Plasticity Index 2.70 Specific Gravity of Soil (Gs) Specific Gravity of Water (Gw) 0.989 Sg Correction Factor (a) 396.0 Total Mass of sample 9.50 Soil Particles Greater Than This Are Excluded From Graph

Hydron	eter Det	tails	_
Volume of Bulb	(V _B)	63.1	cm ³
Length of Bulb	(L ₂)	14.15	cm
Length from '1.0' reading to top of Bulb	(Ls)	10.5	cm
Scale Dimension	(hs)	0.27	cm/Div
Cross-sectional Area of Cylinder	(A)	28.1351	cm ²
Meniscus Correction	(Hm)	0.0005	Divisions

Calculation of	f Dry Soil Ma	ss	
Oven Dried Mass	(Wo)	19.65	ç
Air Dried Mass	(Wa)	19.71	ç
Hygroscopic Corr Factor	(F)	0.997	╝
Air Dried Mass in Analysis	(Ma)	50	_ ç
Oven Dried Mass in Analysis	(Mo)	49.8	ç
% Passing 2.0 mm Sieve	(P10)	97.1	
Sample Represented	(W)	51.3	

s	lieve Analysis of Re	stained on 2.0 mm Sieve (M2)
Sieve Size (mm)	Cummulative Mass	Mass Passing (g)

Sieve Size (mm)	Cummulative Mass Retained (g)	Mass Passing (g)	% Passing
75.0			
63.0			
53.0			
37.5			
26.5			
19.0			
13.2			
9.5			
4.75	4.5	391.5	98.9
2.0	11.5	384.5	97.1

Sieve Analysis of Hydrometer Material (M7)										
Sieve Size (mm)	Comulative Mass Retained (g)	Mass Passing (g)	% Passing							
2.00	0.0	49.8	97.1							
0.850	1.2	48.6	94.8							
0.425	2.3	47.5	92.6							
0.25	3.6	46.3	90.2							
0.106	7.0	42.9	83.5							
0.075	8.4	41.4	80.7							
Pass 0.075	0.9									

P = [(100000/W) * (Gs/(Gs - Gw))] * (R - Gw) in percent (for Soil Hydrometer 151 H)

Where R = Corrected Hydrometer Reading = Hs - Hc

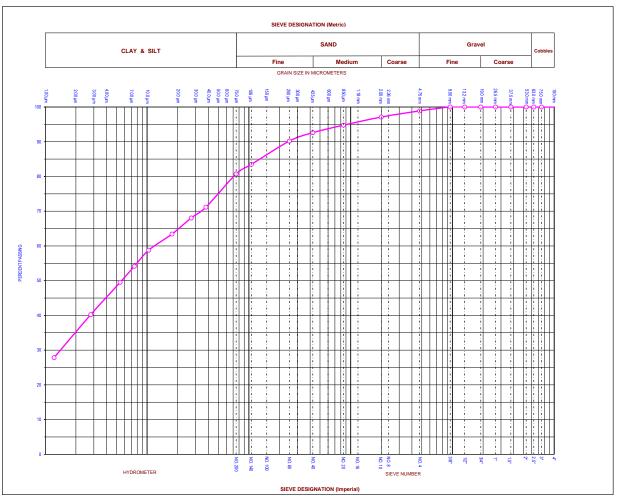
Hs = Actual Hydrometer Reading Hc= Composite Correction to be determined as per Section 7 of ASTM D 422

Diameter of Soil Particles (D) as per Section 15 of ASTM D 422

 $D = SQRT \ of \{ [(30*\eta)/(980*(Gs\text{-}Gw)] \ * \ (L/T) \} \ in \ mm$

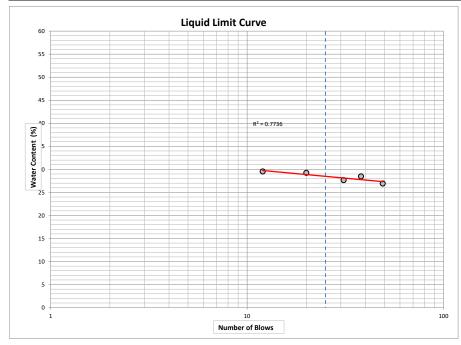
Where η = Viscosity of suspending Medium (Water) in poises L = Effective Depth = L1+ 0.5*[L₂ - V_B /A)] in cm L1 = distance from the top of the bulb to Recorded Hydrometer Reading in cm

Date	Time	Elaspsed Time (minutes)	Hs in Divisions	Hc in Divisions	Temp Tc in C	R=Hs-Hc	P in %	L in cm	η in Poise	к	D in mm
20-Dec-21	10:14:00 AM	1.0	1.0260	0.0030	26.6	1.0230	71.2	9.19	8.66003	0.01248808	0.0379
	10:15:00 AM	2.0	1.0250	0.0030	26.6	1.0220	68.1	9.46	8.66003	0.01248808	0.0272
	10:18:00 AM	5.0	1.0235	0.0030	26.5	1.0205	63.4	9.87	8.67899	0.01250175	0.0176
	10:28:00 AM	15.0	1.0220	0.0030	26.2	1.0190	58.8	10.27	8.73633	0.01254298	0.0104
	10:43:00 AM	30.0	1.0205	0.0030	26.0	1.0175	54.1	10.68	8.77493	0.01257066	0.0075
	11:13:00 AM	60.0	1.0190	0.0030	25.5	1.0160	49.5	11.08	8.87278	0.01264055	0.0054
	2:23:00 PM	250.0	1.0160	0.0030	24.3	1.0130	40.2	11.89	9.11572	0.01281243	0.0028
21-Dec-21	10:13:00 AM	1440.0	1.0120	0.0030	24.0	1.0090	27.8	12.97		0.01285634	


	Viscosiity	к
L1 cm	С	(η/(Gs-1)
3.24	-0.533877	5.0941327
3.51	-0.533877	5.0941327
3.91	-0.531689	5.1052883
4.32	-0.525104	5.1390178
4.73	-0.520695	5.1617255
5.13	-0.509606	5.2192839
5.94	-0.482595	5.3621853
7.02	-0.475753	5 3989998

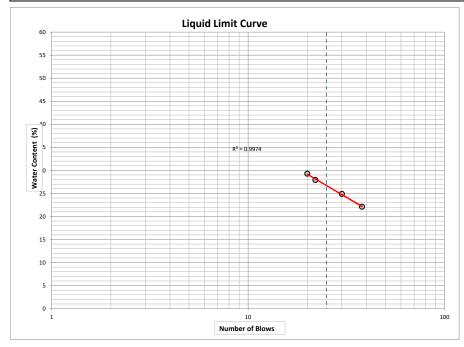
Mass Retained on Seive # 10	151.89
Mass Passed Seive # 10	244.1
Jar Number	

ata	Can Id	189
pic D	Empty Can Weight (g)	13.46
Hygroscopic Data	Can+ Air Dried Soil (g)	33.17
Ĭ	Can + Oven Dried Soil (g)	33.11



UNIFIED SOIL CLASSIFICATION SYSTEM

	Client	AECOM		Date December	19, 2021	Project Nu	mber	60646784				Gravel (%)	1
	Sample ID	BH 1-3	SS5	Depth (feet)	10-12	Project Na	me	Snow Storage Project Site 1		Sand (%)	18		
AECOM CANADA LTD. 83 Galaxy Blvd, Unit 6 Toronto, Ontario	Lab Sample No:		2	02112017		Project Lo	cation	PEEL Region, Ontario				Silt (%)	47
	Soil Classification		Lean Clay with Sand, trace gravel (CL)					Clay (%)	34				
	Figure No.			D10	N/A	D30	0.001	D60	0.012	Cu	N/A	Cc	N/A


	1	I		1		A =/	2014			
		AECON	I CAN	ADA L	TD.	AEC	.UM			
DETERMINATION OF LIQUID LIMIT										
Client	AECOM	Project Number	60646784		Date	December 20, 2021				
Project Name	Snow Storage Project S	Site 1			Tested By					
Location	Peel Region, Ontario				Reviewed By	Ramana M				
Borehole Number	ВН1-3	Sample Id	SS5	Depth (feet)	10-12	Lab Number	202112017			
Des	scription	Formula	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6		
	Container Number		96	142	178	95	51			
Weight of	Empty Container (g) W ₁		13.45	13.76	13.53	13.67	13.44			
Weight of Co	ntainer + Wet Soil (g) W ₂		22.12	19.75	23.57	22.48	21.23			
Weight of Co	ntainer + Dry Soil(g) W ₃		20.14	18.45	21.30	20.53	19.58			
	Weight of Water (g) W _w	$W_w = W_2 - W_3$	1.98	1.30	2.27	1.95	1.65			
Weight of Dry Soil (g) W _s W _s = W ₃ -W ₁		W _s = W ₃ -W ₁	6.69	4.69	7.77	6.86	6.14			
Water Content (%) w = (W _w / W _s) * 100		29.54	27.65	29.25	28.48	26.93				
Number of Blows			12	31	20	38	49			
Liqu	id Limit (%) From Graph				28	.5				

	1	1	<u> </u>	1	<u> </u>	A = 4			
	1	AECO	M CAN	ADA L	TD.	AEC	OM		
DETERMINATION OF PLASTIC LIMIT									
Client	AECOM	Project Number	60646784		Date	December 20,	2021		
Project Name	Snow Storage Project	Site 1			Tested By	0			
Location	Peel Region, Ontario				Reviewed By	Ramana M			
Borehole Number	BH1-3	Sample Id	SS5	Depth (feet)	10-12	Lab Number	202112017		
Des	cription	Formula	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6	
	Container Number		167	105	182				
Weight of	Empty Container (g) W ₁		13.668	13.79	13.40				
Weight of Cor	ntainer + Wet Soil (g) W ₂		21.991	21.68	23.63				
Weight of Co	ntainer + Dry Soil(g) W ₃		20.69	20.42	22.02				
	Weight of Water (g) W _w	$W_w = W_2 - W_3$	1.30	1.26	1.61				
Weight of Dry Soil (g) W _s W _s = W ₃ -W		W _s = W ₃ -W ₁	7.02	6.64	8.62				
Plastic Limit (%) $w = (W_w / W_s)^* 100$		w = (W _w / W _s) * 100	18.53	19.04	18.63				
Aver	age Plastic Limit (%) w _P				18	.73			

Result Summary							
Liquid Limit (%)	28						
Plastic Limit (%)	19						
Plasticity Index (%)	9						
Sample status	Plastic						

	1	1				A =/	2014			
	•	AECON	I CAN	ADA L	TD.	AEC	.OM			
DETERMINATION OF LIQUID LIMIT										
Client	AECOM	Project Number	60646784		Date	December 20	, 2021			
Project Name	Snow Storage Project S	Site 1			Tested By					
Location	Peel Region, Ontario				Reviewed By	Ramana M				
Borehole Number	BH 1-2MW	Sample Id	SS4	Depth (feet)	7.5	Lab Number	202112018			
Des	scription	Formula	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6		
	Container Number		60	136	176	129				
Weight of	Empty Container (g) W ₁		13.37	13.71	13.60	13.59				
Weight of Co	ntainer + Wet Soil (g) W ₂		21.84	23.23	22.82	21.73				
Weight of Co	ntainer + Dry Soil(g) W ₃		19.92	21.51	20.81	20.11				
	Weight of Water (g) W _w	$W_w = W_2 - W_3$	1.92	1.72	2.01	1.62				
V	Veight of Dry Soil (g) W _s	W _s = W ₃ -W ₁	6.55	7.80	7.21	6.52				
Water Content (%) w = (W _w / W _s) * 100		29.29	22.11	27.93	24.89					
Number of Blows			20	38	22	30				
Liqu	id Limit (%) From Graph				26	.7				

	1	ı	1	1	1					
	·	AECO	M CAN	ADA L	TD.	AEC	:OM-			
	DETERMINATION OF PLASTIC LIMIT									
Client	AECOM	Project Number	60646784		Date	December 20,	2021			
Project Name	Snow Storage Project	Site 1			Tested By	0				
Location	Peel Region, Ontario				Reviewed By	Ramana M				
Borehole Number	BH 1-2MW	Sample Id	SS4	Depth (feet)	7.5	Lab Number	202112018			
Des	cription	Formula	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6		
	Container Number		82	74	54					
Weight of	Empty Container (g) W ₁		13.536	14.15	13.65					
Weight of Co	ntainer + Wet Soil (g) W ₂		20.518	21.67	22.37					
Weight of Co	ntainer + Dry Soil(g) W ₃		19.43	20.51	21.03					
	Weight of Water (g) W _w	$W_w = W_2 - W_3$	1.09	1.16	1.34					
Weight of Dry Soil (g) W _s W _s = W ₃ -W ₁		W _s = W ₃ -W ₁	5.89	6.36	7.38					
	Plastic Limit (%) w = (W _w / W _s) * 100			18.22	18.18					
Ave	rage Plastic Limit (%) w _P				18	.29				

Result Summary							
Liquid Limit (%)	27						
Plastic Limit (%)	18						
Plasticity Index (%)	9						
Sample status	Plastic						

MOISTURE CONTENT DETERMINATION

	AECOM		DATE	December 17, 2021						
		PROJEC	T NUMBER	60646784		TESTED BY	SAM			
					REVIEWED BY	Ramana M				
			LOCATION	Peel Region Sno	-			Formula		
Borehole Name	Sample Id	Depth (feet)	Can Id	Weight of Empty Can (g) W ₁	Observations Weight of Wet Soil + Can (g) W ₂	Weight of Dry Soil + Can (g) W ₃	Weight of Water (g) W _w = (W ₂ -W ₃)	Weight of Dry soil (g) W _s = (W ₃ -W ₁)	Moisture Content (%) w = (W _w /W _s)*100	
	SS1	0-2	86	13.47	97.32	81.09	16.23	67.62	24.00	
	SS2	2.5-4.5	63	13.50	84.04	73.99	10.05	60.49	16.61	
BH 3-1	SS3	5-7	164	13.60	75.35	66.14	9.21	52.54	17.53	
	SS4	7.5-9.5	166	13.50	76.23	68.57	7.66	55.07	13.91	
	SS5	10-12	73	13.66	91.09	83.52	7.57	69.86	10.84	
	SS1	0-2	161	13.46	77.06	64.80	12.26	51.34	23.88	
	SS2	2.5-4.5	138	13.60	82.54	70.55	11.99	56.95	21.05	
	SS3A	5-7	130	13.50	102.91	86.32	16.59	72.82	22.78	
BH 3-4	SS3B	5-7	87	13.77	79.02	68.56	10.46	54.79	19.09	
	SS4	7.5-9.5	84	13.53	85.24	78.33	6.91	64.80	10.66	
	SS5	10-12	158	13.92	95.21	86.06	9.15	72.14	12.68	
	SS6	15-17	55	13.35	105.35	92.28	13.07	78.93	16.56	
	SS1	0-2	126	13.87	80.77	61.57	19.20	47.70	40.25	
	SS2	2.5-4.5	52	13.97	74.19	65.01	9.18	51.04	17.99	
BH 3-5	SS3	5-7	169	13.54	86.29	71.73	14.56	58.19	25.02	
	SS4	7.5-9.5	149	13.55	117.89	95.78	22.11	82.23	26.89	
	SS5	10-12	184	13.63	106.61	88.25	18.36	74.62	24.60	
	SS1	0-2	72	13.86	82.32	67.41	14.91	53.55	27.84	
	SS2	2.5-4.5	165	13.94	86.93	76.43	10.50	62.49	16.80	
BH 3-6	SS3	5-7	168	13.62	85.92	61.22	24.70	47.60	51.89	
D110-0	SS4	7.5-9.5	162	13.50	97.87	86.15	11.72	72.65	16.13	
	SS5A	10-12	113	13.64	84.39	76.17	8.22	62.53	13.15	
	SS5B	10-12	102	13.50	44.21	42.44	1.77	28.94	6.12	
			J					Total Samples	23	

Client	AECOM	AECOM Borehole No		Lab No	202112014
Project Number	60646784	Sample ID	SS4	Date	Dec,18-2021
Project Name		Snow Storage Project Site 3	Depth (Feet)	7.5-9.5	
Location		Peel Region, Ontario	Tested by	Sam	
Soil Classification		Sandy Silt, trace gravel (ML)		Reviewed by	Ramana M

Total Sample Mass (A) g	891.1	% Coarse Aggregate (D)	2.8	% Fine Aggregate (E)	97.2
					,

		COARSE A	GGREGATE		
Sieve (mm)	Individual Mass Retained (g)	Cumultive Mass Retained (g) [V]	Coarse Aggega	ate Portion Only	9/ Bessing /Total Sample
Sieve (IIIIII)	individual wass Retained (g)	Cumultive Mass Retained (g) [X]	% Retained	% Passing	% Passing (Total Sample
106				100.0	100.0
75.0				100.0	100.0
63.0				100.0	100.0
53.0				100.0	100.0
37.5				100.0	100.0
26.5				100.0	100.0
22.4				100.0	100.0
19.0				100.0	100.0
16.0	8.1	8.1	32.1	67.9	99.1
13.2	4.1	12.2	48.5	51.5	98.6
9.5	3.9	16.1	64.0	36.0	98.2
6.7	7.9	24.0	95.7	4.3	97.3
4.75	1.1	25.1	100.0		97.2
Pan		Pan + [B]	Mass Passing 4.75 mm (g) [C = A-B]		866

		Mass passing 75 µm sieve by washing (g)	305.73						
		Mass passing 75 µm sieve by sieving (g)							
Simu(max)									

Sieve (mm)	Cumultive Mass Retained (g) [Y]	Fine Aggregat	e Portion Only	% Passing (Total Sample
Oleve (IIIII)	Culliditive Mass Retained (g) [1]	% Retained	% Passing	% Fassing (Total Sample
4.75	0.28	0.1	99.9	97.12
2.36	7.45	1.8	98.2	95.42
1.18	15.23	3.7	96.3	93.58
0.600	23.18	5.6	94.4	91.70
0.425	28.73	7.0	93.0	90.38
0.300	35.4	8.6	91.4	88.80
0.150	59.58	14.5	85.5	83.08
0.075	93.92	22.9	77.1	74.94
Pan	10.68	Total Mass passing 75 µm sieve (a)	316.41	

Calculations:

E= (C/A) * 100

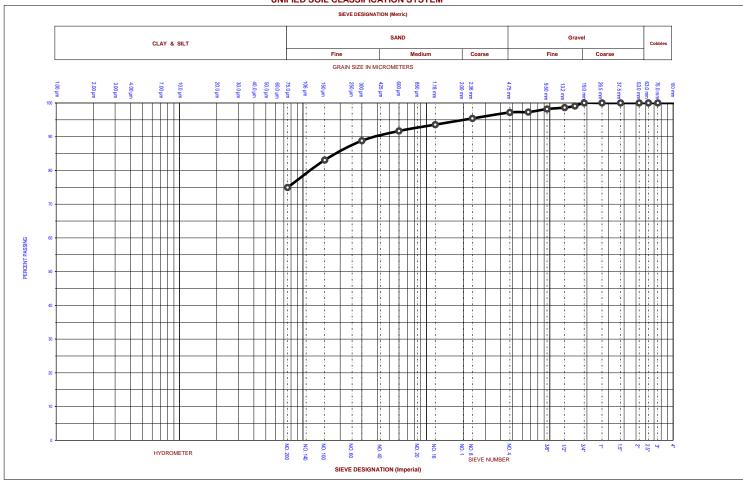
Coarse Aggregate Portion: % Retained =(X/B) * 100 % Passing = ((B-X) /B) * 100

Fine Aggregate Portion: % Retained =(Y/F) * 100 % Passing = ((F-Y) /F) * 100

Total Mass Calculations

% Retained on Coarse Aggregate Sieves = (X/A) * 100

% Retained on Fine Aggregate Sieves = (Y/F) * E + % Ret. 4.75


Sieves = (Y/F) * E + % Ret. 4.7

% Passing Coarse Aggregate Sieves = ((A -X)/A)) * 100

% Passing on Fine Aggregate Sieves = ((F - Y)/F) * E

AECON	ECOM CANADA LTD.		Client		AECOM		Date	Dec,18	3-2021	Project Number		60646784			
83 Galaxy Blvd, Unit 6 Toronto, Ontario			Borehole No /	Sample Id	BH 3-6	SS4		Depth (feet)	7.5	-9.5	Lab No		202112014		
			Project Name		Snow Storage Project Site 3					Project Location Peel Region, Ontario			io		
			Soil Classifica	tion	Sandy Silt, trace gravel (ML)				Figure No:						
Gravel(%)	3	Sand(%)	22	Fines(%)	75	D ₆₀ (mm)	N/A	D ₃₀ (mm)	N/A	D ₁₀ (mm)	N/A	C _U	N/A	C _c	N/A

Client	AECOM	Borehole No	BH 3-5	Lab No	202112013
Project Number	60646784	Sample ID	SS3	Date	Dec,18-2021
Project Name		Snow Storage Project Site 3	Depth (Feet)	5-7	
Location		Peel Region, Ontario	Tested by	Sam	
Soil Classification		Sandy Silt, trace gravel (ML)	Reviewed by	Ramana M	

Total Sample Mass (A) g	766.7	% Coarse Aggregate (D)	6.8	% Fine Aggregate (E)	93.2
-------------------------	-------	------------------------	-----	-----------------------	------

		COARSE A	GGREGATE		
Sieve (mm)	Individual Mass Retained (g)	Cumultive Mass Retained (g) [X]	Coarse Aggega	te Portion Only	% Passing (Total Sample
Sieve (IIIII)	individual wass Retained (g)	Cumultive mass Retained (g) [X]	% Retained	% Passing	% Fassing (Total Sample
106				100.0	100.0
75.0				100.0	100.0
63.0				100.0	100.0
53.0				100.0	100.0
37.5				100.0	100.0
26.5	37.3	37.3	71.3	28.7	95.1
22.4		37.3	71.3	28.7	95.1
19.0		37.3	71.3	28.7	95.1
16.0	7.2	44.5	85.1	14.9	94.2
13.2		44.5	85.1	14.9	94.2
9.5	1.6	46.1	88.2	11.8	94.0
6.7	2.8	48.9	93.6	6.4	93.6
4.75	3.3	52.3	100.0		93.2
Pan	0.3	Pan + [B]	Mass Passing 4.75 mm (g) [C = A-B]		714.42

	FINE AGGREGATE										
		Mass passing 75 μm sieve by washing 162.32									
Sample Mass after washing (g) 179.92		Mass passing 75 µm sieve by sieving (g)									
Sieve (mm)	% Passing (Total Sample										

Sieve (mm)	Cumultive Mass Retained (g) [Y]	Fine Aggregat	e Portion Only	% Passing (Total Sample
Oleve (IIIII)	Cultuitive Mass Retained (g) [1]	% Retained	% Passing	76 F assing (Total Sample
4.75			100.0	93.18
2.36	1.12	0.3	99.7	92.88
1.18	2.16	0.6	99.4	92.59
0.600	3.27	1.0	99.0	92.29
0.425	3.74	1.1	98.9	92.16
0.300	4.14	1.2	98.8	92.05
0.150	15.96	4.7	95.3	88.84
0.075	77.98	22.8	77.2	71.95
Pan	101.94	Total Mass passing 75 µm sieve (a)	264.26	

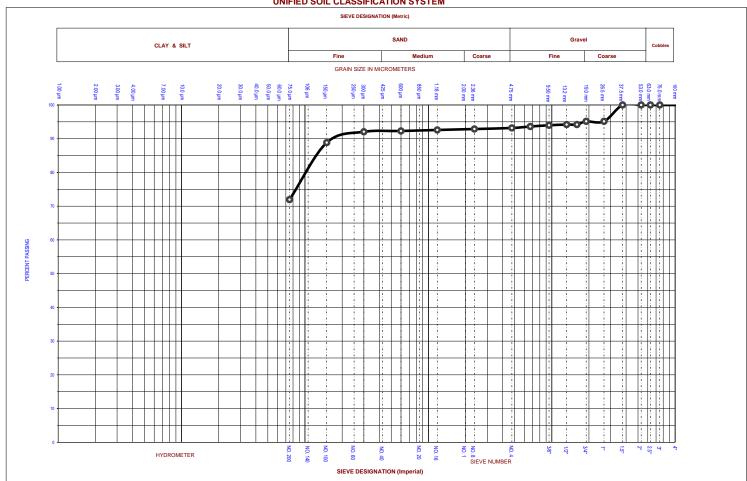
Calculations:

Coarse Aggregate Portion: % Retained =(X/B) * 100 % Passing = ((B-X) /B) * 100

Fine Aggregate Portion: % Retained =(Y/F) * 100 % Passing = ((F-Y) /F) * 100

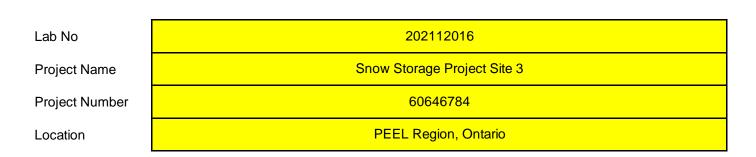
Total Mass Calculations

% Retained on Coarse Aggregate Sieves = (X/A) * 100


% Retained on Fine Aggregate Sieves = (Y/F) * E + % Ret. 4.75

% Passing Coarse Aggregate Sieves = ((A -X)/A)) * 100

% Passing on Fine Aggregate Sieves = ((F - Y)/F) * E


UNIFIED SOIL CLASSIFICATION SYSTEM

AECON	ECOM CANADA LTD.		Client		AECOM		Date	Dec,18-2021		Project Number		60646784			
83 Galaxy Blvd, Unit 6 Toronto, Ontario		Borehole No /	Sample Id	BH 3-5	SS3		Depth (feet)	5-	-7	Lab No		202112013			
	,		Project Name		Snow Storage Project Site 3					Project Location Peel Region, Ontario			io		
			Soil Classifica	tion	Sandy Silt, trace gravel (ML)				Figure No:						
Gravel(%)	7	Sand(%)	21	Fines(%)	72	D ₆₀ (mm)	N/A	D ₃₀ (mm)	N/A	D ₁₀ (mm)	N/A	C _U	N/A	C _c	N/A

Hydrometer Analysis

Borehole No	BH 3-4	
Sample Id	SS2	
Depth (feet)	2.5-4.5	
Soil Classification	Sandy Lean Clay	, tra

61.1

Tested by	Dharmik P
Reviewed by	Ramana M
Date	19-Dec-21
ce gravel (CL)	

Soil Hydrometer Used							
454 11 001//	993585	0					
151 H SN#	115105	•					

Soil Information

	ı		
Liquid Limit	(LL)		
Plasticity Index	(PI)		
Specific Gravity of Soil	(Gs)	2.70	
Specific Gravity of Water	(Gw)	1	
Sg Correction Factor	(a)	0.989	
Total Mass of sample		387.7	g
Soil Particles Greater Than This Are Excluded From Graph		9.50	m
	•		

Hydrometer Details (V_B)

Length of Bulb	(L ₂)	14.44	cm
Length from '1.0' reading to top of Bulb	(Ls)	10.17	cm
Scale Dimension	(hs)	0.27	cm/D
Cross-sectional Area of Cylinder	(A)	28.3535	cm ²
Meniscus Correction	(Hm)	0.0005	Divisi

Calculation o	Calculation of Dry Soil Mass											
Oven Dried Mass	(Wo)	20.62	g									
Air Dried Mass	(Wa)	20.74	g									
Hygroscopic Corr Factor	(F)	0.994										
Air Dried Mass in Analysis	(Ma)	50	g									
Oven Dried Mass in Analysis	(Mo)	49.7	g									
% Passing 2.0 mm Sieve	(P10)	96.5										
Sample Represented	(W)	51.5	g									

Sieve Analysis of Retained on 2.0 mm Sieve (M2)

Sieve Size (mm)	Cummulative Mass Retained (g)	Mass Passing (g)	% Passing
75.0			
63.0			
53.0			
37.5			
26.5			
19.0			
13.2			
9.5			
4.75	1.1	386.6	99.7
2.0	13.6	374.1	96.5

Sieve Analysis of Hydrometer Material (M7)

Volume of Bulb

	Sieve Allalysis of Hyur	Jilietei Wateriai (IVI /)
Sieve Size (mm)	Comulative Mass Retained (g)	Mass Passing (g)	% Passing
2.00	0.0	49.7	96.5
0.850	1.0	48.7	94.6
0.425	2.0	47.8	92.7
0.25	3.0	46.7	90.7
0.106	9.9	39.9	77.4
0.075	15.1	34.6	67.2
Pass 0.075	3.4		

Percent In Suspension (P) as per Section 14.3 of ASTM D 422

P = [(100000/W) * (Gs/(Gs - Gw))] * (R - Gw) in percent (for Soil Hydrometer 151 H)

Where R = Corrected Hydrometer Reading = Hs - Hc

Hs = Actual Hydrometer Reading

Hc= Composite Correction to be determined as per Section 7 of ASTM D 422

Diameter of Soil Particles (D) as per Section 15 of ASTM D 422

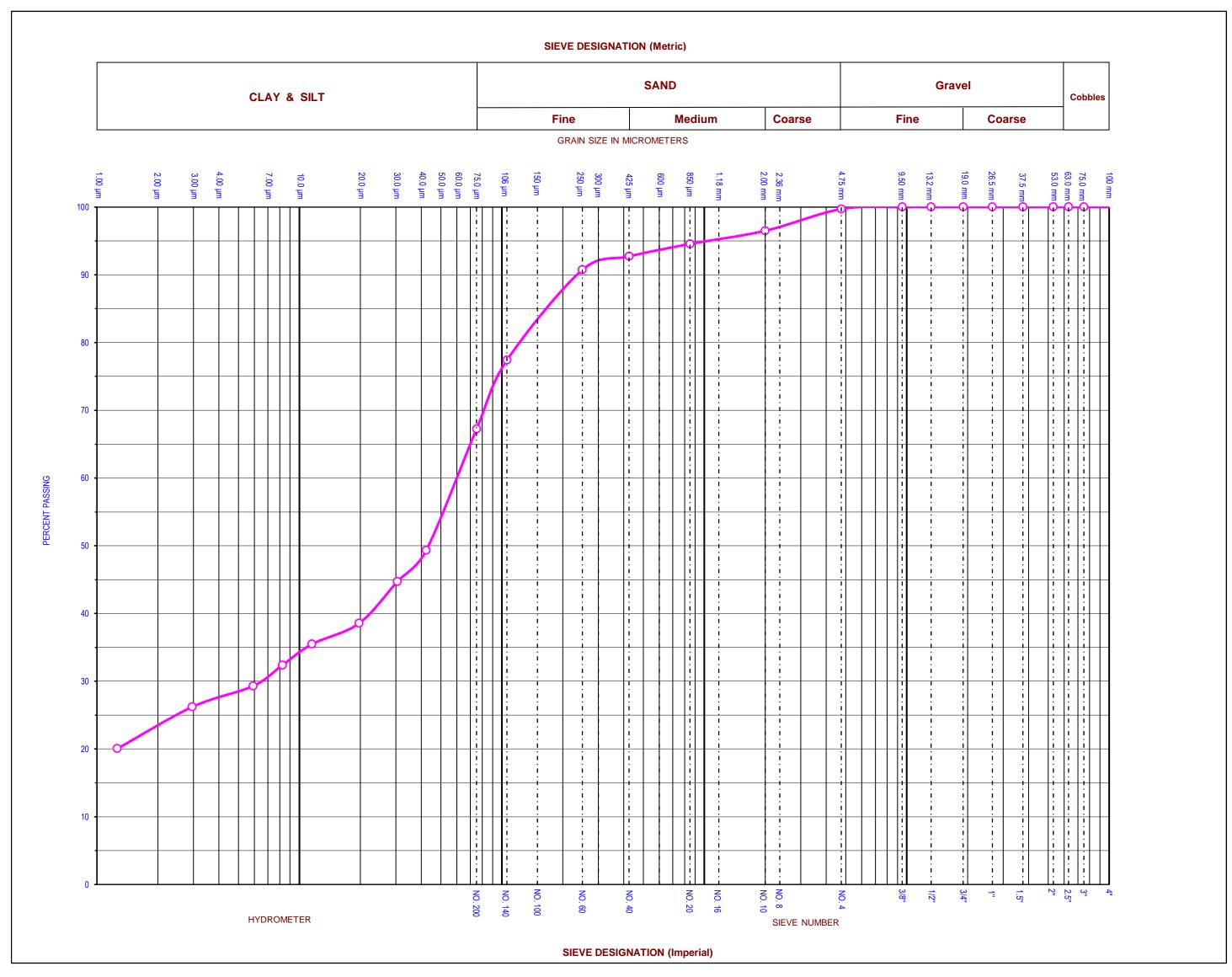
 $D = SQRT \text{ of } \{[(30*\eta)/(980*(Gs-Gw)] * (L/T)\} \text{ in mm}$

Where η = Viscosity of suspending Medium (Water) in poises

L = Effective Depth = L1+ $0.5*[L_2 - V_B/A)$] in cm

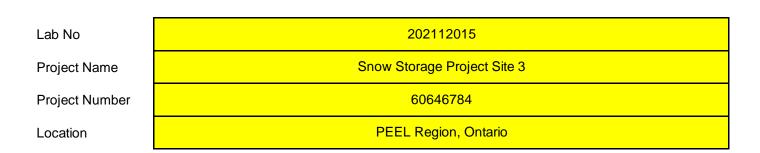
L1 = distance from the top of the bulb to Recorded Hydrometer Reading in cm

	Elaspsed Time									
Time	(minutes)	Hs in Divisions	Hc in Divisions	Temp Tc in C	R=Hs-Hc	P in %	L in cm	η in Poise	K	D in mm
9:56:00 AM	1.0	1.0190	0.0030	25.7	1.0160	49.3	11.27	8.83341	0.01261248	0.0423
9:57:00 AM	2.0	1.0175	0.0030	25.7	1.0145	44.7	11.68	8.83341	0.01261248	0.0305
10:00:00 AM	5.0	1.0155	0.0030	25.7	1.0125	38.5	12.22	8.83341	0.01261248	0.0197
10:10:00 AM	15.0	1.0145	0.0030	25.6	1.0115	35.5	12.49	8.85306	0.0126265	0.0115
10:25:00 AM	30.0	1.0135	0.0030	25.5	1.0105	32.4	12.76	8.87278	0.01264055	0.0082
10:55:00 AM	60.0	1.0125	0.0030	25.2	1.0095	29.3	13.03	8.93243	0.01268297	0.0059
2:05:00 PM	250.0	1.0115	0.0030	24.2	1.0085	26.2	13.30	9.13649	0.01282703	0.0030
9:55:00 AM	1440.0	1.0095	0.0030	24.0	1.0065	20.0	13.84	9.17830	0.01285634	0.0013
	9:56:00 AM 9:57:00 AM 10:00:00 AM 10:10:00 AM 10:25:00 AM 2:05:00 PM	Time Time (minutes) 9:56:00 AM 1.0 9:57:00 AM 2.0 10:00:00 AM 5.0 10:10:00 AM 15.0 10:25:00 AM 30.0 10:55:00 AM 60.0 2:05:00 PM 250.0	Time Time (minutes) Hs in Divisions 9:56:00 AM 1.0 1.0190 9:57:00 AM 2.0 1.0175 10:00:00 AM 5.0 1.0155 10:10:00 AM 15.0 1.0145 10:25:00 AM 30.0 1.0135 10:55:00 AM 60.0 1.0125 2:05:00 PM 250.0 1.0115	Time (minutes) Hs in Divisions Hc in Divisions 9:56:00 AM 1.0 1.0190 0.0030 9:57:00 AM 2.0 1.0175 0.0030 10:00:00 AM 5.0 1.0155 0.0030 10:10:00 AM 15.0 1.0145 0.0030 10:25:00 AM 30.0 1.0135 0.0030 10:55:00 AM 60.0 1.0125 0.0030 2:05:00 PM 250.0 1.0115 0.0030	Time (minutes) Hs in Divisions Hc in Divisions Temp Tc in C 9:56:00 AM 1.0 1.0190 0.0030 25.7 9:57:00 AM 2.0 1.0175 0.0030 25.7 10:00:00 AM 5.0 1.0155 0.0030 25.7 10:10:00 AM 15.0 1.0145 0.0030 25.6 10:25:00 AM 30.0 1.0135 0.0030 25.5 10:55:00 AM 60.0 1.0125 0.0030 25.2 2:05:00 PM 250.0 1.0115 0.0030 24.2	Time (minutes) Hs in Divisions Hc in Divisions Temp Tc in C R=Hs-Hc 9:56:00 AM 1.0 1.0190 0.0030 25.7 1.0160 9:57:00 AM 2.0 1.0175 0.0030 25.7 1.0145 10:00:00 AM 5.0 1.0155 0.0030 25.7 1.0125 10:10:00 AM 15.0 1.0145 0.0030 25.6 1.0115 10:25:00 AM 30.0 1.0135 0.0030 25.5 1.0105 10:55:00 AM 60.0 1.0125 0.0030 25.2 1.0095 2:05:00 PM 250.0 1.0115 0.0030 24.2 1.0085	Time (minutes) Hs in Divisions Hc in Divisions Temp Tc in C R=Hs-Hc P in % 9:56:00 AM 1.0 1.0190 0.0030 25.7 1.0160 49.3 9:57:00 AM 2.0 1.0175 0.0030 25.7 1.0145 44.7 10:00:00 AM 5.0 1.0155 0.0030 25.7 1.0125 38.5 10:10:00 AM 15.0 1.0145 0.0030 25.6 1.0115 35.5 10:25:00 AM 30.0 1.0135 0.0030 25.5 1.0105 32.4 10:55:00 AM 60.0 1.0125 0.0030 25.2 1.0095 29.3 2:05:00 PM 250.0 1.0115 0.0030 24.2 1.0085 26.2	Time (minutes) Hs in Divisions Hc in Divisions Temp Tc in C R=Hs-Hc P in % L in cm 9:56:00 AM 1.0 1.0190 0.0030 25.7 1.0160 49.3 11.27 9:57:00 AM 2.0 1.0175 0.0030 25.7 1.0145 44.7 11.68 10:00:00 AM 5.0 1.0155 0.0030 25.7 1.0125 38.5 12.22 10:10:00 AM 15.0 1.0145 0.0030 25.6 1.0115 35.5 12.49 10:25:00 AM 30.0 1.0135 0.0030 25.5 1.0105 32.4 12.76 10:55:00 AM 60.0 1.0125 0.0030 25.2 1.0095 29.3 13.03 2:05:00 PM 250.0 1.0115 0.0030 24.2 1.0085 26.2 13.30	Time (minutes) Hs in Divisions Hc in Divisions Temp Tc in C R=Hs-Hc P in % L in cm η in Poise 9:56:00 AM 1.0 1.0190 0.0030 25.7 1.0160 49.3 11.27 8.83341 9:57:00 AM 2.0 1.0175 0.0030 25.7 1.0145 44.7 11.68 8.83341 10:00:00 AM 5.0 1.0155 0.0030 25.7 1.0125 38.5 12.22 8.83341 10:10:00 AM 15.0 1.0145 0.0030 25.6 1.0115 35.5 12.49 8.85306 10:25:00 AM 30.0 1.0135 0.0030 25.5 1.0105 32.4 12.76 8.87278 10:55:00 AM 60.0 1.0125 0.0030 25.2 1.0095 29.3 13.03 8.93243 2:05:00 PM 250.0 1.0115 0.0030 24.2 1.0085 26.2 13.30 9.13649	Time (minutes) Hs in Divisions Hc in Divisions Temp Tc in C R=Hs-Hc P in % L in cm η in Poise K 9:56:00 AM 1.0 1.0190 0.0030 25.7 1.0160 49.3 11.27 8.83341 0.01261248 9:57:00 AM 2.0 1.0175 0.0030 25.7 1.0145 44.7 11.68 8.83341 0.01261248 10:00:00 AM 5.0 1.0155 0.0030 25.7 1.0125 38.5 12.22 8.83341 0.01261248 10:10:00 AM 15.0 1.0145 0.0030 25.6 1.0115 35.5 12.49 8.85306 0.0126265 10:25:00 AM 30.0 1.0135 0.0030 25.5 1.0105 32.4 12.76 8.87278 0.01264055 10:55:00 AM 60.0 1.0125 0.0030 25.2 1.0095 29.3 13.03 8.93243 0.01268297 2:05:00 PM 250.0 1.0115 0.0030 24.2 1.0085 26.2 13.30 <t< td=""></t<>


	Viscosiity	К
L1 cm	С	(η/(Gs-1)
5.13	-0.514053	5.19612409
5.53	-0.514053	5.19612409
6.07	-0.514053	5.19612409
6.35	-0.511832	5.2076811
6.61	-0.509606	5.21928394
6.89	-0.502906	5.25436996
7.15	-0.480318	5.37440725
7.69	-0.475753	5.39899976

Mass Retained on Seive # 10	130.62
Mass Passed Seive # 10	257.05
Jar Number	

ata	Can Id	77
opic D	Empty Can Weight (g)	13.51
Hygroscopic Data	Can+ Air Dried Soil (g)	34.25
ЙH	Can + Oven Dried Soil (g)	34.13


UNIFIED SOIL CLASSIFICATION SYSTEM

	Client	AECOM Date December 19		19, 2021	9, 2021 Project Number		60646784				Gravel (%)	0
	Sample ID	BH 3-4	SS2	Depth (feet)	2.5-4.5	Project Nan	Project Name Snow Storage Project Site 3		3	Sand (%)	33	
AECOM CANADA LTD. 83 Galaxy Blvd, Unit 6 Toronto, Ontario	Lab Sample No:		Project Loc	Location PEEL Region, Ontario				Silt (%)	44			
'	Soil Classification		Sandy Lean Clay, trace gravel (CL)								Clay (%)	23
	Figure No.									Сс	N/A	

Hydrometer Analysis

_	1190101110101110119010
Borehole No	BH 3-1
Sample Id	SS5
Depth (feet)	10-12
Soil Classification	Silty Clay, trace sand,

Tested by	Dharmik P	7
Reviewed by	Ramana M	
Date	19-Dec-21	
e gravel (CL-ML)	

Soil Hydrometer Used					
151 LI CN#	993585	•			
151 H SN#	115105	0			

Soil Information

Liquid Limit	(LL)	
Plasticity Index	(PI)	
Specific Gravity of Soil	(Gs)	2.70
Specific Gravity of Water	(Gw)	1
Sg Correction Factor	(a)	0.989
Total Mass of sample		524.4
Soil Particles Greater Than This Are Excluded From Graph		9.50
	•	

(V _B)	63.1
(L ₂)	14.15
(Ls)	10.5
	(L ₂)

Hydrometer Details

Scale Dimension	(hs)	0.27	cm/Div
Cross-sectional Area of Cylinder	(A)	28.1351	cm ²
Meniscus Correction	(Hm)	0.0005	Divisions

Calculation o	f Dry Soil Ma	ss	
Oven Dried Mass	(Wo)	32.25	g
Air Dried Mass	(Wa)	26.39	g
Hygroscopic Corr Factor	(F)	1.222	
Air Dried Mass in Analysis	(Ma)	50	g
Oven Dried Mass in Analysis	(Mo)	61.1	g
% Passing 2.0 mm Sieve	(P10)	92.4	
Sample Represented	(W)	66.1	g

Sieve Analysis of Retained on 2.0 mm Sieve (M2)

Sieve Size (mm)	Cummulative Mass Retained (g)	Mass Passing (g)	% Passing
75.0			
63.0			
53.0			
37.5			
26.5			
19.0			
13.2			
9.5			
4.75	14.1	510.3	97.3
2.0	40.0	484.4	92.4

Sieve Analysis of Hydrometer Material (M7)

			,
Sieve Size (mm)	Comulative Mass Retained (g)	Mass Passing (g)	% Passing
2.00	0.0	61.1	92.3
0.850	0.9	60.2	91.1
0.425	1.4	59.7	90.3
0.25	1.8	59.3	89.7
0.106	2.8	58.3	88.1
0.075	3.6	57.5	86.9
Pass 0.075	0.3		

Percent In Suspension (P) as per Section 14.3 of ASTM D 422

P = [(100000/W) * (Gs/(Gs -Gw))] * (R - Gw) in percent (for Soil Hydrometer 151 H)

Where R = Corrected Hydrometer Reading = Hs - Hc

Hs = Actual Hydrometer Reading

Hc= Composite Correction to be determined as per Section 7 of ASTM D 422

Diameter of Soil Particles (D) as per Section 15 of ASTM D 422

 $D = SQRT \text{ of } \{[(30*\eta)/(980*(Gs-Gw)] * (L/T)\} \text{ in mm}$

Where η= Viscosity of suspending Medium (Water) in poises

L = Effective Depth = L1+ $0.5*[L_2 - V_B/A)$] in cm

L1 = distance from the top of the bulb to Recorded Hydrometer Reading in cm

Batta	-	Elaspsed Time	He to Birthian	Hada Bidalana	Tanan Talin O	B 11-11-	D in 0/				.
Date	Time	(minutes)	HS IN DIVISIONS	Hc in Divisions	Temp Tc in C	R=Hs-Hc	P in %	L in cm	η in Poise	K	D in mm
20-Dec-21	9:37:00 AM	1.0	1.0290	0.0030	26.4	1.0260	62.4	8.38	8.69803	0.01251545	0.0362
	9:38:00 AM	2.0	1.0270	0.0030	26.4	1.0240	57.6	8.92	8.69803	0.01251545	0.0264
	9:41:00 AM	5.0	1.0240	0.0030	26.4	1.0210	50.4	9.73	8.69803	0.01251545	0.0175
	9:51:00 AM	15.0	1.0215	0.0030	26.2	1.0185	44.4	10.41	8.73633	0.01254298	0.0104
	10:06:00 AM	30.0	1.0190	0.0030	26.0	1.0160	38.4	11.08	8.77493	0.01257066	0.0076
	10:36:00 AM	60.0	1.0165	0.0030	25.5	1.0135	32.4	11.76	8.87278	0.01264055	0.0056
	1:46:00 PM	250.0	1.0125	0.0030	24.3	1.0095	22.8	12.84	9.11572	0.01281243	0.0029
21-Dec-21	9:36:00 AM	1440.0	1.0095	0.0030	24.0	1.0065	15.6	13.65	9.17830	0.01285634	0.0013


Viscosiity	К
С	(η/(Gs-1)
-0.529498	5.11648748
-0.529498	5.11648748
-0.529498	5.11648748
-0.525104	5.1390178
-0.520695	5.1617255
	5.21928394
	5.36218532
	5.39899976
	c -0.529498 -0.529498 -0.529498

Mass Retained on Seive # 10	142.26
Mass Passed Seive # 10	382.12
Jar Number	

Data	Can Id	135
pic D	Empty Can Weight (g)	13.65
Hygroscopic	Can+ Air Dried Soil (g)	40.04
H	Can + Oven Dried Soil (g)	45.90

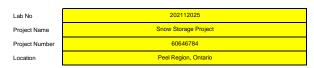
UNIFIED SOIL CLASSIFICATION SYSTEM

	Client	AECOM Date December 19		er 19, 2021	Project Number		60646784			Gravel (%)	3		
	Sample ID	BH 3-1	SS5	Depth (feet)	10-12	Project Nar	ne	Sı	now Storage	e Project Site	3	Sand (%)	10
AECOM CANADA LTD. 83 Galaxy Blvd, Unit 6	Lab Sample No:	202112015				Project Loc	ation		PEEL Regi	on, Ontario		Silt (%)	68
Toronto, Ontario Soil Classification Silty Clay, trace sand, trace gravel (CL-ML)							Clay (%)	19					
	Figure No.			D10	N/A	D30	0.005	D60	0.031	Cu	N/A	Сс	N/A

MOISTURE CONTENT DETERMINATION

CLIENT				AECOM				DATE	December 21, 2021	
PROJECT NUMBER				60646784 (SITE 5)			TESTED BY	SAM		
PROJECT NAME								REVIEWED BY	Ramana M	
LOCATION										
Borehole Name	Sample Id	Depth (feet)	Can Id	Weight of Empty Can (g) W ₁	Observations Weight of Wet Soil + Can (g) W ₂	Weight of Dry Soil + Can (g) W ₃	Weight of Water (g) W _w = (W ₂ -W ₃)	Formula Weight of Dry soil (g) W _s = (W ₃ -W ₁)	Moisture Content (%) w = (W _w /W _s)*100	
	SS1	0-2	86	13.44	69.38	58.37	11.01	44.93	24.50	
	SS2	2.5-4.5	67	13.50	69.90	62.70	7.20	49.20	14.63	
BH 5-1	SS3	5-7	164	13.56	66.74	59.73	7.01	46.17	15.18	
	SS4	7.5-9.5	166	13.47	89.45	79.48	9.97	66.01	15.10	
	SS5	10-12	73	13.66	73.73	67.57	6.16	53.91	11.43	
	SS1	0-2	158	13.86	65.16	53.54	11.62	39.68	29.28	
	SS2	2.5-4.5	161	13.46	85.01	69.63	15.38	56.17	27.38	
BH 5-2	SS3	5-7	138	13.58	81.89	69.83	12.06	56.25	21.44	
	SS4	7.5-9.5	84	13.49	74.66	67.28	7.38	53.79	13.72	
	SS5	10-12	130	13.50	85.46	77.51	7.95	64.01	12.42	
	SS1	0-2	126	13.84	87.25	74.53	12.72	60.69	20.96	
	SS2	2.5-4.5	52	13.95	79.30	67.71	11.59	53.76	21.56	
	SS3	5-7	55	13.32	80.94	70.84	10.10	57.52	17.56	
BH 5-3	SS4	7.5-9.5	169	13.67	82.12	72.57	9.55	58.90	16.21	
	SS5	10-12	87	13.75	80.75	72.27	8.48	58.52	14.49	
	SS5A	15-17	162	13.52	92.13	83.80	8.33	70.28	11.85	
	SS5B	15-17	102	13.50	80.24	71.05	9.19	57.55	15.97	
	SS1	0-2	193	13.45	84.68	70.23	14.45	56.78	25.45	
	SS2	2.5-4.5	152	13.32	78.27	69.24	9.03	55.92	16.15	
BH 5-4	SS3	5-7	101	13.51	77.98	69.04	8.94	55.53	16.10	
	SS4	7.5-9.5	145	13.94	76.03	67.69	8.34	53.75	15.52	
	SS5	10-12	185	13.51	72.62	64.35	8.27	50.84	16.27	
	SS1	0-2	58	13.55	78.83	64.29	14.54	50.74	28.66	
	SS2	2.5-4.5	171	13.67	76.15	66.41	9.74	52.74	18.47	
BH 5-5	SS3	5-7	69	13.65	86.59	77.33	9.26	63.68	14.54	
	SS4	7.5-9.5	91	13.62	77.96	69.46	8.50	55.84	15.22	
	SS5	10-12	61	13.47	78.75	69.65	9.10	56.18	16.20	

Total Samples


27

					DETERMINATION	ON OF UNIT WE	EIGHT - ASTM D	7263			
Project Number 60646784 Project Name Snow Storage Project			Date Tested		23-Dec-21		Tested by	Dhar	mik P		
		ge Proj	ect Site 5	Location		Peel Region, Ontario		Checked by	Ramana M		
						Water Conte	nt				
	Lab I	Number		2021	12021S	20211	2024S				
	Boreh	ole Name		BI	1 5-1	ВН	5-4				
Test Info	San	nple ID		SS4		S	S5				
		epth 		A	5-9.5 B	10.00		Δ	В	Δ.	В
		are ID		154	81	A 97	B 68	A	В	Α	В
		re Wt		13.61	13.74	13.51	13.44				
Mass in	Tare +	· Wet Soil		76.57	74.31	70.00	65.65				
Grams	Tare +	- Dry Soil		66.92	68.42	63.16	59.52				
	Wate	er	M _w	9.65	5.89	6.84	6.13				
	Dry S	Soil	M _d	53.31	54.68	49.65	46.08				
	Water Con	ntent %	w	18.10	10.77	13.77	13.31				
	Averag	je %		1.	4.43 W	13 Veight- Volume Ro	.54 elations				
	Temp of water	r(C)		16.5	16.5	16.6	16.6				
Density of W		· •		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
-	Wet S	Soil	M _t	120.41	96.46	109.54	97.38				
	Soil + \	Wax in Air		125.20	102.09	115.88	103.17				
Mass in Grams	Wax			4.79	5.64	6.34	5.78				
		Wax in water		66.01	52.61	60.86	53.06				
	Dry Soil ^A		M _d	101.96	87.08	96.28	85.95				
	cific Gravity of Soil (assumed)	Gs	2.72	2.72	2.72	2.72				
	Wet Soil + Wax ^B			59.19	49.48	55.02	50.11				
Volume in	Wax			5.27	6.21	6.99	6.37				
CC	Wet Soil		V	53.91	43.27	48.04	43.74				
	Dry Soil = M _d / G _s		Vs	37.55	32.07	35.46	31.66				
	Wet Unit Weight = (N	M _t /V)x9.81	Y _m	21.91	21.87	22.37	21.84				
KN/cum	Average Wet l				1.89		.11				
	Dry Unit Weight = (N		Y _d	18.55	19.74	19.66	19.28				
Void Der	Average Dry U	Jnit Weight			9.15		.47				
Void Ratio = Porosity % =	= (V-V _S)/V _S = [(V-V _S)/V]x100		e	30.34	0.35 25.88	0.35 26.18	0.38 27.62				
	= [(V-V _S)/V]X100 	l x100	n S	100.00	25.88 83.70	100.00	94.66				
pegiee 01 5	aturati∪ri = [v _W /(v-v _s)	1 1100	٥	100.00	03.70	100.00	34.00				

Hydrometer Analysis

	nydrometer Analysis			
Borehole No	BH-5-5	Tested by	Dharmik P	
Sample Id	SS1	Reviewed by	Ramana M	
Depth (feet)	0-2	Date	23-Dec-21	
Soil Classification	Lean Clay with Sand, trace gravel (CL)			

7	Soil Hydrometer Used							
	151 H SN#	993585	•					
		115105	0					

Soil Informati	tion		
Liquid Limit	(LL)		
Plasticity Index	(PI)		
Specific Gravity of Soil	(Gs)	2.70	
Specific Gravity of Water	(Gw)	1	
Sg Correction Factor	(a)	0.989	
Total Mass of sample		377.0	g
Soil Particles Greater Than This Are Excluded Fro	om Graph	9.50	mm

Hydrometer Details							
Volume of Bulb	(V _B)	63.1	cm ³				
Length of Bulb	(L ₂)	14.15	cm				
Length from '1.0' reading to top of Bulb	(Ls)	10.5	cm				
Scale Dimension	(hs)	0.27	cm/Div				
Cross-sectional Area of Cylinder	(A)	28.1351	cm ²				
Meniscus Correction	(Hm)	0.0005	Divisions				

Calculation of	f Dry Soil Ma	ss	
Oven Dried Mass	(Wo)	24.26	g
Air Dried Mass	(Wa)	24.36	g
Hygroscopic Corr Factor	(F)	0.996	
Air Dried Mass in Analysis	(Ma)	50	g
Oven Dried Mass in Analysis	(Mo)	49.8	g
% Passing 2.0 mm Sieve	(P10)	98.1	
Sample Represented	(W)	50.7	g

:	Sieve Analysis of Retained on 2.0 mm Sieve (M2)						
Sieve Size (mm)	Cummulative Mass Retained (g)	Mass Passing (g)	% Passing				
75.0							
63.0							
53.0							
37.5							
26.5							
19.0							
13.2							
9.5							
4.75	0.6	376.4	99.8				

	Sieve Analysis of Hydro	ometer Material	(M7)
Sieve Size (mm)	Comulative Mass Retained (g)	Mass Passing (g)	% Passing
2.00		49.8	98.1
0.850	0.9	48.9	96.3
0.425	1.9	47.9	94.5
0.25	3.5	46.3	91.3
0.106	6.6	43.2	85.1
0.075	7.6	42.2	83.2
Pass 0.075	0.2		

 $P = [\ (100000/W) * (Gs/(Gs - Gw))] * (R - Gw) \ in \ percent \ \ (for \ Soil \ Hydrometer \ 151 \ H)$

Where R = Corrected Hydrometer Reading = Hs - Hc

Hs = Actual Hydrometer Reading Hc= Composite Correction to be determined as per Section 7 of ASTM D 422

Diameter of Soil Particles (D) as per Section 15 of ASTM D 422

 $D = SQRT \text{ of } \{[(30*\eta)/(980*(Gs-Gw)]*(L/T)\} \text{ in mm}$

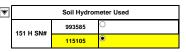
Where η = Viscosity of suspending Medium (Water) in poises L = Effective Depth = L1+ 0.5*[L₂ - V_B /A)] in cm L1 = distance from the top of the bulb to Recorded Hydrometer Reading in cm

Date	Time	Elaspsed Time (minutes)	Hs in Divisions	Hc in Divisions	Temp Tc in C	R=Hs-Hc	P in %	L in cm	η in Poise	к	D in mm
24-Dec-21	10:24:00 AM	1.0	1.0275	0.0030	25.9	1.0245	76.7	8.79	8.79435	0.01258456	0.0373
	10:25:00 AM	2.0	1.0265	0.0030	25.9	1.0235	73.6	9.06	8.79435	0.01258456	0.0268
	10:28:00 AM	5.0	1.0255	0.0030	25.8	1.0225	70.4	9.33	8.81384	0.0125985	0.0172
	10:38:00 AM	15.0	1.0230	0.0030	25.6	1.0200	62.6	10.00	8.85306	0.0126265	0.0103
	10:53:00 AM	30.0	1.0200	0.0030	25.4	1.0170	53.2	10.81	8.89259	0.01265465	0.0076
	11:23:00 AM	60.0	1.0180	0.0030	24.9	1.0150	47.0	11.35	8.99279	0.01272575	0.0055
	2:33:00 PM	250.0	1.0145	0.0030	24.5	1.0115	36.0	12.30	9.07441	0.01278337	0.0028
25-Dec-21	10:23:00 AM	1440.0	1.0110	0.0030	24.2	1.0080	25.0	13.24	9.13649	0.01282703	

	Viscosiity	к
L1 cm	С	(η/(Gs-1)
2.83	-0.518485	5.1731466
3.11	-0.518485	5.1731466
3.37	-0.516271	5.1846127
4.05	-0.511832	5.2076811
4.86	-0.507377	5.2309329
5.40	-0.496171	5.2898775
6.35	-0.487136	5.3378888
7.29	-0.480318	5.3744072

Mass Retained on Seive # 10	99.74
Mass Passed Seive # 10	277.29
Jar Number	

ata	Can Id	123
pic D	Empty Can Weight (g)	13.65
Hygroscopic Data	Can+ Air Dried Soil (g)	38.01
H	Can + Oven Dried Soil (g)	37.91


UNIFIED SOIL CLASSIFICATION SYSTEM

	Client	AECOM		Date December	23, 2021	Project Nu	mber		6064	6784		Gravel (%)	0
	Sample ID	BH-5-5	SS1	Depth (feet)	0-2	Project Na	me		Snow Stor	age Project		Sand (%)	17
AECOM CANADA LTD. 83 Galaxy Blvd, Unit 6 Toronto, Ontario	202112025 Project Location Peel Region, Ontario							Silt (%)	53				
Toronto, Ontano	Lea	n Clay with Sa	nd, trace gra	avel (CL)					Clay (%)	30			
	Figure No.			D10	N/A	D30	0.002	D60	0.010	Cu	N/A	Cc	N/A

Hydrometer Analysis Sample Id SS5 10-12 Depth (feet) Soil Classification Lean Clay with Sand, trace gravel (CL)

Liquid Limit Plasticity Index 2.70 Specific Gravity of Soil (Gs) Specific Gravity of Water (Gw) 0.989 Sg Correction Factor (a) 483.0 Total Mass of sample 9.50 Soil Particles Greater Than This Are Excluded From Graph

Lab No

Project Name

Project Number

202112023

60646784

Hydrometer Details										
Volume of Bulb	(V _B)	61.1	cm ³							
Length of Bulb	(L ₂)	14.44	cm							
Length from '1.0' reading to top of Bulb	(Ls)	10.17	cm							
Scale Dimension	(hs)	0.27	cm/Div							
Cross-sectional Area of Cylinder	(A)	28.3535	cm ²							
Meniscus Correction	(Hm)	0.0005	Divisions							

Calculation of	f Dry Soil Ma	iss	
Oven Dried Mass	(Wo)	24.67	ç
Air Dried Mass	(Wa)	24.74	ç
Hygroscopic Corr Factor	(F)	0.997	╝
Air Dried Mass in Analysis	(Ma)	50	_ ç
Oven Dried Mass in Analysis	(Mo)	49.9	ç
% Passing 2.0 mm Sieve	(P10)	96.1	
Sample Represented	(W)	51.9	ç

Reviewed by

Date

	Sieve Analysis of Re	tained on 2.0 mm Sieve (M2)	
Sieve Size (mm)	Cummulative Mass Retained (g)	Mass Passing (g)	% Passing
75.0			
63.0			
53.0			
37.5			
26.5			
19.0			
13.2			
9.5			
4.75	4.7	478.3	99.0
2.0	18.6	464.4	96.1

	Sieve Analysis of Hydro	ometer Material	(M7)
Sieve Size (mm)	Comulative Mass Retained (g)	Mass Passing (g)	% Passing
2.00		49.9	96.1
0.850	1.0	48.9	94.3
0.425	2.2	47.7	91.9
0.25	3.9	46.0	88.6
0.106	8.0	41.8	80.7
0.075	9.3	40.6	78.3
Pass 0.075	0.4		

	Percent In Suspension (P)	as per Section 14.3 of ASTM D 422
--	---------------------------	-----------------------------------

P = [(100000/W) * (Gs/(Gs - Gw))] * (R - Gw) in percent (for Soil Hydrometer 151 H)

Where R = Corrected Hydrometer Reading = Hs - Hc

Dharmik P

Ramana M

23-Dec-21

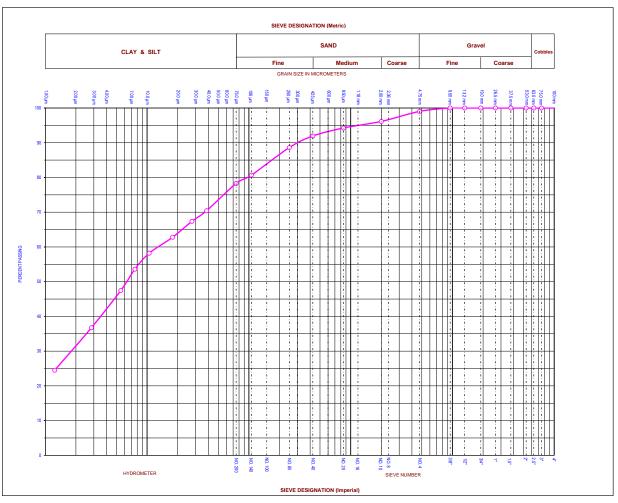
Hs = Actual Hydrometer Reading Hc= Composite Correction to be determined as per Section 7 of ASTM D 422

Diameter of Soil Particles (D) as per Section 15 of ASTM D 422

 $D = SQRT \text{ of } \{[(30*\eta)/(980*(Gs-Gw)]*(L/T)\} \text{ in mm}$

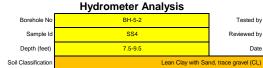
Where η = Viscosity of suspending Medium (Water) in poises L = Effective Depth = L1+ 0.5*[L₂ - V_B /A)] in cm L1 = distance from the top of the bulb to Recorded Hydrometer Reading in cm

Time	Elaspsed Time (minutes)	Hs in Divisions	Hc in Divisions	Temp Tc in C	R=Hs-Hc	P in %	Lincm	n in Poise	ĸ	D in mm
				·						
10:04:00 AM	1.0	1.0260	0.0030	26.1	1.0230	70.4	9.38	8.75559	0.0125568	0.0385
10:05:00 AM	2.0	1.0250	0.0030	26.1	1.0220	67.4	9.65	8.75559	0.0125568	0.0276
10:08:00 AM	5.0	1.0235	0.0030	26.1	1.0205	62.8	10.06	8.75559	0.0125568	0.0178
10:18:00 AM	15.0	1.0220	0.0030	26.1	1.0190	58.2	10.46	8.75559	0.0125568	0.0105
10:33:00 AM	30.0	1.0205	0.0030	25.7	1.0175	53.6	10.87	8.83341	0.01261248	0.0076
11:03:00 AM	60.0	1.0185	0.0030	25.3	1.0155	47.5	11.41	8.91247	0.01266879	0.0055
2:13:00 PM	250.0	1.0150	0.0030	24.5	1.0120	36.8	12.35	9.07441	0.01278337	0.0028
10:03:00 AM	1440.0	1.0110	0.0030	24.3	1.0080	24.5	13.43	9.11572	0.01281243	0.0012
	10:08:00 AM 10:18:00 AM 10:33:00 AM 11:03:00 AM 2:13:00 PM	Time (minutes) 10:04:00 AM 1.0 10:05:00 AM 2.0 10:08:00 AM 5.0 10:18:00 AM 15.0 10:33:00 AM 30.0 11:03:00 AM 60.0 2:13:00 PM 250.0	Time (minutes) Hs in Divisions 10:04:00 AM 1.0 1.0260 10:05:00 AM 2.0 1.0250 10:08:00 AM 5.0 1.0235 10:18:00 AM 15.0 1.0220 10:33:00 AM 30.0 1.0205 11:03:00 AM 60.0 1.0185 2:13:00 PM 250.0 1.0150	Time (minutes) Hs in Divisions Hc in Divisions 10:04:00 AM 1.0 1.0260 0.0030 10:05:00 AM 2.0 1.0250 0.0030 10:08:00 AM 5.0 1.0235 0.0030 10:18:00 AM 15.0 1.0220 0.0030 10:33:00 AM 30.0 1.0205 0.0030 11:03:00 AM 60.0 1.0185 0.0030 2:13:00 PM 250.0 1.0150 0.0030	Time (minutes) Hs in Divisions Hc in Divisions Temp Tc in C 10:04:00 AM 1.0 1.0260 0.0030 26.1 10:05:00 AM 2.0 1.0250 0.0030 26.1 10:08:00 AM 5.0 1.0235 0.0030 26.1 10:18:00 AM 15.0 1.0220 0.0030 26.1 10:33:00 AM 30.0 1.0205 0.0030 25.7 11:03:00 AM 60.0 1.0185 0.0030 25.3 2:13:00 PM 250.0 1.0150 0.0030 24.5	Time (minutes) Hs in Divisions Hc in Divisions Temp Tc in C R=Hs-Hc 10:04:00 AM 1.0 1.0260 0.0030 26.1 1.0230 10:05:00 AM 2.0 1.0250 0.0030 26.1 1.0220 10:08:00 AM 5.0 1.0235 0.0030 26.1 1.0205 10:18:00 AM 15.0 1.0220 0.0030 26.1 1.0190 10:33:00 AM 30.0 1.0205 0.0030 25.7 1.0175 11:03:00 AM 60.0 1.0185 0.0030 25.3 1.0155 2:13:00 PM 250.0 1.0150 0.0030 24.5 1.0120	Time (minutes) Hs in Divisions Hc in Divisions Temp Tc in C R=Hs-Hc P in % 10:04:00 AM 1.0 1.0260 0.0030 26.1 1.0230 70.4 10:05:00 AM 2.0 1.0250 0.0030 26.1 1.0220 67.4 10:08:00 AM 5.0 1.0235 0.0030 26.1 1.0205 62.8 10:18:00 AM 15.0 1.0220 0.0030 26.1 1.0190 58.2 10:33:00 AM 30.0 1.0205 0.0030 25.7 1.0175 53.6 11:03:00 AM 60.0 1.0185 0.0030 25.3 1.0155 47.5 2:13:00 PM 250.0 1.0150 0.0030 24.5 1.0120 36.8	Time (minutes) Hs in Divisions Hc in Divisions Temp Tc in C R=Hs-Hc P in % L in cm 10:04:00 AM 1.0 1.0260 0.0030 26.1 1.0230 70.4 9.38 10:05:00 AM 2.0 1.0250 0.0030 26.1 1.0220 67.4 9.65 10:08:00 AM 5.0 1.0235 0.0030 26.1 1.0205 62.8 10.06 10:18:00 AM 15.0 1.0220 0.0030 26.1 1.0190 58.2 10.46 10:33:00 AM 30.0 1.0205 0.0030 25.7 1.0175 53.6 10.87 11:03:00 AM 60.0 1.0185 0.0030 25.3 1.0155 47.5 11.41 2:13:00 PM 250.0 1.0150 0.0030 24.5 1.0120 36.8 12.35	Time (minutes) Hs in Divisions Hc in Divisions Temp Tc in C R=Hs-Hc P in % L in cm η in Poise 10:04:00 AM 1.0 1.0260 0.0030 26.1 1.0230 70.4 9.38 8.75559 10:05:00 AM 2.0 1.0250 0.0030 26.1 1.0220 67.4 9.65 8.75559 10:08:00 AM 5.0 1.0235 0.0030 26.1 1.0205 62.8 10.06 8.75559 10:18:00 AM 15.0 1.0220 0.0030 26.1 1.0190 58.2 10.46 8.75559 10:33:00 AM 30.0 1.0255 0.0030 25.7 1.0175 53.6 10.87 8.83341 11:03:00 AM 60.0 1.0185 0.0030 25.3 1.0155 47.5 11.41 8.91247 2:13:00 PM 250.0 1.0150 0.0030 24.5 1.0120 36.8 12.35 9.07441	Time (minutes) Hs in Divisions Hc in Divisions Temp Tc in C R=Hs-Hc P in % L in cm η in Poise K 10:04:00 AM 1.0 1.0260 0.0030 26.1 1.0230 70.4 9.38 8.75559 0.0125568 10:05:00 AM 2.0 1.0250 0.0030 26.1 1.0220 67.4 9.65 8.75559 0.0125568 10:08:00 AM 5.0 1.0235 0.0030 26.1 1.0205 62.8 10.06 8.75559 0.0125568 10:18:00 AM 15.0 1.0220 0.0030 26.1 1.0190 58.2 10.46 8.75559 0.0125568 10:33:00 AM 30.0 1.0255 0.0030 25.7 1.0175 53.6 10.87 8.83341 0.01261248 11:03:00 AM 60.0 1.0185 0.0030 25.3 1.0155 47.5 11.41 8.91247 0.01266879 2:13:00 PM 250.0 1.0150 0.0030 24.5 1.0120 36.8 12.35


	Viscosiity	к
L1 cm	С	(η/(Gs-1)
3.24	-0.522902	5.1503494
3.51	-0.522902	5.1503494
3.91	-0.522902	5.1503494
4.32	-0.522902	5.1503494
4.73	-0.514053	5.1961241
5.27	-0.505144	5.2426281
6.21	-0.487136	5.3378888
7.29	-0.482595	5.3621853

Mass Retained on Seive # 10	139.75
Mass Passed Seive # 10	343.26
Jar Number	

_			
	ata	Can Id	72
	pic D	Empty Can Weight (g)	13.74
	Hygroscopic Data	Can+ Air Dried Soil (g)	38.48
	Η̈́	Can + Oven Dried Soil (g)	38.41


UNIFIED SOIL CLASSIFICATION SYSTEM

	Client	AECOM		Date December	r 23, 2021	Project Nu	mber		6064	46784		Gravel (%)	1
	Sample ID	BH-5-3	SS 5	Depth (feet)	10-12	Project Na	me			0		Sand (%)	21
AECOM CANADA LTD. 83 Galaxy Blvd, Unit 6 Toronto, Ontario	Lab Sample No:		202112023 Project Location		0				Silt (%)	48			
	Soil Classification		Lean Clay with Sand, trace gravel (CL)								Clay (%)	30	
	Figure No.			D10	N/A	D30	0.002	D60	0.013	Cu	N/A	Сс	N/A

Soil Informa	ation		
Liquid Limit	(LL)		
Plasticity Index	(PI)		
Specific Gravity of Soil	(Gs)	2.70	
Specific Gravity of Water	(Gw)	1	
Sg Correction Factor	(a)	0.989	
Total Mass of sample		324.9	g
Soil Particles Greater Than This Are Excluded F	rom Graph	9.50	mm

Lab No

Project Name

Project Number

Hydrom	eter Details		
Volume of Bulb	(V _B)	63.1	cm ³
Length of Bulb	(L ₂)	14.15	cm
Length from '1.0' reading to top of Bulb	(Ls)	10.5	cm
Scale Dimension	(hs)	0.27	cm/Div
Cross-sectional Area of Cylinder	(A)	28.1351	cm ²
Meniscus Correction	(Hm)	0.0005	Divisions

Calculation of	f Dry Soil Ma	iss	_
Oven Dried Mass	(Wo)	19.18	ç
Air Dried Mass	(Wa)	19.25	9
Hygroscopic Corr Factor	(F)	0.996	
Air Dried Mass in Analysis	(Ma)	50	_ (
Oven Dried Mass in Analysis	(Mo)	49.8	_ (
% Passing 2.0 mm Sieve	(P10)	97.9	
Sample Represented	(W)	50.9	_ (

s	Sieve Analysis of Retained on 2.0 mm Sieve (M2)								
Sieve Size (mm)	Cummulative Mass Retained (g)	Mass Passing (g)	% Passing						
75.0									
63.0									
53.0									
37.5									
26.5									
19.0									
13.2									
9.5									
4.75	1.9	323.0	99.4						

	Sieve Analysis of Hydr	ometer Material (M7)
Sieve Size (mm)	Comulative Mass Retained (g)	Mass Passing (g)	% Passing
2.00		49.8	97.9
0.850	1.0	48.8	95.9
0.425	2.0	47.9	94.0
0.25	3.1	46.7	91.7
0.106	5.8	44.0	86.5
0.075	6.9	43.0	84.4
Pass 0.075	0.2		

Percent In Suspension (P) as per Section 14.3 of ASTM D 422

 $P = [\ (100000/W) * (Gs/(Gs - Gw))] * (R - Gw) \ in \ percent \ \ (for \ Soil \ Hydrometer \ 151 \ H)$

Where R = Corrected Hydrometer Reading = Hs - Hc

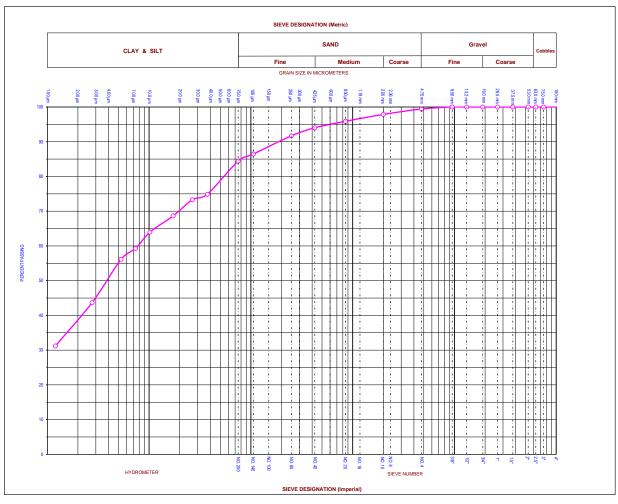
Hs = Actual Hydrometer Reading Hc= Composite Correction to be determined as per Section 7 of ASTM D 422

Diameter of Soil Particles (D) as per Section 15 of ASTM D 422

 $D = SQRT \text{ of } \{[(30*\eta)/(980*(Gs-Gw)]*(L/T)\} \text{ in mm}$

Where η = Viscosity of suspending Medium (Water) in poises L = Effective Depth = L1+ 0.5*[L₂ - V_B /A)] in cm L1 = distance from the top of the bulb to Recorded Hydrometer Reading in cm

Date	Time	Elaspsed Time (minutes)	Hs in Divisions	Hc in Divisions	Temp Tc in C	R=Hs-Hc	P in %	L in cm	η in Poise	К	D in mm
24-Dec-21	9:45:00 AM	1.0	1.0270	0.0030	26.4	1.0240	74.9	8.92	8.69803	0.01251545	0.0374
	9:46:00 AM	2.0	1.0265	0.0030	26.4	1.0235	73.3	9.06	8.69803	0.01251545	0.0266
	9:49:00 AM	5.0	1.0250	0.0030	26.3	1.0220	68.6	9.46	8.71714	0.0125292	0.0172
	9:59:00 AM	15.0	1.0235	0.0030	26.1	1.0205	64.0	9.87	8.75559	0.0125568	0.0102
	10:14:00 AM	30.0	1.0220	0.0030	26.0	1.0190	59.3	10.27	8.77493	0.01257066	0.0074
	10:44:00 AM	60.0	1.0210	0.0030	25.4	1.0180	56.2	10.54	8.89259	0.01265465	0.0053
	1:54:00 PM	250.0	1.0170	0.0030	24.5	1.0140	43.7	11.62	9.07441	0.01278337	0.0028
25-Dec-21	9:44:00 AM	1440.0	1.0130	0.0030	24.4	1.0100	31.2	12.70	9.09502	0.01279788	


	Viscosiity	к
L1 cm	С	(η/(Gs-1)
2.97	-0.529498	5.1164875
3.11	-0.529498	5.1164875
3.51	-0.527303	5.1277306
3.91	-0.522902	5.1503494
4.32	-0.520695	5.1617255
4.59	-0.507377	5.2309329
5.67	-0.487136	5.3378888
6.75	0.494969	E 2500126

Mass Retained on Seive # 10	51.05
Mass Passed Seive # 10	273.84
Jar Number	

Data	Can Id	99
	Empty Can Weight (g)	13.69
Hygroscopic	Can+ Air Dried Soil (g)	32.94
H	Can + Oven Dried Soil (g)	32.87

UNIFIED SOIL CLASSIFICATION SYSTEM

	Client	AECOM Date		Date Decemb	December 23, 2021 Project Nu		mber	60646784			Gravel (%)	1	
Sample ID		BH-5-2	SS4	Depth (feet)	7.5-9.5	Project Na	me			0		Sand (%)	15
AECOM CANADA LTD. 83 Galaxy Blvd, Unit 6 Toronto, Ontario	Lab Sample No:		2	02112022		Project Loc	cation	0				Silt (%)	46
	Soil Classification				ean Clay with Sa	nd, trace gra	avel (CL)	CL)					38
	Figure No.			D10	N/A	D30	N/A	D60	0.008	Cu	N/A	Сс	N/A

Hydrometer Analysis

Soi

	nydrometer Analysis	
Borehole No	BH-5-1	
Sample Id	SS3	Re
Depth (feet)	5-7	
oil Classification		

eviewed by Ramana M Date 23-Dec-21

Soil Hydrometer Used						
151 H SN#	993585	0				
	115105	•				

Liquid Limit Plasticity Index 2.70 Specific Gravity of Soil (Gs) Specific Gravity of Water (Gw) 0.989 Sg Correction Factor (a) 347.0 Total Mass of sample 9.50 Soil Particles Greater Than This Are Excluded From Graph

Lab No

Project Name

Project Number

202112020

60646784

Hydrometer Details								
Volume of Bulb	(V _B)	61.1	cm ³					
Length of Bulb	(L ₂)	14.44	cm					
Length from '1.0' reading to top of Bulb	(Ls)	10.17	cm					
Scale Dimension	(hs)	0.27	cm/Div					
Cross-sectional Area of Cylinder	(A)	28.3535	cm ²					
Meniscus Correction	(Hm)	0.0005	Divisions					

Calculation of	f Dry Soil Ma	iss	
Oven Dried Mass	(Wo)	24.95	
Air Dried Mass	(Wa)	25.06	
Hygroscopic Corr Factor	(F)	0.996	
Air Dried Mass in Analysis	(Ma)	50	
Oven Dried Mass in Analysis	(Mo)	49.8	
% Passing 2.0 mm Sieve	(P10)	97.7	
Sample Represented	(W)	50.9	

01			0' (840)
Sieve Anai	ysis of Retain	ea on 2.v mm	i Sieve (M2)

Oleve Allalysis of Retained on 2.0 lilli oleve (M2)									
Sieve Size (mm)	Cummulative Mass Retained (g)	Mass Passing (g)	% Passing						
75.0									
63.0									
53.0									
37.5									
26.5									
19.0									
13.2									
9.5									
4.75	2.8	344.1	99.2						
2.0	7.0	220.1	07.7						

	Sieve Analysis of Hydro	ometer waterial	(IVI /
Size	Comulative Mass	Mass Passing	

Sieve Size (mm)	Comulative Mass Retained (g)	Mass Passing (g)	% Passing
2.00		49.8	97.7
0.850	1.0	48.8	95.8
0.425	1.7	48.1	94.3
0.25	2.7	47.1	92.4
0.106	5.1	44.7	87.7
0.075	6.1	43.7	85.7
Pass 0.075	0.2		

Percent In Suspension (P) as per Section 14.3 of ASTM D 422

P = [(100000/W) * (Gs/(Gs - Gw))] * (R - Gw) in percent (for Soil Hydrometer 151 H)

Where R = Corrected Hydrometer Reading = Hs - Hc

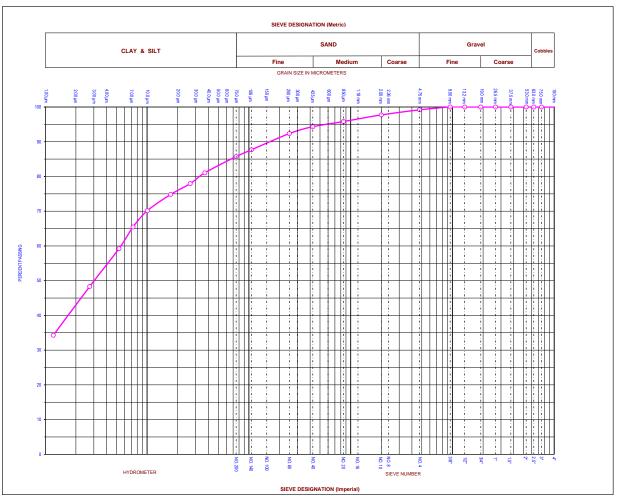
Hs = Actual Hydrometer Reading Hc= Composite Correction to be determined as per Section 7 of ASTM D 422

Diameter of Soil Particles (D) as per Section 15 of ASTM D 422

 $D = SQRT \text{ of } \{[(30*\eta)/(980*(Gs-Gw)] * (L/T)\} \text{ in mm}$

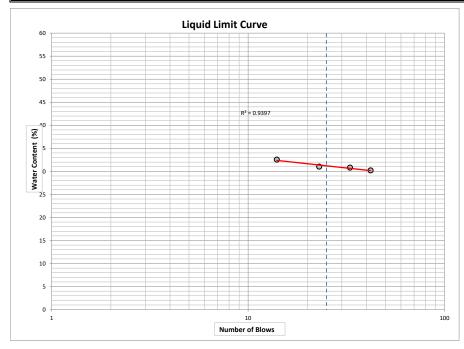
Where η = Viscosity of suspending Medium (Water) in poises L = Effective Depth = L1+ 0.5*[L₂ - V_B /A)] in cm L1 = distance from the top of the bulb to Recorded Hydrometer Reading in cm

Date	Time	Elaspsed Time (minutes)	Hs in Divisions	Hc in Divisions	Temp Tc in C	R=Hs-Hc	P in %	L in cm	η in Poise	к	D in mm
24-Dec-21	9:28:00 AM	1.0	1.0290	0.0030	25.6	1.0260	81.1	8.57	8.85306	0.0126265	0.0370
	9:29:00 AM	2.0	1.0280	0.0030	25.6	1.0250	77.9	8.84	8.85306	0.0126265	0.0265
	9:32:00 AM	5.0	1.0270	0.0030	25.6	1.0240	74.8	9.11	8.85306	0.0126265	0.0170
	9:42:00 AM	15.0	1.0255	0.0030	25.5	1.0225	70.1	9.52	8.87278	0.01264055	0.0101
	9:57:00 AM	30.0	1.0240	0.0030	25.3	1.0210	65.5	9.92	8.91247	0.01266879	0.0073
	10:27:00 AM	60.0	1.0220	0.0030	25.1	1.0190	59.2	10.46	8.95247	0.01269719	0.0053
	1:37:00 PM	250.0	1.0185	0.0030	24.5	1.0155	48.3	11.41	9.07441	0.01278337	0.0027
25-Dec-21	9:27:00 AM	1440.0	1.0140	0.0030	24.3	1.0110	34.3	12.62	9.11572	0.01281243	0.0012


	Viscosiity	к
L1 cm	С	(η/(Gs-1)
2.43	-0.511832	5.2076811
2.70	-0.511832	5.2076811
2.97	-0.511832	5.2076811
3.37	-0.509606	5.2192839
3.78	-0.505144	5.2426281
4.32	-0.500665	5.2661586
5.27	-0.487136	5.3378888
6.48	-0.482595	5.3621853

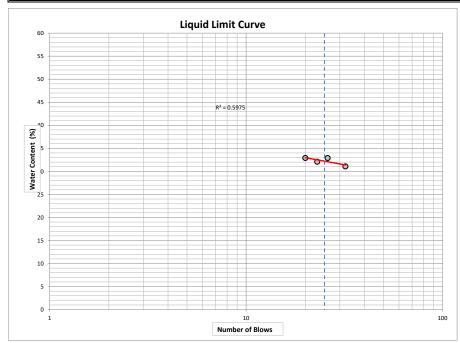
Mass Retained on Seive # 10	63.48
Mass Passed Seive # 10	283.48
Jar Number	

ata	Can Id	134
pic D	Empty Can Weight (g)	13.91
Hygroscopic Data	Can+ Air Dried Soil (g)	38.97
ž	Can + Oven Dried Soil (g)	38.86



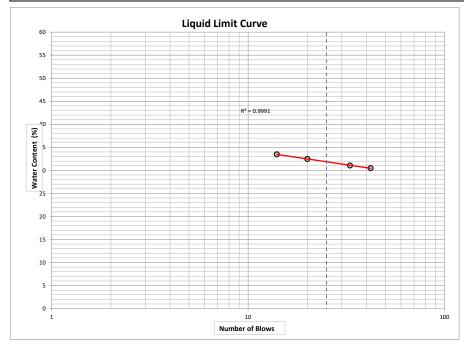
UNIFIED SOIL CLASSIFICATION SYSTEM

	Client	AECOM		Date Decemb	er 23, 2021	Project Number		60646784			Gravel (%)	1	
	Sample ID	BH-5-1	SS3	Depth (feet)	5-7	Project Na	me			0		Sand (%)	13
AECOM CANADA LTD. 83 Galaxy Blvd, Unit 6 Toronto, Ontario	Lab Sample No:	202112020				Project Location 0				Silt (%)	44		
	Soil Classification					0						Clay (%)	42
	Figure No.			D10	N/A	D30	N/A	D60	0.006	Cu	N/A	Cc	N/A


	1					A =/	2014	
	•	AECON	I CAN	ADA L	TD.	AEC	.OM	
DETERMINATION OF LIQUID LIMIT								
Client	AECOM	Project Number	60646784		Date	December 24	, 2021	
Project Name					Tested By			
Location					Reviewed By	Ramana M		
Borehole Number	ВН 5-2	Sample Id	SS4	Depth (feet)	7.5-9.5	Lab Number	202112022	
Des	scription	Formula	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6
	Container Number		191	129	127	116		
Weight of	Empty Container (g) W ₁		13.70	13.57	13.65	13.76		
Weight of Co	ntainer + Wet Soil (g) W ₂		25.10	26.56	24.60	25.09		
Weight of Co	ntainer + Dry Soil(g) W ₃		22.41	23.48	21.91	22.46		
	Weight of Water (g) W _w	$W_w = W_2 - W_3$	2.69	3.08	2.69	2.63		
V	Veight of Dry Soil (g) W _s	W _s = W ₃ -W ₁	8.72	9.92	8.26	8.70		
	Water Content (%)	w = (W _w / W _s) * 100	30.81	31.02	32.54	30.21		
	Number of Blows		33	23	14	42		
Liqu	id Limit (%) From Graph				31	.2		

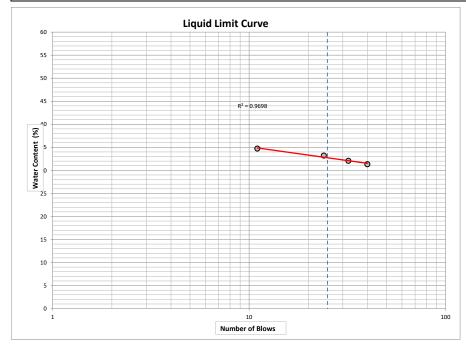
	1	ı	1	1	1				
		AECO	M CAN	ADA L	TD.	AEC	OM		
	DETERMINATION OF PLASTIC LIMIT								
Client	AECOM	Project Number	60646784		Date	December 24,	2021		
Project Name	0				Tested By	0			
Location	0				Reviewed By	Ramana M			
Borehole Number	BH 5-2	Sample Id	SS4	Depth (feet)	7.5-9.5	Lab Number	202112022		
Des	cription	Formula	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6	
	Container Number		160	142	189				
Weight of	Empty Container (g) W ₁		13.337	13.71	13.44				
Weight of Co	ntainer + Wet Soil (g) W ₂		19.746	20.52	21.79				
Weight of Co	ntainer + Dry Soil(g) W ₃		18.72	19.43	20.50				
	Weight of Water (g) W _w	$W_w = W_2 - W_3$	1.03	1.09	1.29				
Weight of Dry Soil (g) W _s W _s = W ₃		W _s = W ₃ -W ₁	5.38	5.72	7.06				
Plastic Limit (%) $W = (W_w / W_s)^{-x}$		w = (W _w / W _s) * 100	19.06	19.11	18.28				
Ave	rage Plastic Limit (%) w _P				18	.82			

Result Summary					
Liquid Limit (%)	31				
Plastic Limit (%)	19				
Plasticity Index (%)	12				
Sample status	Plastic				


	1					A =/	2014	
	•	AECON	I CAN	ADA L	TD.	AEC	.OM	
DETERMINATION OF LIQUID LIMIT								
Client	AECOM	Project Number	60646784		Date	December 25	, 2021	
Project Name					Tested By			
Location					Reviewed By	Ramana M		
Borehole Number	ВН 5-1	Sample Id	SS3	Depth (feet)	5-7	Lab Number	202112020	
Des	scription	Formula	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6
	Container Number		147	56	133	173		
Weight of	Empty Container (g) W ₁		13.58	13.51	13.56	13.44		
Weight of Co	ntainer + Wet Soil (g) W ₂		26.22	25.56	25.36	23.13		
Weight of Co	ntainer + Dry Soil(g) W ₃		23.09	22.70	22.49	20.73		
	Weight of Water (g) W _w	$W_w = W_2 - W_3$	3.13	2.86	2.87	2.40		
V	Veight of Dry Soil (g) W _s	W _s = W ₃ -W ₁	9.51	9.19	8.93	7.29		
	Water Content (%)	w = (W _w / W _s) * 100	32.92	31.07	32.09	32.89		
	Number of Blows		20	32	23	26		
Liqu	id Limit (%) From Graph				32	.2		

	1	ı	1	1	1				
		AECO	M CAN	ADA L	TD.	AEC	OM		
	DETERMINATION OF PLASTIC LIMIT								
Client	AECOM	Project Number	60646784		Date	December 25, 2021			
Project Name	0				Tested By	0			
Location	0				Reviewed By	Ramana M			
Borehole Number	BH 5-1	Sample Id	SS3	Depth (feet)	5-7	Lab Number	202112020		
Des	cription	Formula	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6	
	Container Number		121	110	188				
Weight of	Empty Container (g) W ₁		13.803	13.88	13.49				
Weight of Co	ntainer + Wet Soil (g) W ₂		18.987	16.36	16.67				
Weight of Co	ntainer + Dry Soil(g) W ₃		18.23	15.94	16.15				
	Weight of Water (g) W _w	$W_w = W_2 - W_3$	0.76	0.42	0.52				
Weight of Dry Soil (g) W _s W _s = W		W _s = W ₃ -W ₁	4.43	2.06	2.66				
Plastic Limit (%) $w = (W_w / W_s)^{-1}$		w = (W _w / W _s) * 100	17.10	20.26	19.37				
Ave	rage Plastic Limit (%) w _P			•	18	.91			

Result Summary					
Liquid Limit (%)	32				
Plastic Limit (%)	19				
Plasticity Index (%)	13				
Sample status	Plastic				


	1	1				A =/	2014			
	•	AECON	I CAN	ADA L	TD.	AEC	.OM			
	DETERMINATION OF LIQUID LIMIT									
Client	AECOM	Project Number	60646784		Date	December 25	, 2021			
Project Name					Tested By					
Location					Reviewed By	Ramana M				
Borehole Number	вн 5-5	Sample Id	SS1	Depth (feet)	0-2	Lab Number	202112025S			
Des	scription	Formula	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6		
	Container Number		180	100	67	140				
Weight of	Empty Container (g) W ₁		13.51	13.60	13.59	13.72				
Weight of Co	ntainer + Wet Soil (g) W ₂		21.78	24.85	21.78	22.07				
Weight of Co	ntainer + Dry Soil(g) W ₃		19.85	22.03	19.84	20.02				
	Weight of Water (g) W _w	$W_w = W_2 - W_3$	1.93	2.82	1.94	2.05				
V	Veight of Dry Soil (g) W _s	W _s = W ₃ -W ₁	6.34	8.43	6.26	6.30				
Water Content (%) w = (W _w		w = (W _w / W _s) * 100	30.49	33.48	31.06	32.48				
Number of Blows			42	14	33	20				
Liqu	id Limit (%) From Graph				31	.9				

	1	ı	1	1	1					
		AECO	M CAN	ADA L	TD.	AEC	OM			
	DETERMINATION OF PLASTIC LIMIT									
Client	AECOM	Project Number	60646784		Date	December 25,	2021			
Project Name	0				Tested By	0				
Location	0				Reviewed By	Ramana M				
Borehole Number	ВН 5-5	Sample Id	SS1	Depth (feet)	0-2	Lab Number	202112025S			
Des	Description		Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6		
	Container Number		128	71	146					
Weight of	Empty Container (g) W ₁		13.737	13.68	13.86					
Weight of Co	ntainer + Wet Soil (g) W ₂		20.196	21.70	24.48					
Weight of Co	ontainer + Dry Soil(g) W ₃		19.01	20.25	22.54					
	Weight of Water (g) W _w	$W_w = W_2 - W_3$	1.19	1.45	1.94					
Weight of Dry Soil (g) W _s		W _s = W ₃ -W ₁	5.27	6.57	8.68					
	Plastic Limit (%)	w = (W _w / W _s) * 100	22.49	22.01	22.35					
Ave			22	28						

Result Summary				
Liquid Limit (%)	32			
Plastic Limit (%)	22			
Plasticity Index (%)	10			
Sample status	Plastic			

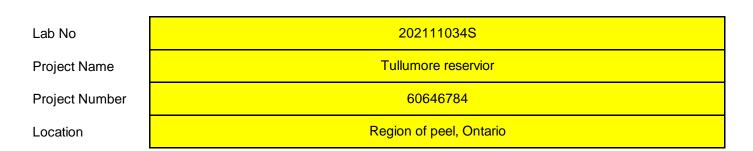
	1					A =/	2014			
	•	AECON	I CAN	ADA L	TD.	AEC	.OM			
	DETERMINATION OF LIQUID LIMIT									
Client	AECOM	Project Number	60646784		Date	December 25	, 2021			
Project Name					Tested By					
Location					Reviewed By	Ramana M				
Borehole Number	ВН 5-3	Sample Id	SS5	Depth (feet)	10-12	Lab Number	202112023			
Des	scription	Formula	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6		
	Container Number		194	83	107	90				
Weight of	Empty Container (g) W ₁		13.74	13.71	13.65	13.53				
Weight of Co	ntainer + Wet Soil (g) W ₂		25.88	24.46	22.43	21.59				
Weight of Co	ntainer + Dry Soil(g) W ₃		22.75	21.78	20.34	19.63				
	Weight of Water (g) W _w	$W_w = W_2 - W_3$	3.13	2.68	2.09	1.96				
V	Veight of Dry Soil (g) W _s	W _s = W ₃ -W ₁	9.01	8.07	6.69	6.11				
Water Content (%) w = (W,		w = (W _w / W _s) * 100	34.73	33.22	31.32	32.07				
Number of Blows			11	24	40	32				
Liqu	id Limit (%) From Graph				32	.7				

	1		1		1					
		AECO	M CAN	ADA L	TD.	AEC	OM			
	DETERMINATION OF PLASTIC LIMIT									
Client	AECOM	Project Number	60646784		Date	December 25,	2021			
Project Name	0				Tested By	0				
Location	0				Reviewed By	Ramana M				
Borehole Number	ВН 5-3	Sample Id	SS5	Depth (feet)	10-12	Lab Number	202112023			
Des	Description		Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6		
	Container Number		172	153	103					
Weight of	Empty Container (g) W ₁		13.448	13.58	13.58					
Weight of Co	ntainer + Wet Soil (g) W ₂		21.243	22.16	26.74					
Weight of Co	ntainer + Dry Soil(g) W ₃		20	20.78	24.64					
	Weight of Water (g) W _w	$W_w = W_2 - W_3$	1.24	1.38	2.10					
Weight of Dry Soil (g) W _s		W _s = W ₃ -W ₁	6.55	7.20	11.06					
	Plastic Limit (%)	w = (W _w / W _s) * 100	18.97	19.14	18.98					
Ave			19	.03						

Result Summary					
Liquid Limit (%)	33				
Plastic Limit (%)	19				
Plasticity Index (%)	14				
Sample status	Plastic				

MOISTURE CONTENT DETERMINATION

	AECOM			DATE	November 16, 2021				
PROJECT NUMBER 60646784							TESTED BY	Dharmik	
		PROJ	ECT NAME	Tullamore Reser	voir & Pumping sta	ation		REVIEWED BY	Ramana M
			LOCATION	Peel Region					
					Observations			Formula	
Borehole Name	Sample Id	Depth (feet)	Can Id	Weight of Empty Can (g) W₁	Weight of Wet Soil + Can (g) W ₂	Weight of Dry Soil + Can (g) W ₃	Weight of Water (g) W _w = (W ₂ -W ₃)	Weight of Dry soil (g) W _s = (W ₃ -W ₁)	Moisture Content (%) w = (W _w /W _s)*100
	SS1	0	86	13.49	42.30	29.95	12.35	16.46	75.03
	SS2	2	134	13.96	86.80	76.35	10.45	62.39	16.75
BH 6-1	SS3	4	89	13.61	72.12	60.77	11.35	47.16	24.07
	SS4	6	193	13.49	79.48	71.50	7.98	58.01	13.76
	SS5	8	81	13.85	73.56	66.06	7.50	52.21	14.37
	SS1	0	127	13.69	79.53	65.22	14.31	51.53	27.77
	SS2	2	132	13.57	90.77	80.04	10.73	66.47	16.14
BH 6-2MW	SS3	4	58	13.54	102.96	91.14	11.82	77.60	15.23
	SS4	6	191	14.26	81.42	72.08	9.34	57.82	16.15
	SS5	8	118	13.65	58.51	50.50	8.01	36.85	21.74
	SS1	0	171	13.65	81.03	71.16	9.87	57.51	17.16
BH 6-3	SS2	2	108	13.69	96.96	86.26	10.70	72.57	14.74
БП 0-3	SS3	4	130	13.60	79.30	70.12	9.18	56.52	16.24
	SS4	6	120	13.64	77.54	68.67	8.87	55.03	16.12
								Total Samples	14


Total Samples 14

	DETERMINATION OF UNIT WEIGHT - ASTM D7263										
_			40==			ON OF UNIT WE					
Pro	ject Number	606	46784		Date Tested	19-Nov-21		Tested by			
P	roject Name	Tullumo	re rese	ervior	Location	Region of Peel			Checked by	Ramana M	
						Water Conte	nt				
		Lab Number		2021	11031S	20211	11033S				
	ı	Borehole Name		ВІ	ł 6-1	ВН	l 6-2				
Test Info		Sample ID			SS3	s	S4				
		Depth			.00	6	.00				
		Trial		A	В	A	В	A	В	A	В
		Tare ID		91	122	185	135		2		2
		Tare Wt		13.65	13.76	13.54	13.66				
Mass in		Tare + Wet Soil		42.72	56.02	47.53	61.88				
Grams		Tare + Dry Soil		38.50	50.23	44.00	55.78				
		Water	M _w	4.22	5.79	3.53	6.10				
		Dry Soil	M _d	24.85	36.47	30.46	42.12				
	Wate	er Content %	w	16.99	15.88	11.60	14.49				
		Average %		1	16.43 13.04						
					v	Veight- Volume R	elations				
	Temp of	water (C)		18.2	18.2	18.2	18.2				
Density of W	ater ater			1.00	1.00	1.00	1.00				
		Wet Soil	M _t	90.19	91.43	86.31	58.32				
		Soil + Wax in Air		95.16	95.69	92.32	61.69				
Mass in Grams	Wax			4.97	4.26	6.01	3.37				
	Wet	Soil + Wax in water		47.10	48.69	46.09	31.75				
	Dry Soil ^A		M _d	77.10	78.91	77.34	50.94				
Spec	cific Gravity of	Soil (assumed)	Gs	2.72	2.72	2.72	2.72				
	Wet Soil + Wa	x ^B		48.06	47.00	46.23	29.94				
Volume in	Wax			5.47	4.69	6.62	3.71				
CC	Wet Soil		٧	42.59	42.31	39.61	26.23				
	Dry Soil = M _d /	Gs	Vs	28.40	29.06	28.49	18.76				
	Wet Unit Weig	$ht = (M_1/V)x9.81$	Ym	20.77	21.20	21.38	21.81				
KN/cum	Average	Wet Unit Weight		2	0.99	21	1.59				Г
		$nt = (M_d/V)x9.81$	Υ _d	17.76	18.29	19.15	19.05				
		Dry Unit Weight			8.03		0.10				
Void Ratio =			е	0.50	0.46	0.39	0.40				
	[(V-V _S)/V]x100		n	33.33	31.31	28.09	28.46				
Degree of S	aturation = [V _w /	(v-v _s)] X100	S	92.28	94.56	80.64	98.84				

Hydrometer Analysis

Tested by	SAM
Reviewed by	Ramana M
Date	22-Nov-21
sand (CL)	

Soil Hydrometer Used						
151 H SN#	993585	•				
	115105	0				

Soil Information

Liquid Limit	(LL)	
Plasticity Index	(PI)	
Specific Gravity of Soil	(Gs)	2.70
Specific Gravity of Water	(Gw)	1
Sg Correction Factor	(a)	0.989
Total Mass of sample		336.1
Soil Particles Greater Than This Are Excluded From Graph		9.50
	•	

Hydrometer Details

i iya o	neter bet <u>uns</u>		
Volume of Bulb	(V _B)	63.1	cm ³
Length of Bulb	(L ₂)	14.15	cm
Length from '1.0' reading to top of Bulb	(Ls)	10.5	cm
Scale Dimension	(hs)	0.27	cm/Div
Cross-sectional Area of Cylinder	(A)	28.1351	cm ²
Meniscus Correction	(Hm)	0.0005	Divisions

Calculation of Dry Soil Mass										
Oven Dried Mass	(Wo)	25.97	g							
Air Dried Mass	(Wa)	26.15	g							
Hygroscopic Corr Factor	(F)	0.993								
Air Dried Mass in Analysis	(Ma)	50	g							
Oven Dried Mass in Analysis	(Mo)	49.7	g							
% Passing 2.0 mm Sieve	(P10)	97.8								
Sample Represented	(W)	50.8	g							

Sieve Analysis of Retained on 2.0 mm Sieve (M2)

Sieve Size (mm)	Cummulative Mass Retained (g)	Mass Passing (g)	% Passing
75.0			
63.0			
53.0			
37.5			
26.5			
19.0			
13.2			
9.5			
4.75	1.5	334.6	99.6
2.0	7.3	328.8	97.8

Sieve Analysis of Hydrometer Material (M7)

Sieve Size (mm)	Comulative Mass Retained (g)	Mass Passing (g)	% Passing
2.00	0.0	49.7	97.8
0.850	0.7	49.0	96.5
0.425	1.6	48.0	94.7
0.25	2.7	47.0	92.6
0.106	5.6	44.0	86.8
0.075	7.0	42.7	84.1
Pass 0.075	0.4		

Percent In Suspension (P) as per Section 14.3 of ASTM D 422

P = [(100000/W) * (Gs/(Gs - Gw))] * (R - Gw) in percent (for Soil Hydrometer 151 H)

Where R = Corrected Hydrometer Reading = Hs - Hc

Hs = Actual Hydrometer Reading

Hc= Composite Correction to be determined as per Section 7 of ASTM D 422

Diameter of Soil Particles (D) as per Section 15 of ASTM D 422

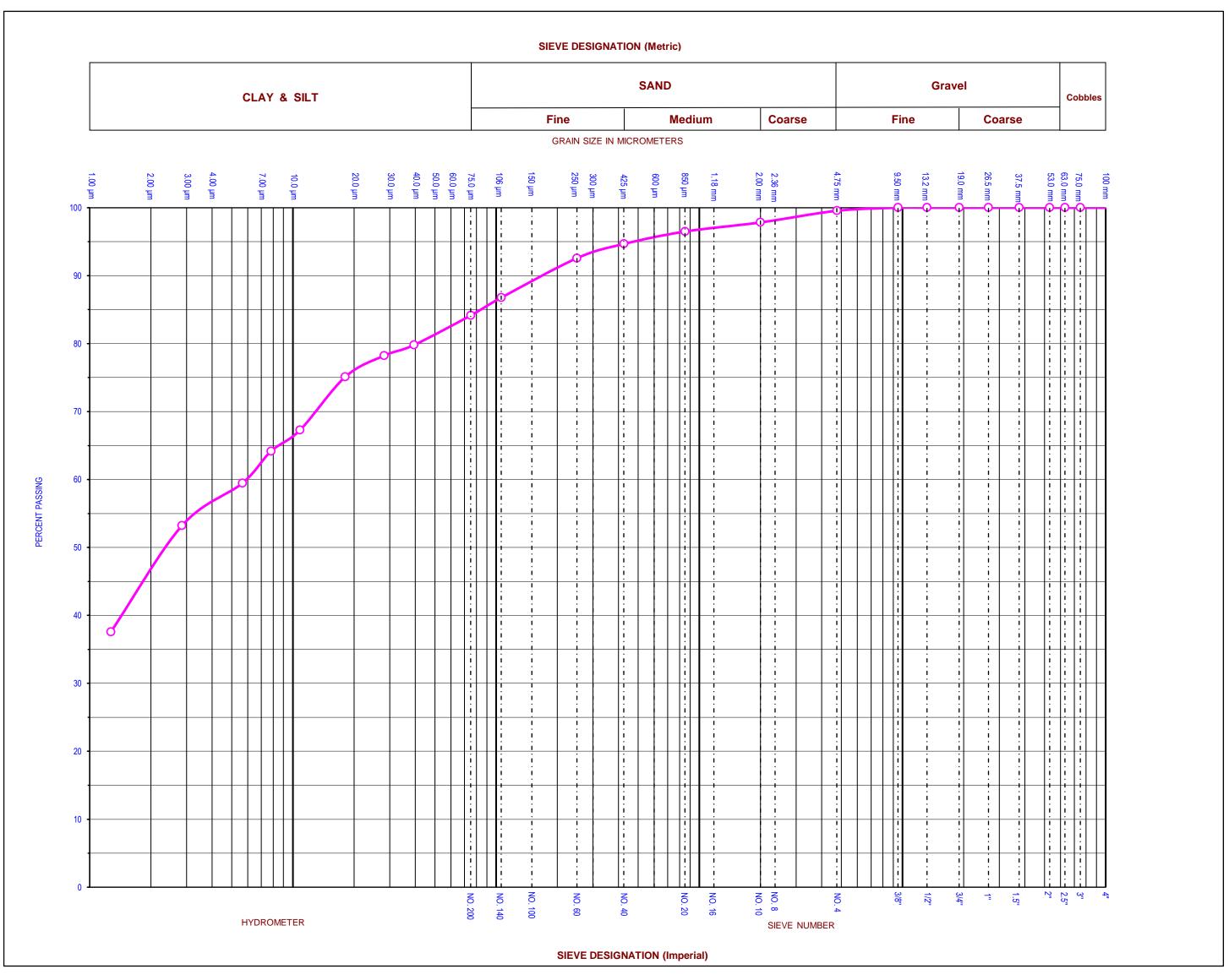
 $D = SQRT \text{ of } \{[(30*\eta)/(980*(Gs-Gw)] * (L/T)\} \text{ in mm}$

Where η= Viscosity of suspending Medium (Water) in poises

L = Effective Depth = L1+ $0.5*[L_2 - V_B/A)$] in cm

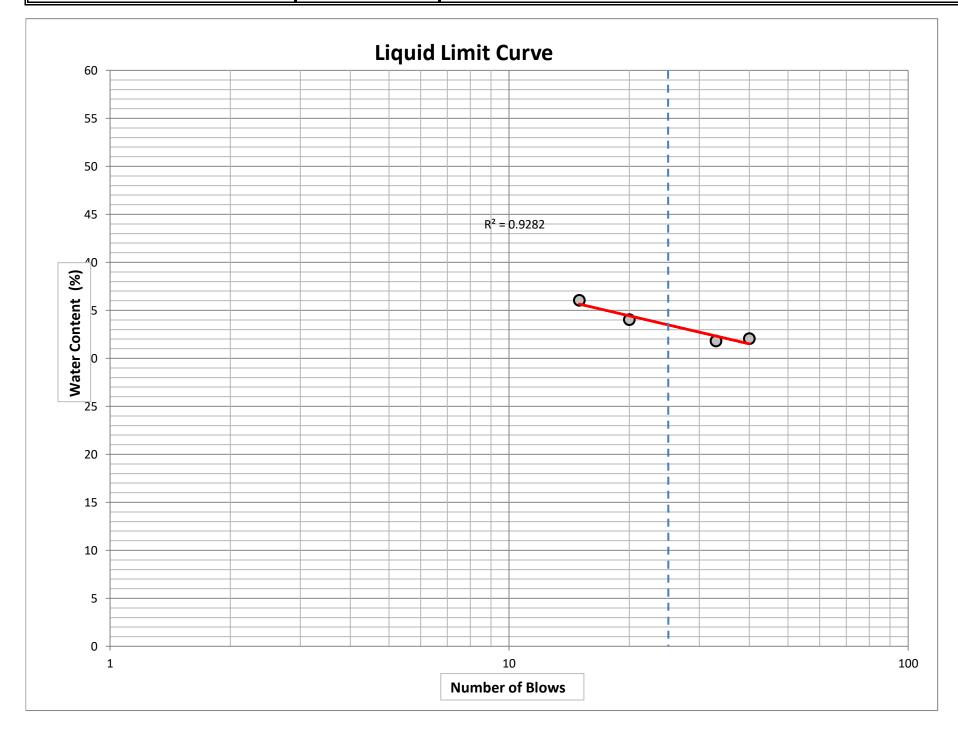
L1 = distance from the top of the bulb to Recorded Hydrometer Reading in cm

Date	Time	Elaspsed Time (minutes)	Hs in Divisions	Hc in Divisions	Temp Tc in C	R=Hs-Hc	P in %	L in cm	η in Poise	K	D in mm
23-Nov-21	12:06:00 PM	1.0	1.0285	0.0030	19.7	1.0255	79.8	8.52	10.16579	0.01353028	0.0395
	12:07:00 PM	2.0	1.0280	0.0030	19.7	1.0250	78.2	8.65	10.16579	0.01353028	0.0281
	12:10:00 PM	5.0	1.0270	0.0030	19.6	1.0240	75.1	8.92	10.19094	0.013547	0.0181
	12:20:00 PM	15.0	1.0245	0.0030	19.5	1.0215	67.3	9.60	10.21619	0.01356378	0.0109
	12:35:00 PM	30.0	1.0235	0.0030	19.3	1.0205	64.2	9.87	10.26703	0.01359748	0.0078
	1:05:00 PM	60.0	1.0220	0.0030	19.1	1.0190	59.5	10.27	10.31830	0.01363139	0.0056
	4:15:00 PM	250.0	1.0200	0.0030	18.8	1.0170	53.2	10.81	10.39602	0.01368264	0.0028
24-Nov-21	12:05:00 PM	1440.0	1.0150	0.0030	18.0	1.0120	37.6	12.16	10.60820	0.01382156	0.0013


	Viscosiity	К
L1 cm	С	(η/(Gs-1)
2.57	-0.373568	5.97987537
2.70	-0.373568	5.97987537
2.97	-0.371097	5.99466877
3.65	-0.368622	6.00952507
3.91	-0.363658	6.03942759
4.32	-0.358677	6.06958532
4.86	-0.351173	6.11530563
6.21	-0.330968	6.24011988

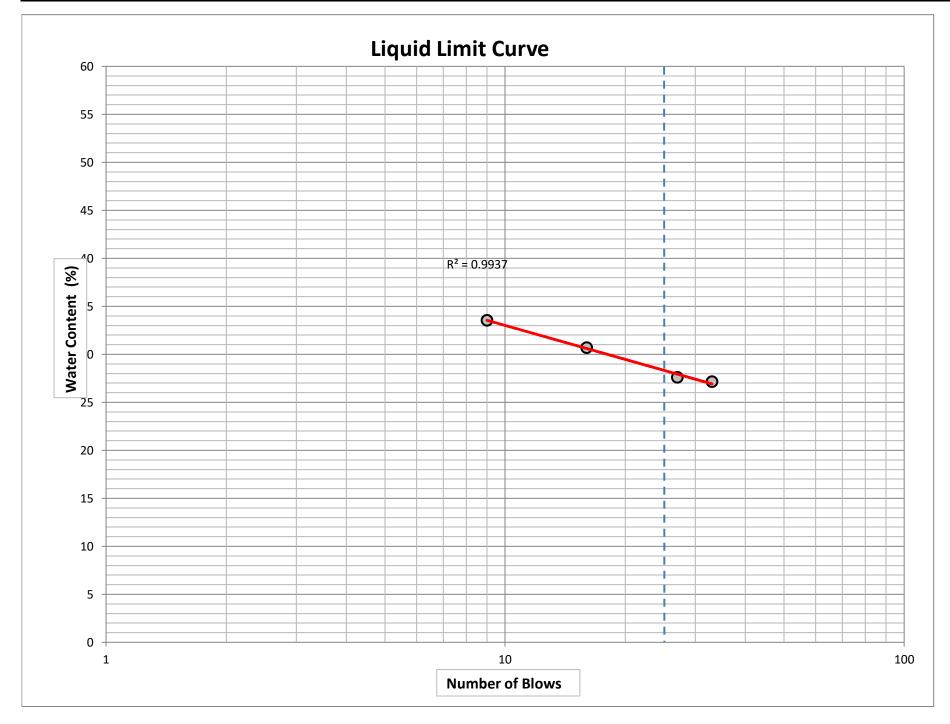
Mass Retained on Seive # 10	57.86
Mass Passed Seive # 10	278.22
Jar Number	

Data	Can Id	124
	Empty Can Weight (g)	13.72
Hygroscopic	Can+ Air Dried Soil (g)	39.87
H	Can + Oven Dried Soil (g)	39.69



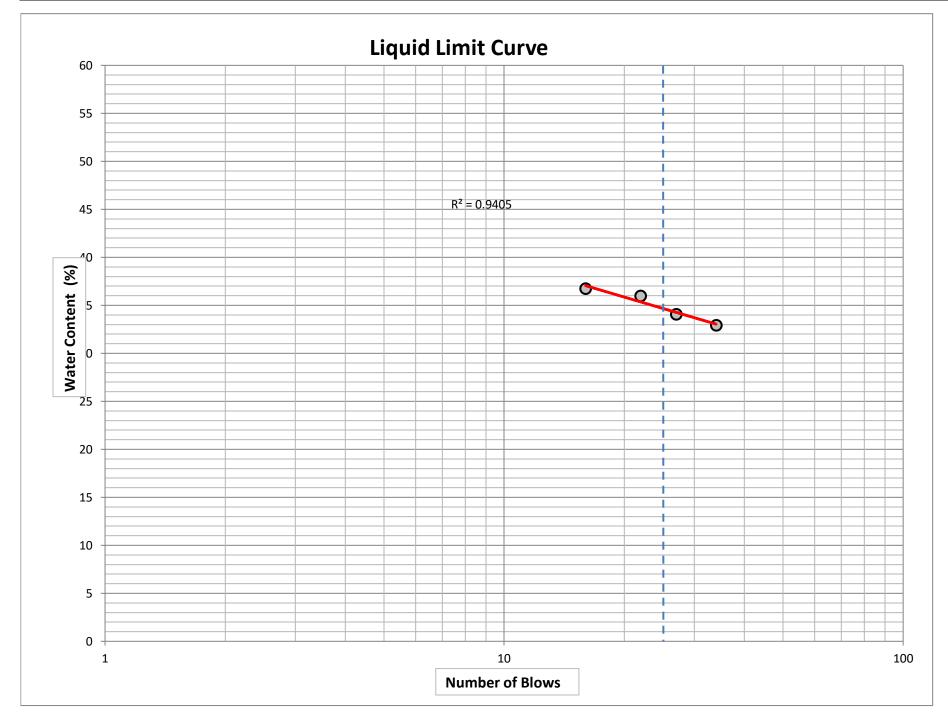
UNIFIED SOIL CLASSIFICATION SYSTEM

	Client	AECOM Date November 2			er 22, 2021	Project Nu	mber	60646784		60646784		Gravel (%)	0
	Sample ID	BH 6-3	6-8	Project Na	me	Tullumore reservior				Sand (%)	16		
AECOM CANADA LTD. 83 Galaxy Blvd, Unit 6 Toronto, Ontario	Lab Sample No:		202111034S				cation	Region of peel, Ontario				Silt (%)	39
Toronto, Ontano	Soil Classification						CL)					Clay (%)	45
	Figure No.			D10	N/A	D30	N/A	D60	0.006	Cu	N/A	Сс	N/A


						Λ <i>=</i> /	2014	
		AECON	I CAN	ADA L	.TD.	AEC	COM	
		DETERMINA	ATION OIT	LIQUID	LIMIT			
Client	AECOM	Project Number	60646784		Date	November 24	I, 2021	
Project Name	Tullumore & Pumping	Station			Tested By			
Location					Reviewed By	Ramana M		
Borehole Number	ВН 6-2	Sample Id	SS4	Depth (feet)	6-8	Lab Number	202111033S	
Des	scription	Formula	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6
	Container Number		129	176	136	60		
Weight of	Empty Container (g) W ₁		13.60	13.60	13.70	13.34		
Weight of Con	ntainer + Wet Soil (g) W ₂		33.27	29.59	29.61	31.27		
Weight of Cor	ntainer + Dry Soil(g) W ₃		28.06	25.53	25.77	26.92		
	Weight of Water (g) W _w	$W_w = W_2 - W_3$	5.21	4.06	3.84	4.35		
W	/eight of Dry Soil (g) W _s	W _s = W ₃ -W ₁	14.46	11.93	12.07	13.58		
	Water Content (%)	w = (W _w / W _s) * 100	36.03	34.03	31.81	32.03		
Number of Blows		15	20	33	40			
Liqui	id Limit (%) From Graph				33.	.5		

						ΔΞΟ	:OM-				
	_	AECOI	M CAN	ADA L	.TD.	7_					
	DETERMINATION OF PLASTIC LIMIT										
Client	AECOM	Project Number	60646784		Date	November 24,	2021				
Project Name	Tullumore & Pumping	Station			Tested By	0					
Location	0				Reviewed By	Ramana M					
Borehole Number	BH 6-2	Sample Id	SS4	Depth (feet)	6-8	Lab Number	202111033S				
Des	scription	Formula	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6			
	Container Number		111	54	82						
Weight of	Empty Container (g) W ₁		13.64	13.65	14.16						
Weight of Co	ntainer + Wet Soil (g) W ₂		21.21	23.11	22.20						
Weight of Co	ntainer + Dry Soil(g) W ₃		19.89	21.48	20.84						
	Weight of Water (g) W _w	$W_w = W_2 - W_3$	1.32	1.63	1.36						
Weight of Dry Soil (g) W _s W _s =		$W_s = W_3 - W_1$	6.25	7.83	6.68						
Plastic Limit (%) $w = (W_w / W_s)^*$		w = (W _w / W _s) * 100	21.12	20.82	20.36						
Aver			20).77							

Result Summary						
Liquid Limit (%)	33					
Plastic Limit (%)	21					
Plasticity Index (%)	12					
Sample status	Plastic					


						Λ <i>Ξ</i> (MO	
		AECON	I CAN	ADA L	TD.	AEC	JOM	
		DETERMINA	ATION OIT	LIQUID	LIMIT	ı		
Client	AECOM	Project Number	60646784		Date	November 24	l, 2021	
Project Name	Tullumore & Pumping	Station			Tested By			
Location					Reviewed By	Ramana M		
Borehole Number	ВН 6-1	Sample Id	SS3	Depth (feet)	4	Lab Number	<mark>202111031S</mark>	
Des	cription	Formula	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6
	Container Number		96	51	142	95		
Weight of	Empty Container (g) W ₁		13.47	13.44	13.77	13.68		
Weight of Con	tainer + Wet Soil (g) W ₂		29.03	28.68	27.77	25.82		
Weight of Con	ntainer + Dry Soil(g) W ₃		25.12	25.38	24.48	23.23		
	Weight of Water (g) W _w	$W_w = W_2 - W_3$	3.91	3.30	3.29	2.59		
Weight of Dry Soil (g) W _s		W _s = W ₃ -W ₁	11.65	11.95	10.71	9.55		
Water Content (%) w = (W _w / W _s		w = (W _w / W _s) * 100	33.55	27.62	30.70	27.15		
Number of Blows		9	27	16	33			
Liqui	d Limit (%) From Graph				28	.3		

		4500				ΔΞΟ	OM	
	<u></u>	AECOI	W CAN	IADA L	. I D.			
		DETERMIN	ATION OI	F PLASTI	CLIMIT			
Client	AECOM	Project Number	60646784		Date	November 24,	2021	
Project Name	Tullumore & Pumping	Station			Tested By	0		
Location	0				Reviewed By	Ramana M		
Borehole Number	BH 6-1	Sample Id	SS3	Depth (feet)	4	Lab Number	202111031S	
Des	scription	Formula	Trial 1	Trial 2	Trial 3	3 Trial 4 Trial 5 Trial		Trial 6
Container Number			178	167	105			
Weight of	Empty Container (g) W ₁		13.537	13.68	13.79			
Weight of Co	ntainer + Wet Soil (g) W ₂		22.29	20.65	21.54			
Weight of Co	ntainer + Dry Soil(g) W ₃		20.94	19.61	20.37			
Weight of Water (g) W _w W _w = W ₂ - W ₃		$W_w = W_2 - W_3$	1.35	1.04	1.17			
Weight of Dry Soil (g) W _s		$W_s = W_3 - W_1$	7.40	5.93	6.58			
Plastic Limit (%) w = (W _w / W _s) * 100		18.24	17.48	17.80				
Average Plastic Limit (%) w _P					17	7 .84		

Result Summary						
Liquid Limit (%)	28					
Plastic Limit (%)	18					
Plasticity Index (%)	10					
Sample status	Plastic					

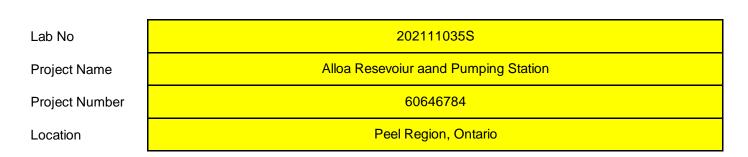
						Λ=/	MO	
		AECON	I CAN	ADA L	.TD.	AE		
	<u> </u>	DETERMINA	ATION OF	LIQUID	LIMIT			
Client	AECOM	Project Number	60646784		Date	November 26	5, 2021	
Project Name	Tullumore & Pumping	Station			Tested By			
Location					Reviewed By	Ramana M		
Borehole Number	BH-6-3	Sample Id	SS4	Depth (feet)	7.5	Lab Number	<mark>202111034S</mark>	
Des	cription	Formula	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6
	Container Number		140	67	100	180		
Weight of I	Weight of Empty Container (g) W₁			13.61	13.59	13.50		
Weight of Con	tainer + Wet Soil (g) W ₂		31.74	27.11	24.01	25.97		
Weight of Con	ntainer + Dry Soil(g) W ₃		27.28	23.68	21.21	22.67		
	Weight of Water (g) W _w	$W_w = W_2 - W_3$	4.46	3.43	2.80	3.30		
Weight of Dry Soil (g) W _s		W _s = W ₃ -W ₁	13.55	10.07	7.62	9.17		
Water Content (%) w = (W _v		$W = (W_w / W_s) * 100$	32.92	34.06	36.75	35.99		
Number of Blows		34	27	16	22			
Liqui	d Limit (%) From Graph		34.7					

						Λ <i>=</i> (MO	
		AECOI	M CAN	ADA L	.TD.	AEC		
		DETERMIN	ATION OF	PLASTI	CLIMIT			<u> </u>
Client	AECOM	Project Number	60646784		Date	November 26,	2021	
Project Name	Tullumore & Pumping	Station			Tested By	0		
Location	0				Reviewed By	Ramana M		
Borehole Number	BH-6-3	Sample Id	SS4	Depth (feet)	7.5	Lab Number	202111034S	
Des	cription	Formula	Trial 1	Trial 2	Trial 3	Trial 4 Trial 5 Trial 6		
Container Number			146	71	128			
Weight of	Empty Container (g) W ₁		13.84	13.66	13.72			
Weight of Con	tainer + Wet Soil (g) W ₂		22.96	24.13	22.45			
Weight of Cor	ntainer + Dry Soil(g) W ₃		21.35	22.31	20.94			
Weight of Water (g) W _w W _w = W ₂ - W ₃		1.61	1.82	1.51				
Weight of Dry Soil (g) W_s $W_s = W_3 - W_1$		W _s = W ₃ -W ₁	7.51	8.65	7.22			
Plastic Limit (%) $w = (W_w / W_s) * 100$		21.44	21.04	20.91				
Average Plastic Limit (%) w _P								

Result Summary						
Liquid Limit (%)	35					
Plastic Limit (%)	21					
Plasticity Index (%)	14					
Sample status	Plastic					

MOISTURE CONTENT DETERMINATION

	CLIENT					AECOM				
		PROJEC	T NUMBER	60646784				TESTED BY	SE	
		PROJ	ECT NAME	Allan Reservior a	nd Pumping Statio	n		REVIEWED BY	Ramana M	
			LOCATION	Peel Region						
				Weight of	Observations Weight of Wet	Weight of Dry	Weight of Water	Formula Weight of Dry soil		
Borehole Name	Sample Id	Depth (feet)	Can Id	Empty Can (g) W ₁	Soil + Can (g) W ₂	Soil + Can (g) W ₃	(g) W _w = (W ₂ -W ₃)	(g) W _s = (W ₃ -W ₁)	Moisture Content (%) w = (W _w /W _s)*100	
Waste Bin Sample	Site 9#1	-	64	13.49	76.00	68.91	7.09	55.42	12.79	
	SS1	0 - 2	78	13.47	65.15	55.18	9.97	41.71	23.90	
	SS2	2 - 4	161	14.47	86.28	77.63	8.65	63.16	13.70	
	SS3	4 - 6	149	13.57	79.06	69.21	9.85	55.64	17.70	
	SS4A	6 -8	169	13.56	88.06	78.93	9.13	65.37	13.97	
BH9-3MW	SS4B	6 -8	52	14.03	95.44	84.61	10.83	70.58	15.34	
	SS5	8 -10	72	13.89	78.55	71.47	7.08	57.58	12.30	
	SS6	10 - 12	165	13.98	73.95	64.70	9.25	50.72	18.24	
_	SS7	15 -17	126	13.77	87.02	78.22	8.80	64.45	13.65	
	SS8	20 22	84	13.79	74.85	66.06	8.79	52.27	16.82	
Waste Bin Sample	Site 9#2	-	156	13.47	78.95	70.56	8.39	57.09	14.70	
	SS1	0 -2	102	13.53	83.03	68.55	14.48	55.02	26.32	
	SS2	2 -4	192	13.45	85.44	76.56	8.88	63.11	14.07	
	SS3	4 -6	55	13.35	87.27	77.11	10.16	63.76	15.93	
BH9-1	SS4	6 - 8	113	13.65	82.94	75.19	7.75	61.54	12.59	
	SS5	8 -10	168	13.61	86.99	73.83	13.16	60.22	21.85	
	SS6	10 - 12	166	13.49	96.05	81.19	14.86	67.70	21.95	
	SS7	15 - 17	87	13.77	89.48	79.52	9.96	65.75	15.15	
	SS8	20 - 22	148	13.44	89.37	79.72	9.65	66.28	14.56	
Waste Bin Sample	Site 6	-	164	13.61	71.17	63.41	7.76	49.80	15.58	
	SS1	0 - 2	63	13.52	85.54	71.86	13.68	58.34	23.45	
	SS2	2 -4	162	13.51	88.54	78.67	9.87	65.16	15.15	
	SS3	4 -6	88	13.61	92.45	83.34	9.11	69.73	13.06	
BH9-2	SS4	6 - 8	157	13.60	77.56	70.31	7.25	56.71	12.78	
	SS5	8 -10	184	13.69	84.81	74.54	10.27	60.85	16.88	
	SS6	10 - 12	138	13.61	82.70	74.26	8.44	60.65	13.92	
	SS7	15 - 17	112	13.72	81.90	73.33	8.57	59.61	14.38	


SS8 20-22 73 13.70 75.30 69.52 5.78 55.82 10.35								Total Samples	28
	SS8	20 -22	73	13.70	75.30	69.52	5.78	55.82	10.35

					DETERMINATION	ON OF UNIT WE	EIGHT - ASTM D	7263			
Project Number 60646784		Date Tested	Date Tested 19-Nov-21			Tested by	Tested by				
Project Name Allon Reservior & pumping station		Location			Checked by	Ramana M					
						Water Conte	nt				
	Lab Number			2021	11036S	20211	1037S				
	Borehole Name)		Bl	I 9-3	ВН	9-1				
Test Info	Sample ID			s	SS7	S	S5				
	Depth Trial				B		00 B	۸	В	Δ	В
	Tare ID			A	116	A 62	69	Α	В	A	В
	Tare Wt			13.48	14.02	13.59	13.65				
Mass in	Tare + Wet Soil	l 		58.08	84.73	55.26	43.54				
Grams	Tare + Dry Soil			52.12	76.46	49.10	40.06				
	Water	N	1 _w	5.96	8.27	6.16	3.48				
	Dry Soil	N	∕l _d	38.64	62.44	35.51	26.41				
	Water Content %	\	N	15.42	13.25	17.35	13.19				
	Average %				1.34						
	Temp of water (C)			18.2	18.2	/eight- Volume Ro	18.2				
Donsity of W											
Density of W			4	1.00	1.00	1.00	1.00				
	Wet Soil		Лt	141.29	110.78	130.30	82.07				
Mass in	Soil + Wax in Air	r		148.17	116.45	136.57	85.61				
Grams	Wax			6.88	5.67	6.27	3.54				
	Wet Soil + Wax in w	vater		77.06	60.38	66.46	42.76				
	Dry Soil ^A	N	∕l _d	122.41	97.82	111.03	72.51				
Spec	ific Gravity of Soil (assumed)	1)	S	2.72	2.72	2.72	2.72				
	Wet Soil + Wax ^B			71.11	56.07	70.11	42.85				
Volume in CC			,	7.58	6.24	6.91	3.90				
	Wet Soil $Dry Soil = M_d / G_s$		/ _s	63.53 45.09	49.83 36.03	63.20 40.90	38.95 26.71				
	Wet Unit Weight = $(M_t/V)x9.81$		S	21.82	21.81	20.22	20.67				
	Average Wet Unit Weigl		, m		1.81		.45		<u> </u>		1
KN/cum	Dry Unit Weight = (M _d /V)x9.81			18.90	19.26	17.23	18.26				
	Average Dry Unit Weigl		d	19	9.08	17	.75				
Void Ratio =	(V-V _S)/V _S	(е	0.41	0.38	0.55	0.46				
Porosity % =	[(V-V _S)/V]x100	- 1	n	29.03	27.69	35.30	31.44				
Degree of Sa	aturation = $[V_w/(V-V_s)] \times 100$!	S	100.00	93.95	86.36	78.10				

Hydrometer Analysis

		_
Borehole No	BH 9-2	
Sample Id	SS-8	
Depth (feet)	20-22	
Soil Classification	Lean Clay with Sar	nd, trace

Tested by	Dharmik P	7
Reviewed by	Ramana M	
Date	22-Nov-21	
ice gravel (CL)		

	Soil Hydrometer Used					
151 H SN#	993585	0				
131 П ЗМ#	115105	•				

Soil Information

Liquid Limit	(LL)	
Plasticity Index	(PI)	
Specific Gravity of Soil	(Gs)	2.70
Specific Gravity of Water	(Gw)	1
Sg Correction Factor	(a)	0.989
Total Mass of sample		691.8
Soil Particles Greater Than This Are Excluded From Graph		9.50
	-	

Hydrometer Details

Hyaron	neter Det <u>alis</u>		
Volume of Bulb	(V _B)	61.1	cm ³
Length of Bulb	(L ₂)	14.44	cm
Length from '1.0' reading to top of Bulb	(Ls)	10.17	cm
Scale Dimension	(hs)	0.27	cm/Di
Cross-sectional Area of Cylinder	(A)	28.3535	cm ²
Meniscus Correction	(Hm)	0.0005	Divisio

Calculation of Dry Soil Mass						
Oven Dried Mass	(Wo)	34.63	g			
Air Dried Mass	(Wa)	34.82	g			
Hygroscopic Corr Factor	(F)	0.995				
Air Dried Mass in Analysis	(Ma)	50	g			
Oven Dried Mass in Analysis	(Mo)	49.7	g			
% Passing 2.0 mm Sieve	(P10)	94.5				
Sample Represented	(W)	52.6	g			

Sieve Analysis of Retained on 2.0 mm Sieve (M2)

Sieve Size (mm)	Cummulative Mass Retained (g)	Mass Passing (g)	% Passing
75.0			
63.0			
53.0			
37.5			
26.5			
19.0			
13.2			
9.5			
4.75	17.8	674.0	97.4
2.0	38.4	653.4	94.5

Sieve Analysis of Hydrometer Material (M7)

Sieve Size (mm)	Comulative Mass Retained (g)	Mass Passing (g)	% Passing
2.00	0.0	49.7	94.5
0.850	1.9	47.8	90.9
0.425	3.6	46.1	87.6
0.25	5.3	44.5	84.4
0.106	9.3	40.4	76.8
0.075	11.0	38.7	73.6
Pass 0.075	1.6		

Percent In Suspension (P) as per Section 14.3 of ASTM D 422

P = [(100000/W) * (Gs/(Gs - Gw))] * (R - Gw) in percent (for Soil Hydrometer 151 H)

Where R = Corrected Hydrometer Reading = Hs - Hc

Hs = Actual Hydrometer Reading

Hc= Composite Correction to be determined as per Section 7 of ASTM D 422

Diameter of Soil Particles (D) as per Section 15 of ASTM D 422

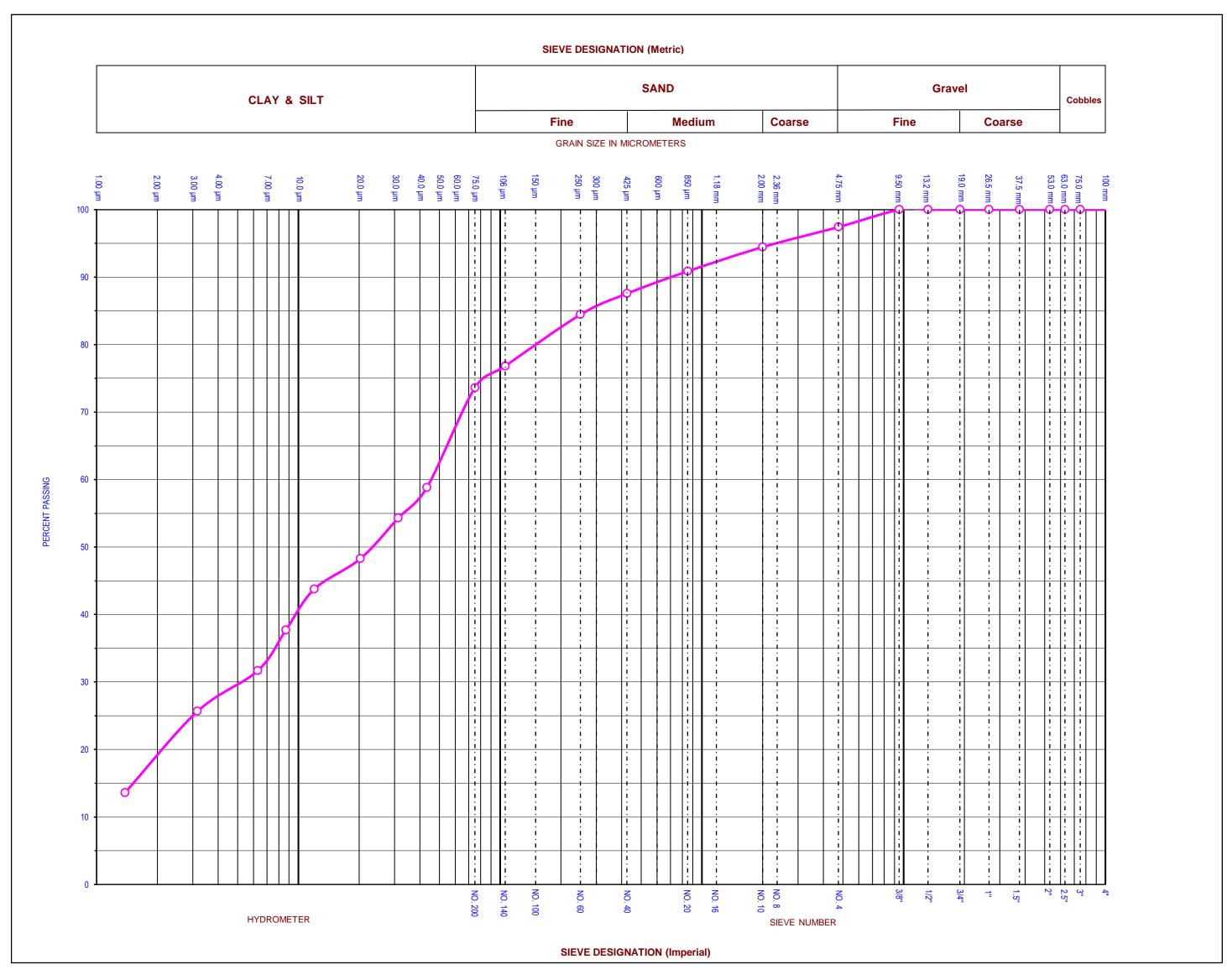
 $D = SQRT \text{ of } \{[(30*\eta)/(980*(Gs-Gw)] * (L/T)\} \text{ in mm}$

Where η= Viscosity of suspending Medium (Water) in poises

L = Effective Depth = L1+ $0.5*[L_2 - V_B/A)$] in cm

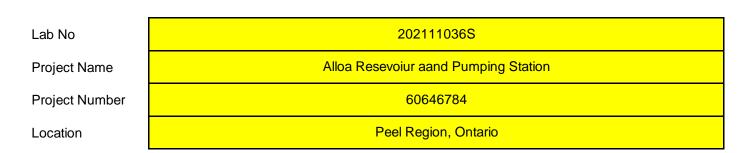
L1 = distance from the top of the bulb to Recorded Hydrometer Reading in cm

Data	T :	Elaspsed Time	He in Divinions	He in Divisions	Tawa Tain C	D. Ha Ha	D in 0/	Linam	n in D aine		D in more
Date	Time	(minutes)	HS IN DIVISIONS	Hc in Divisions	Temp Tc in C	R=Hs-Hc	P in %	L in cm	η in Poise	, n	D in mm
23-Nov-21	12:25:00 PM	1.0	1.0225	0.0030	19.9	1.0195	58.8	10.33	10.11581	0.01349698	0.0434
	12:26:00 PM	2.0	1.0210	0.0030	19.9	1.0180	54.3	10.73	10.11581	0.01349698	0.0313
	12:29:00 PM	5.0	1.0190	0.0030	19.8	1.0160	48.3	11.27	10.14075	0.0135136	0.0203
	12:39:00 PM	15.0	1.0175	0.0030	19.5	1.0145	43.7	11.68	10.21619	0.01356378	0.0120
	12:54:00 PM	30.0	1.0155	0.0030	19.3	1.0125	37.7	12.22	10.26703	0.01359748	0.0087
	1:24:00 PM	60.0	1.0135	0.0030	19.0	1.0105	31.7	12.76	10.34409	0.01364842	0.0063
	4:34:00 PM	250.0	1.0115	0.0030	18.7	1.0085	25.6	13.30	10.42215	0.01369982	0.0032
24-Nov-21	12:24:00 PM	1440.0	1.0075	0.0030	18.0	1.0045	13.6	14.38	10.60820	0.01382156	0.0014


Viscosiity	K
С	(η/(Gs-1)
-0.378496	5.95047606
-0.378496	5.95047606
-0.376034	5.96514456
-0.368622	6.00952507
-0.363658	6.03942759
	6.08476063
	6.1306759
	6.24011988
	c -0.378496 -0.378496 -0.376034

Mass Retained on Seive # 10	231.275
Mass Passed Seive # 10	460.52
Jar Number	

Data	Can Id	80
opic D	Empty Can Weight (g)	13.51
Hygroscopic	Can+ Air Dried Soil (g)	48.33
H	Can + Oven Dried Soil (g)	48.14


UNIFIED SOIL CLASSIFICATION SYSTEM

	Client	AECOM Date November 22, 2021 Project Number 60646784					Gravel (%)	3						
	BH 9-2	SS-8	Depth (fe	eet)	20-22	Project Nan	ne	Alloa Resevoiur aand Pumping Station		Sand (%)	23			
AECOM CANADA LTD. 83 Galaxy Blvd, Unit 6 Toronto, Ontario	Lab Sample No:	202111035S					Project Loc	ation	ion Peel Region, Ontario				Silt (%)	56
Toronto, Ontano	Soil Classification		Lean Clay with Sand, trace gravel (CL)						Clay (%)	18				
	Figure No. D10 N/A D30 0.005 D60 0.046 Cu N/A					Сс	N/A							

Hydrometer Analysis

_		
Borehole No	BH 9-13	
Sample Id	SS-7	Ī
Depth (feet)	15-17	Ì
Soil Classification	Lean Clay with Sar	nd, t

Tested by	Dharmik P
Reviewed by	Ramana M
Date	23-Nov-21
race gravel (CL)	

Soil Hydrometer Used							
454 11 001"	993585	0					
151 H SN#	115105	•					

Soil Information

Liquid Limit	(LL)	
Plasticity Index	(PI)	
Specific Gravity of Soil	(Gs)	2.70
Specific Gravity of Water	(Gw)	1
Sg Correction Factor	(a)	0.989
Total Mass of sample		540.6
Soil Particles Greater Than This Are Excluded From Graph		9.50

Hydrometer Details

	nyaron	ieter Det <u>ails</u>		
Volume	of Bulb	(V _B)	61.1	cm ³
Length of	of Bulb	(L ₂)	14.44	cm
Length f	from '1.0' reading to top of Bulb	(Ls)	10.17	cm
Scale D	imension	(hs)	0.27	cm/Di
Cross-se	ectional Area of Cylinder	(A)	28.3535	cm ²
Meniscu	is Correction	(Hm)	0.0005	Divisio

Calculation of Dry Soil Mass									
Oven Dried Mass	(Wo)	46.65	g						
Air Dried Mass	(Wa)	46.96	g						
Hygroscopic Corr Factor	(F)	0.993							
Air Dried Mass in Analysis	(Ma)	50	g						
Oven Dried Mass in Analysis	(Mo)	49.7	g						
% Passing 2.0 mm Sieve	(P10)	92.8							
Sample Represented	(W)	53.5	g						

Sieve Analysis of Retained on 2.0 mm Sieve (M2)

Sieve Size (mm)	Cummulative Mass Retained (g)	Mass Passing (g)	% Passing
75.0			
63.0			
53.0			
37.5			
26.5			
19.0			
13.2			
9.5			
4.75	11.4	529.2	97.9
2.0	39.0	501.6	92.8

Sieve Analysis of Hydrometer Material (M7)

Sieve Size (mm)	Comulative Mass Retained (g)	Mass Passing (g)	% Passing
2.00	0.0	49.7	92.8
0.850	1.5	48.2	90.0
0.425	3.1	46.6	87.0
0.25	4.6	45.1	84.2
0.106	8.5	41.2	76.9
0.075	10.2	39.4	73.7
Pass 0.075	3.4		

Percent In Suspension (P) as per Section 14.3 of ASTM D 422

P = [(100000/W) * (Gs/(Gs - Gw))] * (R - Gw) in percent (for Soil Hydrometer 151 H)

Where R = Corrected Hydrometer Reading = Hs - Hc

Hs = Actual Hydrometer Reading

Hc= Composite Correction to be determined as per Section 7 of ASTM D 422

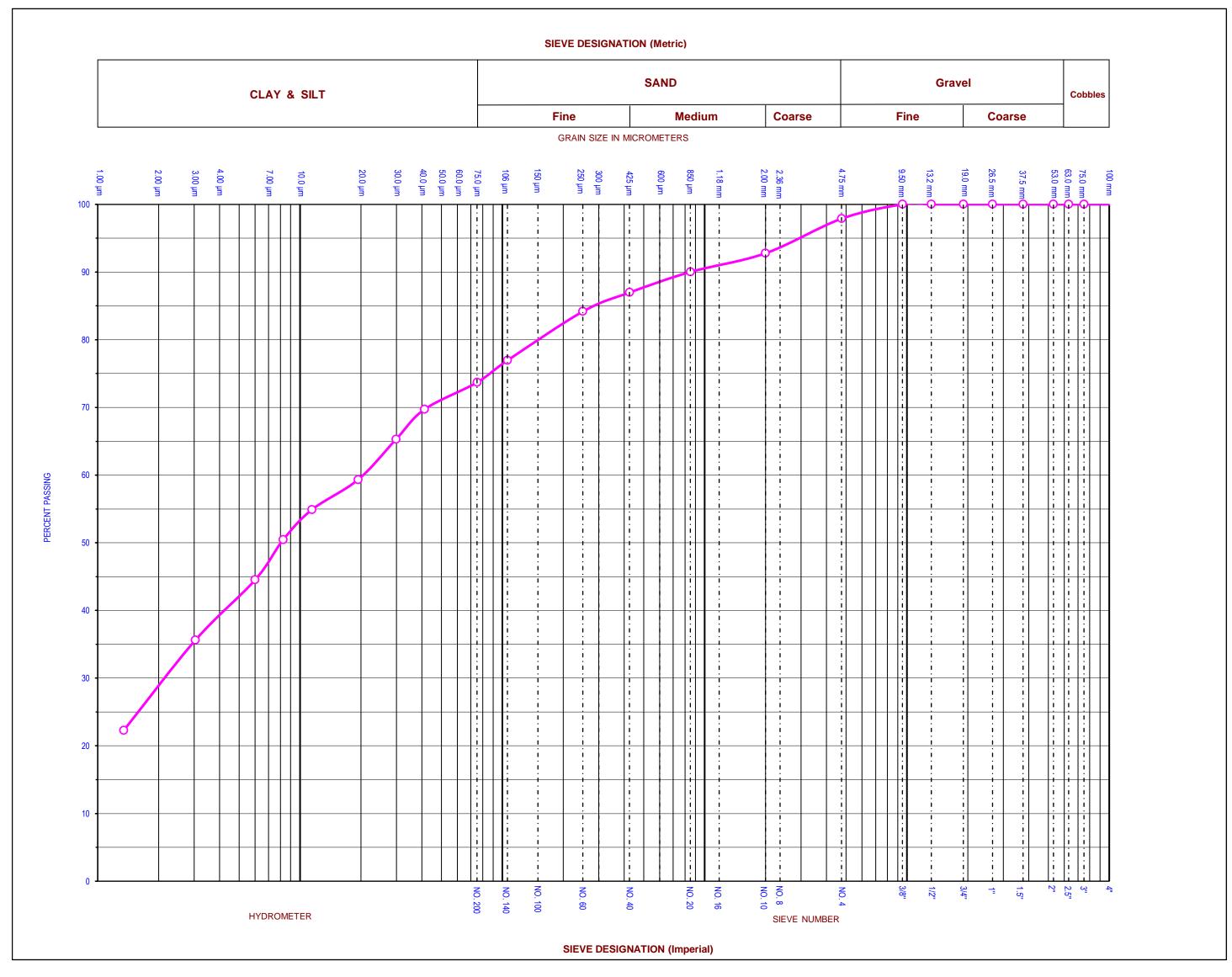
<u>Diameter of Soil Particles (D) as per Section 15 of ASTM D 422</u>

 $D = SQRT \text{ of } \{[(30*\eta)/(980*(Gs-Gw)] * (L/T)\} \text{ in mm}$

Where η= Viscosity of suspending Medium (Water) in poises

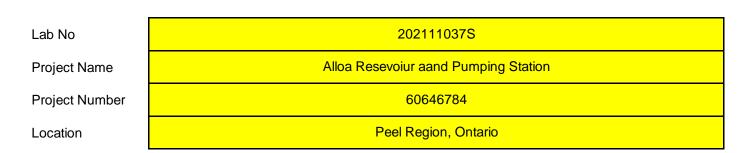
L = Effective Depth = L1+ $0.5*[L_2 - V_B/A)$] in cm L1 = distance from the top of the bulb to Recorded Hydrometer Reading in cm

	Elaspsed Time									
Time	(minutes)	Hs in Divisions	Hc in Divisions	Temp Tc in C	R=Hs-Hc	P in %	L in cm	η in Poise	K	D in mm
9:51:00 AM	1.0	1.0265	0.0030	19.5	1.0235	69.7	9.25	10.21619	0.01356378	0.0412
9:52:00 AM	2.0	1.0250	0.0030	19.5	1.0220	65.3	9.65	10.21619	0.01356378	0.0298
9:55:00 AM	5.0	1.0230	0.0030	19.4	1.0200	59.3	10.19	10.24156	0.01358061	0.0194
10:05:00 AM	15.0	1.0215	0.0030	19.2	1.0185	54.9	10.60	10.29261	0.01361441	0.0114
10:20:00 AM	30.0	1.0200	0.0030	19.1	1.0170	50.4	11.00	10.31830	0.01363139	0.0083
10:50:00 AM	60.0	1.0180	0.0030	18.9	1.0150	44.5	11.54	10.37000	0.0136655	0.0060
2:00:00 PM	250.0	1.0150	0.0030	18.9	1.0120	35.6	12.35	10.37000	0.0136655	0.0030
9:50:00 AM	1440.0	1.0105	0.0030	17.9	1.0075	22.3	13.57	10.63524	0.01383916	0.0013
	9:51:00 AM 9:52:00 AM 9:55:00 AM 10:05:00 AM 10:20:00 AM 10:50:00 AM	Time (minutes) 9:51:00 AM 1.0 9:52:00 AM 2.0 9:55:00 AM 5.0 10:05:00 AM 15.0 10:20:00 AM 30.0 10:50:00 AM 60.0 2:00:00 PM 250.0	Time (minutes) Hs in Divisions 9:51:00 AM 1.0 1.0265 9:52:00 AM 2.0 1.0250 9:55:00 AM 5.0 1.0230 10:05:00 AM 15.0 1.0215 10:20:00 AM 30.0 1.0200 10:50:00 AM 60.0 1.0180 2:00:00 PM 250.0 1.0150	Time (minutes) Hs in Divisions Hc in Divisions 9:51:00 AM 1.0 1.0265 0.0030 9:52:00 AM 2.0 1.0250 0.0030 9:55:00 AM 5.0 1.0230 0.0030 10:05:00 AM 15.0 1.0215 0.0030 10:20:00 AM 30.0 1.0200 0.0030 10:50:00 AM 60.0 1.0180 0.0030 2:00:00 PM 250.0 1.0150 0.0030	Time (minutes) Hs in Divisions Hc in Divisions Temp Tc in C 9:51:00 AM 1.0 1.0265 0.0030 19.5 9:52:00 AM 2.0 1.0250 0.0030 19.5 9:55:00 AM 5.0 1.0230 0.0030 19.4 10:05:00 AM 15.0 1.0215 0.0030 19.2 10:20:00 AM 30.0 1.0200 0.0030 19.1 10:50:00 AM 60.0 1.0180 0.0030 18.9 2:00:00 PM 250.0 1.0150 0.0030 18.9	Time (minutes) Hs in Divisions Hc in Divisions Temp Tc in C R=Hs-Hc 9:51:00 AM 1.0 1.0265 0.0030 19.5 1.0235 9:52:00 AM 2.0 1.0250 0.0030 19.5 1.0220 9:55:00 AM 5.0 1.0230 0.0030 19.4 1.0200 10:05:00 AM 15.0 1.0215 0.0030 19.2 1.0185 10:20:00 AM 30.0 1.0200 0.0030 19.1 1.0170 10:50:00 AM 60.0 1.0180 0.0030 18.9 1.0150 2:00:00 PM 250.0 1.0150 0.0030 18.9 1.0120	Time (minutes) Hs in Divisions Hc in Divisions Temp Tc in C R=Hs-Hc P in % 9:51:00 AM 1.0 1.0265 0.0030 19.5 1.0235 69.7 9:52:00 AM 2.0 1.0250 0.0030 19.5 1.0220 65.3 9:55:00 AM 5.0 1.0230 0.0030 19.4 1.0200 59.3 10:05:00 AM 15.0 1.0215 0.0030 19.2 1.0185 54.9 10:20:00 AM 30.0 1.0200 0.0030 19.1 1.0170 50.4 10:50:00 AM 60.0 1.0180 0.0030 18.9 1.0150 44.5 2:00:00 PM 250.0 1.0150 0.0030 18.9 1.0120 35.6	Time (minutes) Hs in Divisions Hc in Divisions Temp Tc in C R=Hs-Hc P in % L in cm 9:51:00 AM 1.0 1.0265 0.0030 19.5 1.0235 69.7 9.25 9:52:00 AM 2.0 1.0250 0.0030 19.5 1.0220 65.3 9.65 9:55:00 AM 5.0 1.0230 0.0030 19.4 1.0200 59.3 10.19 10:05:00 AM 15.0 1.0215 0.0030 19.2 1.0185 54.9 10.60 10:20:00 AM 30.0 1.0200 0.0030 19.1 1.0170 50.4 11.00 10:50:00 AM 60.0 1.0180 0.0030 18.9 1.0150 44.5 11.54 2:00:00 PM 250.0 1.0150 0.0030 18.9 1.0120 35.6 12.35	Time (minutes) Hs in Divisions Hc in Divisions Temp Tc in C R=Hs-Hc P in % L in cm η in Poise 9:51:00 AM 1.0 1.0265 0.0030 19.5 1.0235 69.7 9.25 10.21619 9:52:00 AM 2.0 1.0250 0.0030 19.5 1.0220 65.3 9.65 10.21619 9:55:00 AM 5.0 1.0230 0.0030 19.4 1.0200 59.3 10.19 10.24156 10:05:00 AM 15.0 1.0215 0.0030 19.2 1.0185 54.9 10.60 10.29261 10:20:00 AM 30.0 1.0200 0.0030 19.1 1.0170 50.4 11.00 10.31830 10:50:00 AM 60.0 1.0180 0.0030 18.9 1.0150 44.5 11.54 10.37000 2:00:00 PM 250.0 1.0150 0.0030 18.9 1.0120 35.6 12.35 10.37000	Time (minutes) Hs in Divisions Hc in Divisions Temp Tc in C R=Hs-Hc P in % L in cm η in Poise K 9:51:00 AM 1.0 1.0265 0.0030 19.5 1.0235 69.7 9.25 10.21619 0.01356378 9:55:00 AM 2.0 1.0250 0.0030 19.5 1.0220 65.3 9.65 10.21619 0.01356378 9:55:00 AM 5.0 1.0230 0.0030 19.4 1.0200 59.3 10.19 10.24156 0.01358061 10:05:00 AM 15.0 1.0215 0.0030 19.2 1.0185 54.9 10.60 10.29261 0.01361441 10:20:00 AM 30.0 1.0200 0.0030 19.1 1.0170 50.4 11.00 10.31830 0.01363139 10:50:00 AM 60.0 1.0180 0.0030 18.9 1.0150 44.5 11.54 10.37000 0.0136655 2:00:00 PM 250.0 1.0150 0.0030 18.9 1.0120 35.6 12


	Viscosiity	К
L1 cm	С	(η/(Gs-1)
3.11	-0.368622	6.00952507
3.51	-0.368622	6.00952507
4.05	-0.366142	6.02444458
4.45	-0.361170	6.05447441
4.86	-0.358677	6.06958532
5.40	-0.353679	6.10000064
6.21	-0.353679	6.10000064
7.43	-0.328423	6.25602271

Mass Retained on Seive # 10	174.225
Mass Passed Seive # 10	366.39
Jar Number	

ıta	Can Id	139
ppic Data	Empty Can Weight (g)	13.60
Hygroscopic	Can+ Air Dried Soil (g)	60.56
Hy	Can + Oven Dried Soil (g)	60.25


UNIFIED SOIL CLASSIFICATION SYSTEM

	Client	AECOM		Date November 2		23, 2021 Project Number		60646784				Gravel (%)	2	
	Sample ID	BH 9-13	SS-7	Depth (f	eet)	15-17	Project Nan	ne	Alloa Resevoiur aand Pumping Station		Sand (%)	24		
AECOM CANADA LTD. 83 Galaxy Blvd, Unit 6 Toronto, Ontario	Lab Sample No:	202111036S Project Location Peel Region,						gion, Ontario		Silt (%)	47			
Toronto, Ontano	Soil Classification	Lean Clay with Sar				and, trace gravel (CL)					Clay (%)	27		
	Figure No.			D	10	N/A	D30	0.002	D60	0.021	Cu	N/A	Сс	N/A

Hydrometer Analysis

Borehole No	BH 9-1	
Sample Id	SS-5	
Depth (feet)	8-10	
Soil Classification	Lean Clay with Sar	nd, tra

Tested by	Dharmik P				
Reviewed by	Ramana M				
Date	23-Nov-21				
race gravel (CL)					

Soil Hydrometer Used								
454 H CN#	993585	©						
131 H 3N#	51 H SN# 115105	0						

Soil Information

Liquid Limit	(LL)	
Plasticity Index	(PI)	
Specific Gravity of Soil	(Gs)	2.70
Specific Gravity of Water	(Gw)	1
Sg Correction Factor	(a)	0.989
Total Mass of sample		502.9
Soil Particles Greater Than This Are Excluded From Graph		9.50
	-	

Hydrometer Details

,	<u></u>		
Volume of Bulb	(V _B)	63.1	cm ³
Length of Bulb	(L ₂)	14.15	cm
Length from '1.0' reading to top of Bulb	(Ls)	10.5	cm
Scale Dimension	(hs)	0.27	cm/Di
Cross-sectional Area of Cylinder	(A)	28.1351	cm ²
Meniscus Correction	(Hm)	0.0005	Divisio

Calculation of Dry Soil Mass

Calculation o	Dry Soli ivi	ass	
Oven Dried Mass	(Wo)	42.04	g
Air Dried Mass	(Wa)	42.22	g
Hygroscopic Corr Factor	(F)	0.996	
Air Dried Mass in Analysis	(Ma)	50	g
Oven Dried Mass in Analysis	(Mo)	49.8	g
% Passing 2.0 mm Sieve	(P10)	95.6	
Sample Represented	(W)	52.1	g

Sieve Analysis of Retained on 2.0 mm Sieve (M2)

Sieve Size (mm)	Cummulative Mass Retained (g)	Mass Passing (g)	% Passing
75.0			
63.0			
53.0			
37.5			
26.5			
19.0			
13.2			
9.5			
4.75	7.3	495.6	98.5
2.0	22.2	480.7	95.6

Sieve Analysis of Hydrometer Material (M7)

Sieve Size (mm)	Comulative Mass Retained (g)	Mass Passing (g)	% Passing
2.00	0.0	49.8	95.6
0.850	1.2	48.5	93.2
0.425	2.4	47.4	90.9
0.25	3.6	46.2	88.7
0.106	6.3	43.4	83.4
0.075	7.5	42.3	81.2
Pass 0.075	0.5		

Percent In Suspension (P) as per Section 14.3 of ASTM D 422

P = [(100000/W) * (Gs/(Gs - Gw))] * (R - Gw) in percent (for Soil Hydrometer 151 H)

Where R = Corrected Hydrometer Reading = Hs - Hc

Hs = Actual Hydrometer Reading

Hc= Composite Correction to be determined as per Section 7 of ASTM D 422

Diameter of Soil Particles (D) as per Section 15 of ASTM D 422

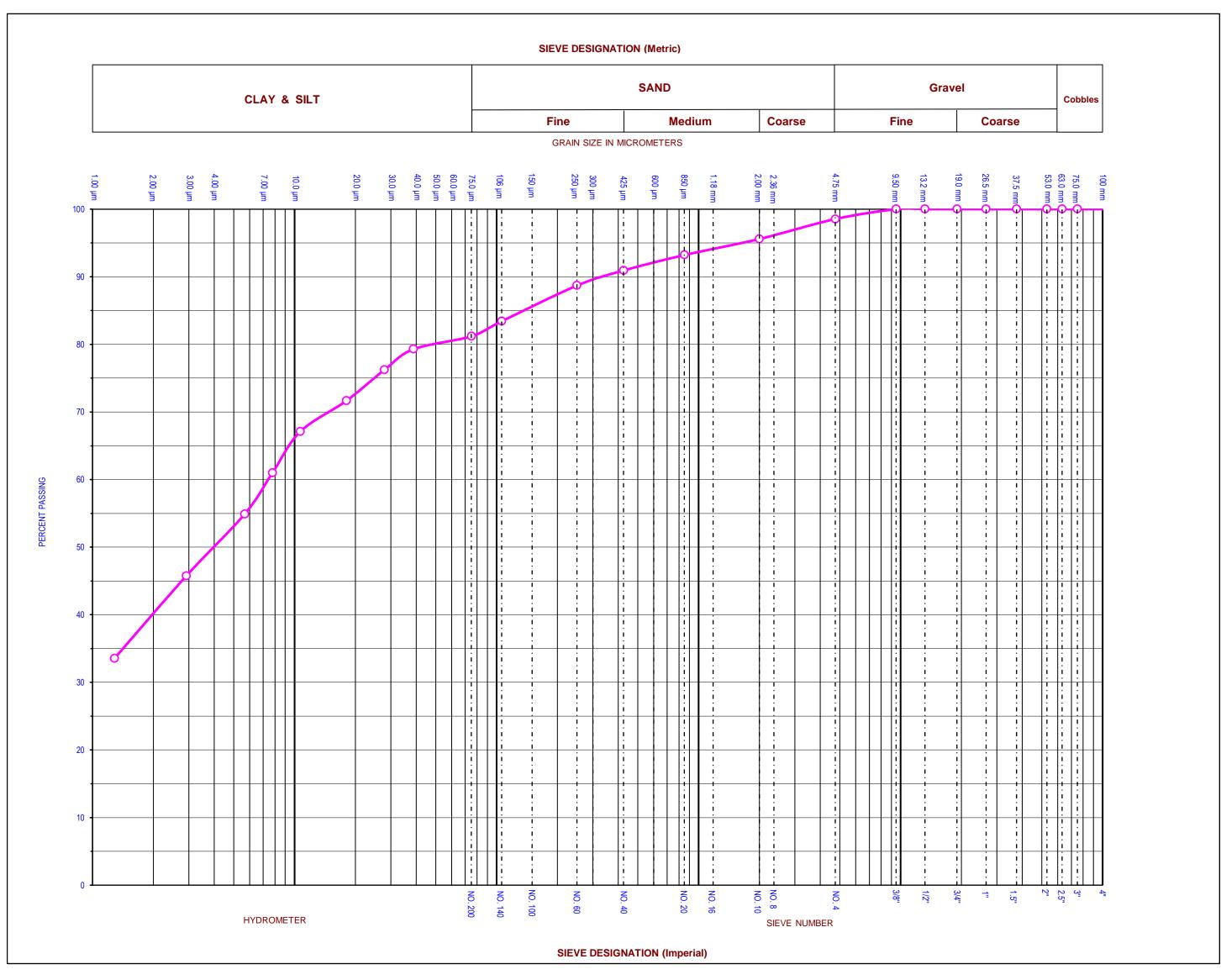
 $D = SQRT \text{ of } \{[(30*\eta)/(980*(Gs-Gw)] * (L/T)\} \text{ in mm}$

Where η= Viscosity of suspending Medium (Water) in poises

L = Effective Depth = L1+ $0.5*[L_2 - V_B/A)$] in cm

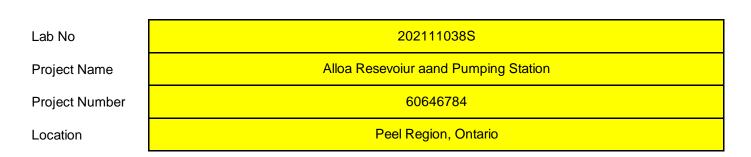
L1 = distance from the top of the bulb to Recorded Hydrometer Reading in cm

Date	Time	Elaspsed Time (minutes)	Hs in Divisions	Hc in Divisions	Temp Tc in C	R=Hs-Hc	P in %	L in cm	η in Poise	K	D in mm
24.0		(THE III DIVISIONS	10	K=110 110	7 III 70		1,		
24-Nov-21	10:11:00 AM	1.0	1.0290	0.0030	20.5	1.0260	79.3	8.38	9.96839	0.01339827	0.0388
	10:12:00 AM	2.0	1.0280	0.0030	20.5	1.0250	76.2	8.65	9.96839	0.01339827	0.0279
	10:15:00 AM	5.0	1.0265	0.0030	20.3	1.0235	71.7	9.06	10.01711	0.01343097	0.0181
	10:25:00 AM	15.0	1.0250	0.0030	20.3	1.0220	67.1	9.46	10.01711	0.01343097	0.0107
	10:40:00 AM	30.0	1.0230	0.0030	20.1	1.0200	61.0	10.00	10.06625	0.01346388	0.0078
	11:10:00 AM	60.0	1.0210	0.0030	19.8	1.0180	54.9	10.54	10.14075	0.0135136	0.0057
	2:20:00 PM	250.0	1.0180	0.0030	18.9	1.0150	45.7	11.35	10.37000	0.0136655	0.0029
25-Nov-21	10:10:00 AM	1440.0	1.0140	0.0030	18.0	1.0110	33.5	12.43	10.60820	0.01382156	0.0013


	Viscosiity	K
L1 cm	С	(η/(Gs-1)
2.43	-0.393177	5.86375637
2.70	-0.393177	5.86375637
3.11	-0.388301	5.89241899
3.51	-0.388301	5.89241899
4.05	-0.383407	5.92132474
4.59	-0.376034	5.96514456
5.40	-0.353679	6.10000064
6.48	-0.330968	6.24011988

Mass Retained on Seive # 10	178.05
Mass Passed Seive # 10	324.86
Jar Number	

Data	Can Id	61
	Empty Can Weight (g)	13.50
Hygroscopic	Can+ Air Dried Soil (g)	55.72
Hy	Can + Oven Dried Soil (g)	55.54


UNIFIED SOIL CLASSIFICATION SYSTEM

	Client	AECOM		Date Novem	per 23, 2021	Project Nu	roject Number 60646784			Gravel (%)	1		
	Sample ID	BH 9-1	SS-5	Depth (feet)	8-10	Project Na	me	Alloa Resevoiur aand Pumping Station		Sand (%)	18		
AECOM CANADA LTD. 83 Galaxy Blvd, Unit 6 Toronto, Ontario	Lab Sample No:	202111037S				Project Loc	cation	Peel Region, Ontario			Silt (%)	42	
roronto, Ontario	Soil Classification		Lean Clay with Sand, trace gravel (CL)							Clay (%)	39		
	Figure No.			D10	N/A	D30	N/A	D60	0.007	Cu	N/A	Сс	N/A

Hydrometer Analysis

		_
Borehole No	BH 9-1	Tested b
Sample Id	SS-3	Reviewed b
Depth (feet)	4-6	Dat
Soil Classification	Sandy Lean Clay	y, trace gravel (CL)

Dharmik P	•	Soil Hydrometer Used							
Ramana M		151 H SN#	993585	0					
22-Nov-21		131 H 3N#	115105	•					

Soil Information

Liquid Limit	(LL)	
Plasticity Index	(PI)	
Specific Gravity of Soil	(Gs)	2.70
Specific Gravity of Water	(Gw)	1
Sg Correction Factor	(a)	0.989
Total Mass of sample		661.9
Soil Particles Greater Than This Are Excluded From Graph	1	9.50
		_

Hydrometer Details

Volume of Bulb	(V _B)	61.1	cm ³
Length of Bulb	(L ₂)	14.44	cm
Length from '1.0' reading to top of Bulb	(Ls)	10.17	cm
Scale Dimension	(hs)	0.27	cm/Di
Cross-sectional Area of Cylinder	(A)	28.3535	cm ²
Meniscus Correction	(Hm)	0.0005	Divisio

Calculation of Dry Soil Mass

Calculation of	T Dry Soli Mi	ass	_
Oven Dried Mass	(Wo)	69.929	g
Air Dried Mass	(Wa)	70.144	g
Hygroscopic Corr Factor	(F)	0.997	
Air Dried Mass in Analysis	(Ma)	50	g
Oven Dried Mass in Analysis	(Mo)	49.8	g
% Passing 2.0 mm Sieve	(P10)	91.8	
Sample Represented	(W)	54.3	g

Sieve Analysis of Retained on 2.0 mm Sieve (M2)

Sieve Size (mm)	Cummulative Mass Retained (g)	Mass Passing (g)	% Passing
75.0			
63.0			
53.0			
37.5			
26.5			
19.0			
13.2			
9.5			
4.75	21.1	640.8	96.8
2.0	54.1	607.8	91.8

Sieve Analysis of Hydrometer Material (M7)

			,
Sieve Size (mm)	Comulative Mass Retained (g)	Mass Passing (g)	% Passing
2.00	0.0	49.8	91.8
0.850	2.0	47.8	88.1
0.425	4.1	45.7	84.2
0.25	6.1	43.8	80.6
0.106	11.0	38.9	71.6
0.075	13.0	36.9	68.0
Pass 0.075	1.1		

Percent In Suspension (P) as per Section 14.3 of ASTM D 422

P = [(100000/W) * (Gs/(Gs - Gw))] * (R - Gw) in percent (for Soil Hydrometer 151 H)

Where R = Corrected Hydrometer Reading = Hs - Hc

Hs = Actual Hydrometer Reading

Hc= Composite Correction to be determined as per Section 7 of ASTM D 422

Diameter of Soil Particles (D) as per Section 15 of ASTM D 422

 $D = SQRT \text{ of } \{[(30*\eta)/(980*(Gs-Gw)] * (L/T)\} \text{ in mm}$

Where η= Viscosity of suspending Medium (Water) in poises

L = Effective Depth = L1+ $0.5*[L_2 - V_B/A)$] in cm

L1 = distance from the top of the bulb to Recorded Hydrometer Reading in cm

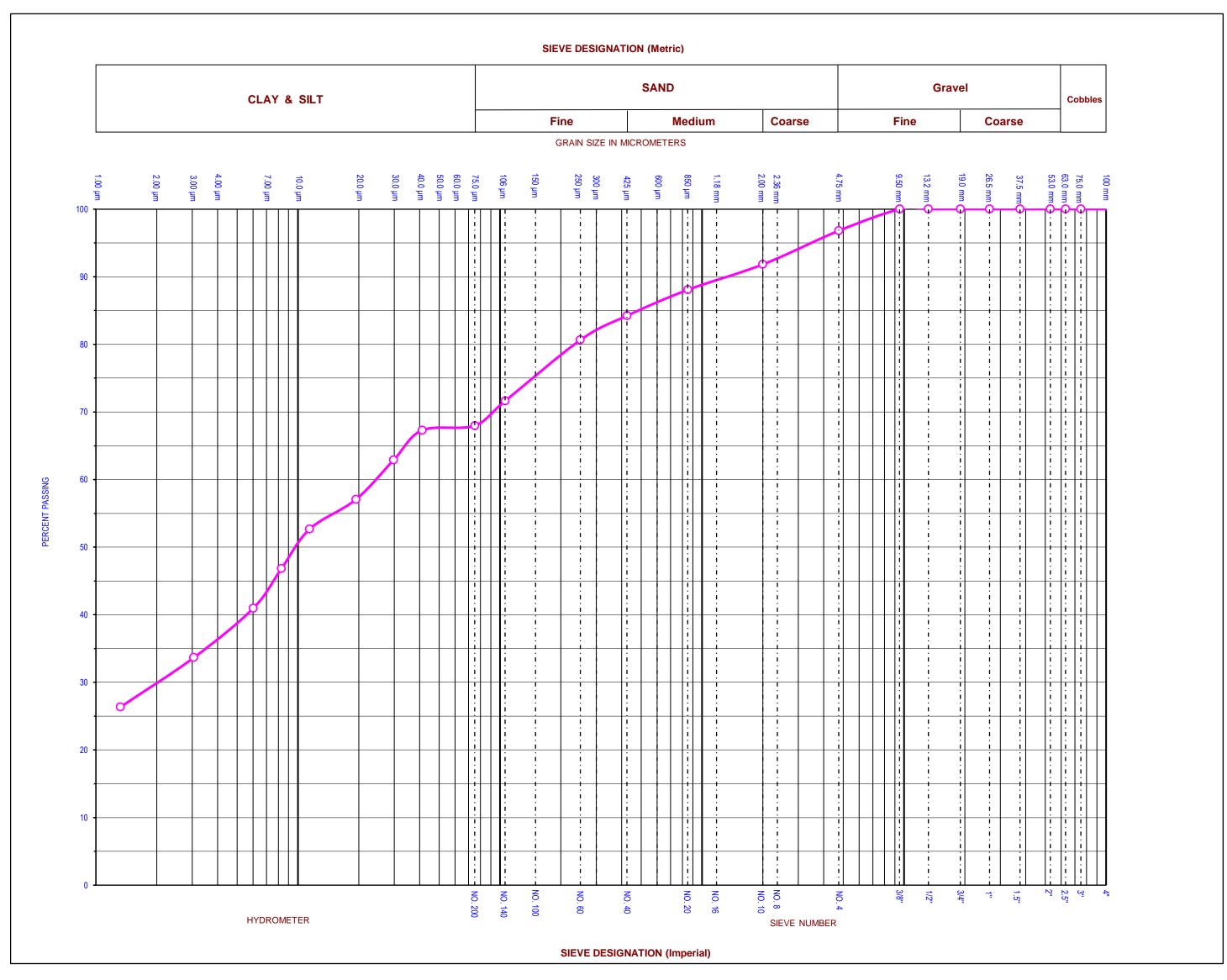
T = Time in minutes

Tested by

Date

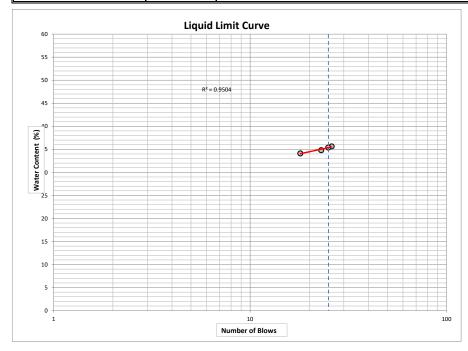
Reviewed by

Data	Time	Elaspsed Time	He in Divinione	He in Divisions	Town To in C	D. Ha Ha	D in 0/	l in one	n in Daine	W	D in man
Date	Time	(minutes)	HS IN DIVISIONS	Hc in Divisions	Temp Tc in C	R=Hs-Hc	P in %	L in cm	η in Poise	, n	D in mm
23-Nov-21	10:29:00 AM	1.0	1.0260	0.0030	20.1	1.0230	67.3	9.38	10.06625	0.01346388	0.0412
	10:30:00 AM	2.0	1.0245	0.0030	20.1	1.0215	62.9	9.79	10.06625	0.01346388	0.0298
	10:33:00 AM	5.0	1.0225	0.0030	20.0	1.0195	57.1	10.33	10.09098	0.0134804	0.0194
	10:43:00 AM	15.0	1.0210	0.0030	19.9	1.0180	52.7	10.73	10.11581	0.01349698	0.0114
	10:58:00 AM	30.0	1.0190	0.0030	19.8	1.0160	46.8	11.27	10.14075	0.0135136	0.0083
	11:28:00 AM	60.0	1.0170	0.0030	19.6	1.0140	41.0	11.81	10.19094	0.013547	0.0060
	2:38:00 PM	250.0	1.0145	0.0030	19.0	1.0115	33.6	12.49	10.34409	0.01364842	0.0031
24-Nov-21	10:28:00 AM	1440.0	1.0120	0.0030	18.0	1.0090	26.3	13.16	10.60820	0.01382156	0.0013


K
/(Gs-1)
213247
213247
358695
504760
651445
946687
847606
401198
9

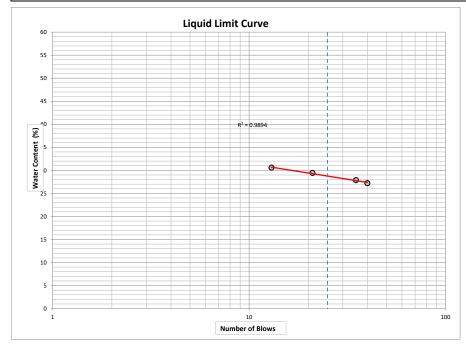
Mass Retained on Seive # 10	427.72
Mass Passed Seive # 10	234.2
Jar Number	

Data	Can Id	131
	Empty Can Weight (g)	13.75
Hygroscopic	Can+ Air Dried Soil (g)	83.90
H	Can + Oven Dried Soil (g)	83.68



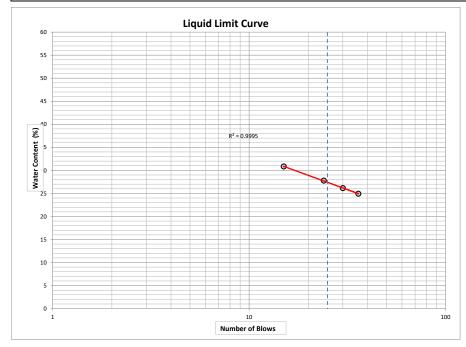
UNIFIED SOIL CLASSIFICATION SYSTEM

	Client	AECOM		Date November	r 22, 2021	22, 2021 Project Number		60646784			Gravel (%)	3	
	Sample ID	BH 9-1	SS-3	Depth (feet)	4-6	Project Name Alloa Resevoiur aand F		nd Pumping	Station	Sand (%)	29		
AECOM CANADA LTD. 83 Galaxy Blvd, Unit 6 Toronto, Ontario	Lab Sample No:			Project Loc	ation	Peel Region, Ontario			Silt (%)	39			
Toronto, Ontano	Soil Classification				Sandy Lean Cla	y, trace grave	el (CL)					Clay (%)	29
	Figure No.			D10	N/A	D30	0.002	D60	0.025	Cu	N/A	Сс	N/A


						Λ=(:OM					
	_	AECON	I CAN	<u>ADA L</u>	TD.	<u> </u>	.0//					
	DETERMINATION OF LIQUID LIMIT											
Client	AECOM	Project Number	60646784		Date	November 26	, 2021					
Project Name	Allon & Pumping Station	n			Tested By							
Location					Reviewed By	Ramana M						
Borehole Number	BH 9-1	Sample Id	SS5	Depth (feet)	8-10	Lab Number	202111037S					
Des	scription	Formula	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6				
Container Number			96	142	51	95						
Weight of	Empty Container (g) W ₁		13.45	13.76	13.44	13.70						
Weight of Co	ntainer + Wet Soil (g) W ₂		22.31	25.11	24.30	21.64						
Weight of Co	ntainer + Dry Soil(g) W ₃		20.02	22.13	21.46	19.62						
	Weight of Water (g) W _w	$W_w = W_2 - W_3$	2.29	2.98	2.84	2.02						
V	Veight of Dry Soil (g) W _s	W _s = W ₃ -W ₁	6.57	8.37	8.02	5.92						
Water Content (%) w = (W _w / W _s) * 100		34.81	35.63	35.39	34.12		_					
	Number of Blows		23	26	25	18						
Liqu	id Limit (%) From Graph				35	.4						

	1	1		1						
		AECO	M CAN	ADA L	TD.	AEC	OM			
	DETERMINATION OF PLASTIC LIMIT									
Client	AECOM	Project Number	60646784		Date	November 26,	2021			
Project Name	Allon & Pumping Stati	on			Tested By	0				
Location	0				Reviewed By	Ramana M				
Borehole Number	BH 9-1	Sample Id	SS5	Depth (feet)	8-10	Lab Number	202111037S			
Des	cription	Formula	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6		
	Container Number		178	167	105					
Weight of	Empty Container (g) W ₁		13.529	13.67	13.79					
Weight of Co	ntainer + Wet Soil (g) W ₂		20.593	19.18	21.72					
Weight of Co	ntainer + Dry Soil(g) W ₃		19.13	18.04	20.11					
	Weight of Water (g) W _w	$W_w = W_2 - W_3$	1.46	1.14	1.61					
Weight of Dry Soil (g) W_s $W_s = W_3 - W_1$			5.60	4.37	6.32					
	Plastic Limit (%) w = (W _w / W _s) * 100			25.98	25.45					
Ave	Average Plastic Limit (%) w _p 25.85									

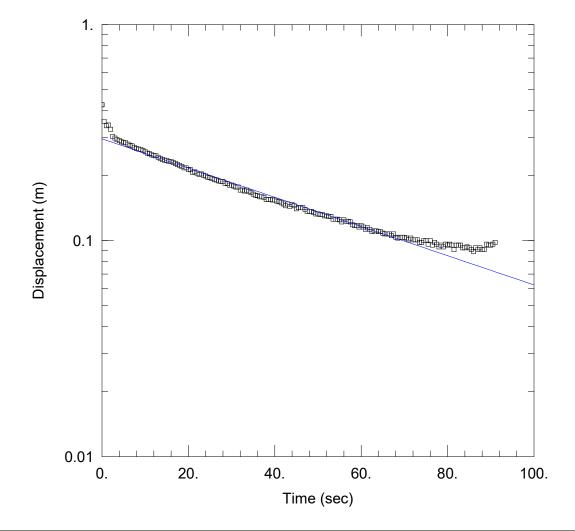
Result Summary						
Liquid Limit (%)	35					
Plastic Limit (%)	26					
Plasticity Index (%)	9					
Sample status	Plastic					


	1					A =/	2014					
		AECON	I CAN	ADA L	TD.	AEC	.OM					
	DETERMINATION OF LIQUID LIMIT											
Client	AECOM	Project Number	60646784		Date	November 26	, 2021					
Project Name	Allon & Pumping Station	n			Tested By							
Location					Reviewed By	Ramana M						
Borehole Number	ВН 9-3	Sample Id	SS7	Depth (feet)	15-17	Lab Number	202111036S					
Des	scription	Formula	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6				
	Container Number		111	54	82	74						
Weight of	Empty Container (g) W ₁		13.62	13.64	13.54	14.15						
Weight of Co	ntainer + Wet Soil (g) W ₂		28.83	27.25	24.46	25.41						
Weight of Co	ntainer + Dry Soil(g) W ₃		25.27	24.34	22.08	22.85						
	Weight of Water (g) W _w	$W_w = W_2 - W_3$	3.56	2.91	2.38	2.56						
•	Weight of Dry Soil (g) Ws	W _s = W ₃ -W ₁	11.65	10.70	8.54	8.70						
Water Content (%) w = (W _w / W _s) * 100		30.59	27.22	27.88	29.44							
Number of Blows			13	40	35	21						
Liqu	id Limit (%) From Graph				28	.8						

	1	1		1						
		AECO	M CAN	ADA L	TD.	AEC	OM			
	DETERMINATION OF PLASTIC LIMIT									
Client	AECOM	Project Number	60646784		Date	November 26,	2021			
Project Name	Allon & Pumping Stati	on			Tested By	0				
Location	0				Reviewed By	Ramana M				
Borehole Number	BH 9-3	Sample Id	SS7	Depth (feet)	15-17	Lab Number	202111036S			
Des	cription	Formula	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6		
	Container Number		129	176	136					
Weight of	Empty Container (g) W ₁		13.596	13.61	13.71					
Weight of Cor	ntainer + Wet Soil (g) W ₂		20.522	18.32	20.18					
Weight of Co	ntainer + Dry Soil(g) W ₃		19.26	17.46	19.01					
	Weight of Water (g) W _w	$W_w = W_2 - W_3$	1.26	0.86	1.17					
Weight of Dry Soil (g) W _s W _s = W ₃ -W ₁			5.66	3.85	5.30					
	Plastic Limit (%) w = (W _w / W _s) * 100			22.27	22.15					
Aver	rage Plastic Limit (%) w _P	Average Plastic Limit (%) w _P 22.23								

Result Summary							
Liquid Limit (%)	29						
Plastic Limit (%)	22						
Plasticity Index (%)	7						
Sample status	Plastic						

		1				A =/						
		AECON	I CAN	ADA L	TD.	AEC	:OM					
	DETERMINATION OF LIQUID LIMIT											
Client	AECOM	Project Number	60646784		Date	November 26	, 2021					
Project Name	Allon & Pumping Statio	n			Tested By							
Location	Region of Peel, Ontario	,			Reviewed By	Ramana M						
Borehole Number	BH 9-2	Sample Id	SS8	Depth (feet)	20	Lab Number	202111035S					
Des	scription	Formula	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6				
	Container Number		153	59	83	103						
Weight of	Empty Container (g) W ₁		13.57	13.55	13.73	13.63						
Weight of Co	ntainer + Wet Soil (g) W ₂		29.72	27.78	24.94	27.86						
Weight of Co	ontainer + Dry Soil(g) W ₃		26.21	24.94	22.30	24.91						
	Weight of Water (g) W _w	$W_w = W_2 - W_3$	3.51	2.84	2.64	2.95						
١	Weight of Dry Soil (g) W _s	W _s = W ₃ -W ₁	12.64	11.39	8.57	11.28						
Water Content (%) w = (W _w / W _s) * 100		w = (W _w / W _s) * 100	27.78	24.93	30.84	26.14						
Number of Blows			24	36	15	30						
Liqu	id Limit (%) From Graph				27	.4						


	1		1	1	1				
		AECO	M CAN	ADA L	TD.	AEC	OM		
DETERMINATION OF PLASTIC LIMIT									
Client	AECOM	Project Number	60646784		Date	November 26,	2021		
Project Name	Allon & Pumping Stati	on			Tested By	0			
Location	Region of Peel, Ontari	0			Reviewed By	Ramana M			
Borehole Number	BH 9-2	Sample Id	SS8	Depth (feet)	20	Lab Number	202111035S		
Des	cription	Formula	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6	
	Container Number		90	172	107				
Weight of	Empty Container (g) W ₁		13.571	13.49	13.67				
Weight of Co	ntainer + Wet Soil (g) W ₂		20.003	22.41	22.37				
Weight of Co	ntainer + Dry Soil(g) W ₃		18.97	20.96	20.95				
	Weight of Water (g) W _w	$W_w = W_2 - W_3$	1.03	1.45	1.42				
\	Weight of Dry Soil (g) W_s $W_s = W_3 - W_1$			7.47	7.28				
	Plastic Limit (%) w = (W _w / W _s) * 100				19.46				
Ave	rage Plastic Limit (%) w _P				19	.35			

Result Summary	
Liquid Limit (%)	27
Plastic Limit (%)	19
Plasticity Index (%)	8
Sample status	Plastic

Appendix D

Single Well Response Test Analysis Reports

SITE 3 - WEST BRAMPTON RESERVOIR AND PUMPING STATION - BH-3-4 - RISING HEAD TEST

Data Set: C:\...\BH-3-4 RHT #1.aqt

Date: 03/03/22 Time: 16:29:02

PROJECT INFORMATION

Company: AECOM Canada Ltd.

Client: Peel Region
Project: 60646784
Location: Site 3
Test Well: BH-3-4
Test Date: 2022-02-11

AQUIFER DATA

Saturated Thickness: 1.02 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (BH-3-4)

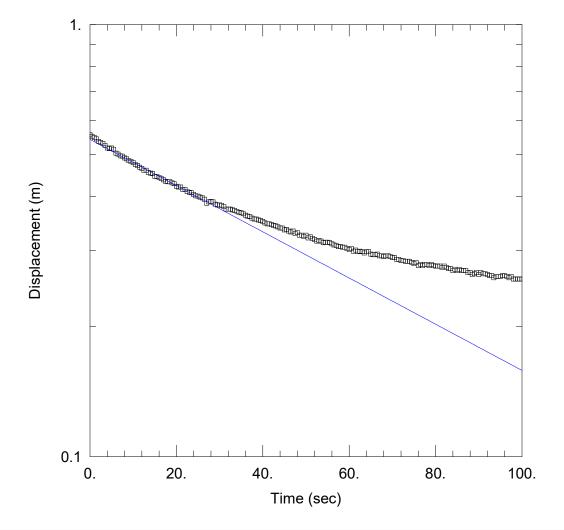
Initial Displacement: 0.4253 m

Static Water Column Height: 1.02 m

Total Well Penetration Depth: 1.02 m

Screen Length: 1.02 m Well Radius: 0.102 m

Casing Radius: 0.025 m


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 7.875E-6 m/sec

y0 = 0.2958 m

SITE 3 - WEST BRAMPTON RESERVOIR AND PUMPING STATION - BH-3-4 - RISING HEAD TEST

Data Set: C:\...\BH-3-4 RHT #2.aqt

Date: 03/03/22 Time: 16:33:50

PROJECT INFORMATION

Company: AECOM Canada Ltd.

Client: Peel Region
Project: 60646784
Location: Site 3
Test Well: BH-3-4
Test Date: 2022-02-11

AQUIFER DATA

Saturated Thickness: 1.02 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (BH-3-4)

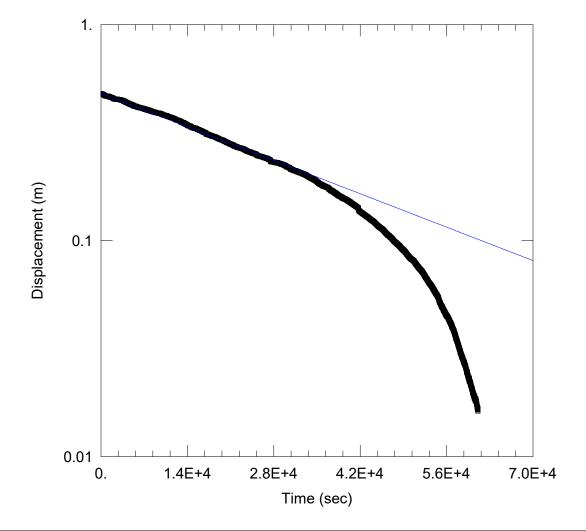
Initial Displacement: 0.5555 m

Static Water Column Height: 1.02 m

Total Well Penetration Depth: 1.02 m

Screen Length: 1.02 m Well Radius: 0.102 m

Casing Radius: 0.025 m


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 6.225E-6 m/sec

y0 = 0.5422 m

SITE 6 - TULLAMORE RESERVOIR AND PUMPING STATION - BH6-1/MW - RISING HEAD TEST

Data Set: C:\...\BH6-1 RHT.aqt

Date: 03/16/22 Time: 13:32:11

PROJECT INFORMATION

Company: AECOM Canada Ltd.

Client: Peel Region Project: 60646784 Location: Site 6

Test Well: BH6-1/MW Test Date: 2022-03-07

AQUIFER DATA

Saturated Thickness: 0.58 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (BH6-1/MW)

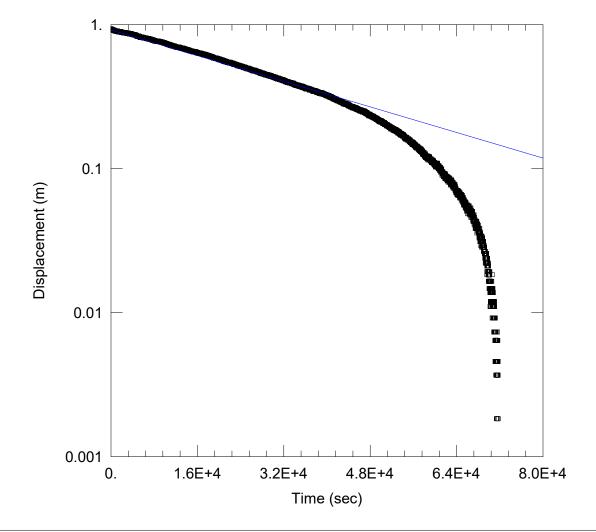
Initial Displacement: 0.48 m

Static Water Column Height: 0.58 m

Total Well Penetration Depth: 0.58 m

Screen Length: 0.58 m Well Radius: 0.076 m

Casing Radius: 0.025 m


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 1.991E-8 m/sec

y0 = 0.4798 m

SITE 9 - ALLOA RESERVOIR AND PUMPING STATION - BH9-3/MW - RISING HEAD TEST

Data Set: C:\...\BH9-3 RHT.aqt

Date: 03/16/22 Time: 13:26:32

PROJECT INFORMATION

Company: AECOM Canada Ltd.

Client: Peel Region
Project: 60646784
Location: Site 9
Test Well: BH9-3/MW
Test Date: 2022-03-07

AQUIFER DATA

Saturated Thickness: 1.06 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (BH9-3/MW)

Initial Displacement: 0.935 m Static Water Column Height: 1.06 m

Total Well Penetration Depth: 1.06 m Screen Length: 1.06 m Casing Radius: 0.025 m Well Radius: 0.064 m

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 1.552E-8 m/sec y0 = 0.9145 m

Appendix **E**

Groundwater Quality Results – Laboratory Certificate of Analysis

Your Project #: 60646784

Site#: SITE 3

Site Location: PEEL REGION - WEST BRAMPTON RESERVOIR &

PLUMPING STATION

Your C.O.C. #: 865657-01-01

Attention: Brian Holden

AECOM Canada Ltd 50 Sportsworld Crossing Rd Suite 290 Kitchener, ON Canada N2P 0A4

Report Date: 2022/03/23

Report #: R7054869 Version: 4 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C237378 Received: 2022/02/11, 13:57

Sample Matrix: Water # Samples Received: 1

·		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity	1	N/A	2022/02/14	CAM SOP-00448	SM 23 2320 B m
Carbonate, Bicarbonate and Hydroxide	1	N/A	2022/02/14	CAM SOP-00102	APHA 4500-CO2 D
Chloride by Automated Colourimetry	1	N/A	2022/02/14	CAM SOP-00463	SM 23 4500-Cl E m
Conductivity	1	N/A	2022/02/14	CAM SOP-00414	SM 23 2510 m
Dissolved Organic Carbon (DOC) (1)	1	N/A	2022/02/14	CAM SOP-00446	SM 23 5310 B m
Hardness (calculated as CaCO3)	1	N/A	2022/02/16	CAM SOP	SM 2340 B
				00102/00408/00447	
Dissolved Metals by ICPMS	1	N/A	2022/02/14	CAM SOP-00447	EPA 6020B m
Ion Balance (% Difference)	1	N/A	2022/02/16		
Anion and Cation Sum	1	N/A	2022/02/16		
Total Ammonia-N	1	N/A	2022/02/15	CAM SOP-00441	USGS I-2522-90 m
Nitrate & Nitrite as Nitrogen in Water (2)	1	N/A	2022/02/15	CAM SOP-00440	SM 23 4500-NO3I/NO2B
рН	1	2022/02/12	2022/02/14	CAM SOP-00413	SM 4500H+ B m
Orthophosphate	1	N/A	2022/02/14	CAM SOP-00461	EPA 365.1 m
Sat. pH and Langelier Index (@ 20C)	1	N/A	2022/02/16		Auto Calc
Sat. pH and Langelier Index (@ 4C)	1	N/A	2022/02/16		Auto Calc
Sulphate by Automated Colourimetry	1	N/A	2022/02/14	CAM SOP-00464	EPA 375.4 m
Total Dissolved Solids (TDS calc)	1	N/A	2022/02/16		Auto Calc

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA. Where applicable, the analytical testing herein was performed in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. All methodologies comply with this document and are validated for use in the laboratory. The methods and techniques employed in this analysis conform to the performance criteria (detection limits, accuracy and precision) as outlined in the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. Bureau Veritas is accredited by SCC (Lab ID 97) for all specific parameters as required by Ontario Regulation 153/04.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are

Your Project #: 60646784

Site#: SITE 3

Site Location: PEEL REGION - WEST BRAMPTON RESERVOIR &

PLUMPING STATION

Your C.O.C. #: 865657-01-01

Attention: Brian Holden

AECOM Canada Ltd 50 Sportsworld Crossing Rd Suite 290 Kitchener, ON Canada N2P 0A4

Report Date: 2022/03/23

Report #: R7054869 Version: 4 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C237378 Received: 2022/02/11, 13:57

reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.
- (2) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

Encryption Key

Thru Senior Project 23 Mar 2022 1

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Marijane Cruz, Senior Project Manager Email: Marijane.Cruz@bureauveritas.com

Phone# (905)817-5756

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Site Location: PEEL REGION - WEST BRAMPTON RESERVOIR &

PLUMPING STATION

Sampler Initials: DP

RCAP - COMPREHENSIVE (WATER)

Bureau Veritas ID			RVK190		
Sampling Date			2022/02/11		
, 5			10:30		
COC Number			865657-01-01		
	UNITS	Criteria	BH-3-4	RDL	QC Batch
Calculated Parameters					
Anion Sum	me/L	-	15.4	N/A	7829376
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	-	340	1.0	7829230
Calculated TDS	mg/L	-	850	1.0	7829379
Carb. Alkalinity (calc. as CaCO3)	mg/L	-	<1.0	1.0	7829230
Cation Sum	me/L	-	15.2	N/A	7829376
Hardness (CaCO3)	mg/L	-	670	1.0	7829352
Ion Balance (% Difference)	%	-	0.770	N/A	7829375
Langelier Index (@ 20C)	N/A	-	0.618		7829377
Langelier Index (@ 4C)	N/A	-	0.372		7829378
Saturation pH (@ 20C)	N/A	-	6.70		7829377
Saturation pH (@ 4C)	N/A	-	6.94		7829378
Inorganics					
Total Ammonia-N	mg/L	-	0.29	0.050	7834790
Conductivity	umho/cm	-	1500	1.0	7831193
Dissolved Organic Carbon	mg/L	-	1.5	0.40	7830114
Orthophosphate (P)	mg/L	-	<0.010	0.010	7831249
рН	рН	6.5:8.5	7.31		7830387
Dissolved Sulphate (SO4)	mg/L	-	130	1.0	7831275
Alkalinity (Total as CaCO3)	mg/L	-	340	1.0	7831188
Dissolved Chloride (Cl-)	mg/L	-	210	3.0	7831168
Nitrite (N)	mg/L	-	<0.010	0.010	7831015
Nitrate (N)	mg/L	-	1.19	0.10	7831015
Nitrate + Nitrite (N)	mg/L	-	1.19	0.10	7831015
Metals					
Dissolved Aluminum (Al)	ug/L	-	<4.9	4.9	7831166
Dissolved Antimony (Sb)	ug/L	20	<0.50	0.50	7831166
Dissolved Arsenic (As)	ug/L	100	<1.0	1.0	7831166
Dissolved Barium (Ba)	ug/L	-	93	2.0	7831166
Dissolved Beryllium (Be)	ug/L	11	<0.40	0.40	7831166
Dissolved Bismuth (Bi)	ug/L	_	<1.0	1.0	7831166

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Provincial Water Quality Objectives

Ref. to MOEE Water Management document dated Feb.1999

N/A = Not Applicable

Site Location: PEEL REGION - WEST BRAMPTON RESERVOIR &

PLUMPING STATION

Sampler Initials: DP

RCAP - COMPREHENSIVE (WATER)

Bureau Veritas ID			RVK190		
Sampling Date			2022/02/11		
			10:30		
COC Number			865657-01-01		
	UNITS	Criteria	BH-3-4	RDL	QC Batch
Dissolved Boron (B)	ug/L	200	28	10	7831166
Dissolved Cadmium (Cd)	ug/L	0.2	<0.090	0.090	7831166
Dissolved Calcium (Ca)	ug/L	-	200000	200	7831166
Dissolved Cesium (Cs)	ug/L	-	<0.20	0.20	7831166
Dissolved Chromium (Cr)	ug/L	-	<5.0	5.0	7831166
Dissolved Cobalt (Co)	ug/L	0.9	<0.50	0.50	7831166
Dissolved Copper (Cu)	ug/L	5	2.8	0.90	7831166
Dissolved Iron (Fe)	ug/L	300	<100	100	7831166
Dissolved Lead (Pb)	ug/L	5	<0.50	0.50	7831166
Dissolved Lithium (Li)	ug/L	-	9.5	5.0	7831166
Dissolved Magnesium (Mg)	ug/L	-	40000	50	7831166
Dissolved Manganese (Mn)	ug/L	-	330	2.0	7831166
Dissolved Molybdenum (Mo)	ug/L	40	<0.50	0.50	7831166
Dissolved Nickel (Ni)	ug/L	25	2.0	1.0	7831166
Dissolved Phosphorus (P)	ug/L	-	<100	100	7831166
Dissolved Potassium (K)	ug/L	-	2400	200	7831166
Dissolved Rubidium (Rb)	ug/L	-	1.8	0.20	7831166
Dissolved Selenium (Se)	ug/L	100	<2.0	2.0	7831166
Dissolved Silicon (Si)	ug/L	-	6500	50	7831166
Dissolved Silver (Ag)	ug/L	0.1	<0.090	0.090	7831166
Dissolved Sodium (Na)	ug/L	-	42000	100	7831166
Dissolved Strontium (Sr)	ug/L	-	540	1.0	7831166
Dissolved Tellurium (Te)	ug/L	-	<1.0	1.0	7831166
Dissolved Thallium (Tl)	ug/L	0.3	<0.050	0.050	7831166
Dissolved Thorium (Th)	ug/L	-	<2.0	2.0	7831166
Dissolved Tin (Sn)	ug/L	-	<1.0	1.0	7831166
Dissolved Titanium (Ti)	ug/L	-	<5.0	5.0	7831166
Dissolved Tungsten (W)	ug/L	30	<1.0	1.0	7831166
Dissolved Uranium (U)	ug/L	5	2.5	0.10	7831166
Dissolved Vanadium (V)	ug/L	6	<0.50	0.50	7831166
Dissolved Zinc (Zn)	ug/L	30	<5.0	5.0	7831166
Dissolved Zirconium (Zr)	ug/L	4	<1.0	1.0	7831166

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Provincial Water Quality Objectives

Ref. to MOEE Water Management document dated Feb.1999

Report Date: 2022/03/23

AECOM Canada Ltd Client Project #: 60646784

Site Location: PEEL REGION - WEST BRAMPTON RESERVOIR &

PLUMPING STATION

Sampler Initials: DP

TEST SUMMARY

Bureau Veritas ID: RVK190 Sample ID: BH-3-4 **Collected:** 2022/02/11

Shipped:

Matrix: Water

Received: 2022/02/11

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	7831188	N/A	2022/02/14	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	7829230	N/A	2022/02/14	Automated Statchk
Chloride by Automated Colourimetry	KONE	7831168	N/A	2022/02/14	Alina Dobreanu
Conductivity	AT	7831193	N/A	2022/02/14	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	7830114	N/A	2022/02/14	Anna-Kay Gooden
Hardness (calculated as CaCO3)		7829352	N/A	2022/02/16	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	7831166	N/A	2022/02/14	Nan Raykha
Ion Balance (% Difference)	CALC	7829375	N/A	2022/02/16	Automated Statchk
Anion and Cation Sum	CALC	7829376	N/A	2022/02/16	Automated Statchk
Total Ammonia-N	LACH/NH4	7834790	N/A	2022/02/15	Amanpreet Sappal
Nitrate & Nitrite as Nitrogen in Water	LACH	7831015	N/A	2022/02/15	Chandra Nandlal
рН	AT	7830387	2022/02/12	2022/02/14	Taslima Aktar
Orthophosphate	KONE	7831249	N/A	2022/02/14	Avneet Kour Sudan
Sat. pH and Langelier Index (@ 20C)	CALC	7829377	N/A	2022/02/16	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	7829378	N/A	2022/02/16	Automated Statchk
Sulphate by Automated Colourimetry	KONE	7831275	N/A	2022/02/14	Alina Dobreanu
Total Dissolved Solids (TDS calc)	CALC	7829379	N/A	2022/02/16	Automated Statchk

Site Location: PEEL REGION - WEST BRAMPTON RESERVOIR &

PLUMPING STATION

Sampler Initials: DP

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 4.7°C

Revised Report (2022/03/23): Results have been split onto separate reports per client request.

Revised Report (2022/02/28): Reg 153 criteria and PWQO guidelines aadded per client request.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

AECOM Canada Ltd Client Project #: 60646784

PEEL REGION - WEST BRAMPTON RESERVOIR & Site Location: PLUMPING STATION

Sampler Initials: DP

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPI	D I
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
7830114	Dissolved Organic Carbon	2022/02/14	98	80 - 120	96	80 - 120	<0.40	mg/L	NC (1)	20
7830387	рН	2022/02/14			102	98 - 103			0.54 (1)	N/A
7831015	Nitrate (N)	2022/02/15	108	80 - 120	103	80 - 120	<0.10	mg/L	1.7 (1)	20
7831015	Nitrite (N)	2022/02/15	107	80 - 120	106	80 - 120	<0.010	mg/L	NC (1)	20
7831166	Dissolved Aluminum (Al)	2022/02/14	98	80 - 120	97	80 - 120	<4.9	ug/L	NC (1)	20
7831166	Dissolved Antimony (Sb)	2022/02/14	103	80 - 120	102	80 - 120	<0.50	ug/L	NC (1)	20
7831166	Dissolved Arsenic (As)	2022/02/14	96	80 - 120	98	80 - 120	<1.0	ug/L	NC (1)	20
7831166	Dissolved Barium (Ba)	2022/02/14	99	80 - 120	100	80 - 120	<2.0	ug/L	NC (1)	20
7831166	Dissolved Beryllium (Be)	2022/02/14	95	80 - 120	97	80 - 120	<0.40	ug/L	NC (1)	20
7831166	Dissolved Bismuth (Bi)	2022/02/14	89	80 - 120	97	80 - 120	<1.0	ug/L		
7831166	Dissolved Boron (B)	2022/02/14	90	80 - 120	94	80 - 120	<10	ug/L	3.1 (1)	20
7831166	Dissolved Cadmium (Cd)	2022/02/14	98	80 - 120	99	80 - 120	<0.090	ug/L	NC (1)	20
7831166	Dissolved Calcium (Ca)	2022/02/14	100	80 - 120	98	80 - 120	<200	ug/L	3.2 (1)	20
7831166	Dissolved Cesium (Cs)	2022/02/14	101	80 - 120	101	80 - 120	<0.20	ug/L		
7831166	Dissolved Chromium (Cr)	2022/02/14	94	80 - 120	95	80 - 120	<5.0	ug/L	NC (1)	20
7831166	Dissolved Cobalt (Co)	2022/02/14	96	80 - 120	98	80 - 120	<0.50	ug/L	NC (1)	20
7831166	Dissolved Copper (Cu)	2022/02/14	98	80 - 120	98	80 - 120	<0.90	ug/L	0.30 (1)	20
7831166	Dissolved Iron (Fe)	2022/02/14	95	80 - 120	97	80 - 120	<100	ug/L	NC (1)	20
7831166	Dissolved Lead (Pb)	2022/02/14	91	80 - 120	97	80 - 120	<0.50	ug/L	NC (1)	20
7831166	Dissolved Lithium (Li)	2022/02/14	97	80 - 120	102	80 - 120	<5.0	ug/L		
7831166	Dissolved Magnesium (Mg)	2022/02/14	96	80 - 120	98	80 - 120	<50	ug/L	6.3 (1)	20
7831166	Dissolved Manganese (Mn)	2022/02/14	96	80 - 120	98	80 - 120	<2.0	ug/L	NC (1)	20
7831166	Dissolved Molybdenum (Mo)	2022/02/14	102	80 - 120	101	80 - 120	<0.50	ug/L	NC (1)	20
7831166	Dissolved Nickel (Ni)	2022/02/14	91	80 - 120	94	80 - 120	<1.0	ug/L	NC (1)	20
7831166	Dissolved Phosphorus (P)	2022/02/14	111	80 - 120	117	80 - 120	<100	ug/L	NC (1)	20
7831166	Dissolved Potassium (K)	2022/02/14	99	80 - 120	95	80 - 120	<200	ug/L	NC (1)	20
7831166	Dissolved Rubidium (Rb)	2022/02/14	95	80 - 120	97	80 - 120	<0.20	ug/L		
7831166	Dissolved Selenium (Se)	2022/02/14	97	80 - 120	99	80 - 120	<2.0	ug/L	NC (1)	20
7831166	Dissolved Silicon (Si)	2022/02/14	98	80 - 120	98	80 - 120	<50	ug/L	2.3 (1)	20
7831166	Dissolved Silver (Ag)	2022/02/14	93	80 - 120	101	80 - 120	<0.090	ug/L	NC (1)	20

Page 7 of 11

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

QUALITY ASSURANCE REPORT(CONT'D)

AECOM Canada Ltd Client Project #: 60646784

PEEL REGION - WEST BRAMPTON RESERVOIR &

Site Location: PLUMPING STATION

Sampler Initials: DP

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RPI	<u> </u>
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
7831166	Dissolved Sodium (Na)	2022/02/14	NC	80 - 120	95	80 - 120	<100	ug/L	1.1 (1)	20
7831166	Dissolved Strontium (Sr)	2022/02/14	96	80 - 120	98	80 - 120	<1.0	ug/L	2.7 (1)	20
7831166	Dissolved Tellurium (Te)	2022/02/14	99	80 - 120	103	80 - 120	<1.0	ug/L		
7831166	Dissolved Thallium (TI)	2022/02/14	90	80 - 120	99	80 - 120	<0.050	ug/L	NC (1)	20
7831166	Dissolved Thorium (Th)	2022/02/14	96	80 - 120	101	80 - 120	<2.0	ug/L		
7831166	Dissolved Tin (Sn)	2022/02/14	100	80 - 120	101	80 - 120	<1.0	ug/L		
7831166	Dissolved Titanium (Ti)	2022/02/14	97	80 - 120	95	80 - 120	<5.0	ug/L	NC (1)	20
7831166	Dissolved Tungsten (W)	2022/02/14	95	80 - 120	100	80 - 120	<1.0	ug/L		
7831166	Dissolved Uranium (U)	2022/02/14	91	80 - 120	96	80 - 120	<0.10	ug/L	2.5 (1)	20
7831166	Dissolved Vanadium (V)	2022/02/14	97	80 - 120	97	80 - 120	<0.50	ug/L	NC (1)	20
7831166	Dissolved Zinc (Zn)	2022/02/14	95	80 - 120	97	80 - 120	<5.0	ug/L	0.037 (1)	20
7831166	Dissolved Zirconium (Zr)	2022/02/14	104	80 - 120	101	80 - 120	<1.0	ug/L		
7831168	Dissolved Chloride (Cl-)	2022/02/14	NC	80 - 120	104	80 - 120	<1.0	mg/L	1.5 (1)	20
7831188	Alkalinity (Total as CaCO3)	2022/02/14			96	85 - 115	<1.0	mg/L	0.68 (1)	20
7831193	Conductivity	2022/02/14			100	85 - 115	<1.0	umho/cm	0.50 (1)	25
7831249	Orthophosphate (P)	2022/02/14	118	75 - 125	99	80 - 120	<0.010	mg/L	NC (1)	25
7831275	Dissolved Sulphate (SO4)	2022/02/14	89	75 - 125	104	80 - 120	<1.0	mg/L	0.89 (1)	20
7834790	Total Ammonia-N	2022/02/15	NC	75 - 125	101	80 - 120	<0.050	mg/L	0.092 (1)	20

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

 $Matrix \, Spike: \, A \, sample \, to \, which \, a \, known \, amount \, of \, the \, analyte \, of \, interest \, has \, been \, added. \, Used \, to \, evaluate \, sample \, matrix \, interference. \, and \, the \, contract \, and \, contract \, and$

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Duplicate Parent ID

Site Location: PEEL REGION - WEST BRAMPTON RESERVOIR &

PLUMPING STATION

Sampler Initials: DP

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Brad Newman, B.Sc., C.Chem., Scientific Service Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

BURE/ VERIT	UU	NVOICE TO:				REPO	ORT TO:						PROJEC	T INFOR	MATION:			Laboratory Use C	Only:
any Na				Con	pany Name: AEI		da Utd-				Quotation		C203					Bureau Veritas Job #:	Bottle Order #
on;	Accounts Payal			Atte	tion: Brian	Holden					P.O. #:	и.							
SC.	50 Sportsworld Kitchener ON N		ite 290	Add		Sportswor			Suit	2290	Project:		60646						865657
	(519) 650-5313		(519) 650-342	2.4		140-1617	NEP OI	PH .			Project Na	me: Pco			tot Brev	thon Reservoir	& Funt	Piny Stappy	Project Manag
	CANSSC.E-billi	Fax:	(319) 030-342	Z 4 Tel: Ema		holden@aecor	Fax:	(Mar. 51 -	Paint	@ OL IUM	Site #:		Site	e3 mish	Puriter		1111111		Marijane Cru
E R	EGULATED DRINKIN	IG WATER OR W	VATER INTENDED	EOR HUMA	CONCLIMITION	MUCTOF	T A	CO-011 21/3	· [price)		annihina.	QUESTED (- Auditorian				-	Turnaround Time (TAT) R	equired:
	SUBMITTED ON	THE BUREAU VE	RITAS DRINKING	WATER CH	IN OF CUSTOD	/								_				Please provide advance notice for	
	ation 153 (2011)		Other Regulation	ns	Special	Instructions	circle):	77			Pkg	(BOD)		free/				Standard) TAT: ied if Rush TAT is not specified):	
	Res/Park Medic		Sanitary Sew		H WITH	The specific		7			anics) pus		u, clay	1			AT = 5-7 Working days for most tests	
	☐ Ind/Comm ☐ Coars ☐ Agri/Other ☐ For R			Bylaw			pleas g/C	HS		ater)	Inorg	Dema	sp.	(0.2 u	No.		Diease note:	Standard TAT for certain tests such as B act your Project Manager for details.	OD and Dioxins/Furans
_		PWQO	Municipality Reg 406 Tal	ple			eld Filtered (please of Metals / Hg / Cr VI	VOCs by HS & F1-F4	20	153 PCBs (Wal	als &	Oxygen	lo Sol	Engl	hens			fic Rush TAT (if applies to entire subm	ission)
		Other					Filter	3 000	PAH.	PC6	Met	NO IS	epude	Alum	mpre		Date Require		e Required:
		a on Certificate o	f Analysis (Y/N)?				Field Filtered (please	9 153	Reg 153 PAHs	153	g 153	реше	Susp	pevio	- 8		Rush Confin	maton Number:(c	all lab for #)
San	ple Barcode Label	Sample (Locat	tion) Identification	Date Sample	d Time Sampled	Matrix	L.	O.Reg	O.Re	O.Reg	O.Reg (Wtr)	Bioch	Total	Disse	RCAp		# of Bottles	Comm	ents
		Bh-3	-4	Eb 11,200	16:30	GW	+	×	×	×	×	X	*	×	X		18		
		-011 2	,	11/10/2	10.30	600	- 1	•	-	-	,		7.		^		,0		
							L. Bak												
										1									
							1 10												
	The state of the s																	J	
							A Lampe											11-Feb-22	13:57
										+-									
																		Marijane Cruz	1111
																		C237378	
_				-			- 1												
																		RJM ENV-17	87
						-				_									
										-				_		_			
							100												
	RELINQUISHED BY: (Si	10 2	Date: (YY/	_	Time	RECEIVED I	BY: (Signature/P	rint)	_	Date: (YY/	The state of the s	Tie			used and ubmitted		Labora	atory Use Only	- 1
W	oh trill o	hhenrik	22/02/	11 2	100		My	16		6416	2/11	12	(1)	not s	usmitted	Time Sensitive	Temperat	ture (°C) on Recei Custody S	eal Yes

Site Location: PEEL REGION - WEST BRAMPTON RESERVOIR &

PLUMPING STATION

Sampler Initials: DP

Exceedance Summary Table – Prov. Water Quality Obj. Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
No Exceedances						
The exceedance summ	nary table is for information purp	oses only and should	not be considered a com	orehensive listing or	statement of	conformance to
applicable regulatory g	guidelines.					

Your Project #: 60646784 Site#: SITE 6 & SITE 9

Site Location: REGION OF PEEL SNOW STORAGE

Your C.O.C. #: 868053-01-01

Attention: Brian Holden

AECOM Canada Ltd 50 Sportsworld Crossing Rd Suite 290 Kitchener, ON Canada N2P 0A4

Report Date: 2022/03/23

Report #: R7055671 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C260765 Received: 2022/03/08, 12:43

Sample Matrix: Water # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity	2	N/A	2022/03/10	CAM SOP-00448	SM 23 2320 B m
Carbonate, Bicarbonate and Hydroxide	2	N/A	2022/03/11	CAM SOP-00102	APHA 4500-CO2 D
Chloride by Automated Colourimetry	2	N/A	2022/03/14	CAM SOP-00463	SM 23 4500-Cl E m
Conductivity	2	N/A	2022/03/11	CAM SOP-00414	SM 23 2510 m
Dissolved Organic Carbon (DOC) (1)	2	N/A	2022/03/10	CAM SOP-00446	SM 23 5310 B m
Hardness (calculated as CaCO3)	2	N/A	2022/03/11	CAM SOP	SM 2340 B
				00102/00408/00447	
Dissolved Metals by ICPMS	2	N/A	2022/03/10	CAM SOP-00447	EPA 6020B m
Ion Balance (% Difference)	2	N/A	2022/03/15		
Anion and Cation Sum	2	N/A	2022/03/11		
Total Ammonia-N	2	N/A	2022/03/10	CAM SOP-00441	USGS I-2522-90 m
Nitrate & Nitrite as Nitrogen in Water (2)	2	N/A	2022/03/15	CAM SOP-00440	SM 23 4500-NO3I/NO2B
рН	2	2022/03/09	2022/03/10	CAM SOP-00413	SM 4500H+ B m
Orthophosphate	2	N/A	2022/03/10	CAM SOP-00461	EPA 365.1 m
Sat. pH and Langelier Index (@ 20C)	2	N/A	2022/03/15		Auto Calc
Sat. pH and Langelier Index (@ 4C)	2	N/A	2022/03/15		Auto Calc
Sulphate by Automated Colourimetry	2	N/A	2022/03/15	CAM SOP-00464	EPA 375.4 m
Total Dissolved Solids (TDS calc)	2	N/A	2022/03/15		Auto Calc

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA. Where applicable, the analytical testing herein was performed in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. All methodologies comply with this document and are validated for use in the laboratory. The methods and techniques employed in this analysis conform to the performance criteria (detection limits, accuracy and precision) as outlined in the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. Bureau Veritas is accredited by SCC (Lab ID 97) for all specific parameters as required by Ontario Regulation 153/04.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are

Your Project #: 60646784 Site#: SITE 6 & SITE 9

Site Location: REGION OF PEEL SNOW STORAGE

Your C.O.C. #: 868053-01-01

Attention: Brian Holden

AECOM Canada Ltd 50 Sportsworld Crossing Rd Suite 290 Kitchener, ON Canada N2P 0A4

Report Date: 2022/03/23

Report #: R7055671 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C260765 Received: 2022/03/08, 12:43

reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.
- (2) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

Encryption Key

Marijane Cruz Senior Project Manage 23 Mar 2022 17:56:47

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

The wy

Marijane Cruz, Senior Project Manager Email: Marijane.Cruz@bureauveritas.com

Phone# (905)817-5756

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Site Location: REGION OF PEEL SNOW STORAGE

Sampler Initials: DP

RCAP - COMPREHENSIVE (WATER)

Bureau Veritas ID			SAN903			SAN903			SAN904		
Sampling Date			2022/03/07 10:00			2022/03/07 10:00			2022/03/08 10:30		
COC Number			868053-01-01			868053-01-01			868053-01-01		
	UNITS	Criteria	BH6-1/MW	RDL	QC Batch	BH6-1/MW Lab-Dup	RDL	QC Batch	BH9-3/MW	RDL	QC Batch
Calculated Parameters											
Anion Sum	me/L	-	15.4	N/A	7872697				15.9	N/A	7872697
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	-	340	1.0	7872700				620	1.0	7872700
Calculated TDS	mg/L	-	880	1.0	7872703				860	1.0	7872703
Carb. Alkalinity (calc. as CaCO3)	mg/L	-	2.8	1.0	7872700				4.4	1.0	7872700
Cation Sum	me/L	-	16.6	N/A	7872697				17.7	N/A	7872697
Hardness (CaCO3)	mg/L	-	690	1.0	7872394				830	1.0	7872394
Ion Balance (% Difference)	%	-	3.73	N/A	7872695				5.13	N/A	7872695
Langelier Index (@ 20C)	N/A	-	1.17		7872701				1.51		7872701
Langelier Index (@ 4C)	N/A	-	0.927		7872702				1.26		7872702
Saturation pH (@ 20C)	N/A	-	6.78		7872701				6.37		7872701
Saturation pH (@ 4C)	N/A	-	7.03		7872702				6.62		7872702
Inorganics											
Total Ammonia-N	mg/L	-	<0.050	0.050	7875196				0.073	0.050	7875196
Conductivity	umho/cm	-	1400	1.0	7874066	1400	1.0	7874066	1300	1.0	7874066
Dissolved Organic Carbon	mg/L	-	2.5	0.40	7873137				5.3	0.40	7873137
Orthophosphate (P)	mg/L	-	<0.010	0.010	7873903				<0.010	0.010	7873903
рН	рН	6.5:8.5	7.95		7874088	7.99		7874088	7.88		7874088
Dissolved Sulphate (SO4)	mg/L	-	210	1.0	7873895				100	1.0	7873895
Alkalinity (Total as CaCO3)	mg/L	-	340	1.0	7874087	340	1.0	7874087	620	1.0	7874087
Dissolved Chloride (Cl-)	mg/L	-	150	2.0	7873885				48	1.0	7873885
Nitrite (N)	mg/L	•	<0.010	0.010	7873950				<0.010	0.010	7873950
Nitrate (N)	mg/L	-	0.52	0.10	7873950				0.16	0.10	7873950
Nitrate + Nitrite (N)	mg/L	1	0.52	0.10	7873950				0.16	0.10	7873950
Metals											
Dissolved Aluminum (AI)	ug/L	-	<4.9	4.9	7874515				6.0	4.9	7874515
Dissolved Antimony (Sb)	ug/L	20	<0.50	0.50	7874515				<0.50	0.50	7874515
Dissolved Arsenic (As)	ug/L	100	<1.0	1.0	7874515				<1.0	1.0	7874515
Dissolved Barium (Ba)	ug/L	-	110	2.0	7874515				120	2.0	7874515
Dissolved Beryllium (Be)	ug/L	11	<0.40	0.40	7874515				<0.40	0.40	7874515
Dissolved Bismuth (Bi)	ug/L	-	<1.0	1.0	7874515				<1.0	1.0	7874515

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Ontario Provincial Water Quality Objectives

Ref. to MOEE Water Management document dated Feb.1999

N/A = Not Applicable

Site Location: REGION OF PEEL SNOW STORAGE

Sampler Initials: DP

RCAP - COMPREHENSIVE (WATER)

Bureau Veritas ID			SAN903			SAN903			SAN904		
Sampling Date			2022/03/07 10:00			2022/03/07 10:00			2022/03/08 10:30		
COC Number			868053-01-01			868053-01-01			868053-01-01		
	UNITS	Criteria	BH6-1/MW	RDL	QC Batch	BH6-1/MW Lab-Dup	RDL	QC Batch	BH9-3/MW	RDL	QC Batch
Dissolved Boron (B)	ug/L	200	57	10	7874515				52	10	7874515
Dissolved Cadmium (Cd)	ug/L	0.2	<0.090	0.090	7874515				<0.090	0.090	7874515
Dissolved Calcium (Ca)	ug/L	-	170000	200	7874515				230000	200	7874515
Dissolved Cesium (Cs)	ug/L	-	<0.20	0.20	7874515				<0.20	0.20	7874515
Dissolved Chromium (Cr)	ug/L	-	<5.0	5.0	7874515				<5.0	5.0	7874515
Dissolved Cobalt (Co)	ug/L	0.9	<0.50	0.50	7874515				0.57	0.50	7874515
Dissolved Copper (Cu)	ug/L	5	1.2	0.90	7874515				2.4	0.90	7874515
Dissolved Iron (Fe)	ug/L	300	<100	100	7874515				<100	100	7874515
Dissolved Lead (Pb)	ug/L	5	<0.50	0.50	7874515				<0.50	0.50	7874515
Dissolved Lithium (Li)	ug/L	-	25	5.0	7874515				15	5.0	7874515
Dissolved Magnesium (Mg)	ug/L	-	66000	50	7874515				61000	50	7874515
Dissolved Manganese (Mn)	ug/L	-	40	2.0	7874515				1000	2.0	7874515
Dissolved Molybdenum (Mo)	ug/L	40	2.8	0.50	7874515				3.6	0.50	7874515
Dissolved Nickel (Ni)	ug/L	25	1.2	1.0	7874515				6.5	1.0	7874515
Dissolved Phosphorus (P)	ug/L	-	<100	100	7874515				<100	100	7874515
Dissolved Potassium (K)	ug/L	-	4700	200	7874515				7600	200	7874515
Dissolved Rubidium (Rb)	ug/L	-	1.2	0.20	7874515				1.5	0.20	7874515
Dissolved Selenium (Se)	ug/L	100	<2.0	2.0	7874515				<2.0	2.0	7874515
Dissolved Silicon (Si)	ug/L	-	6600	50	7874515				8400	50	7874515
Dissolved Silver (Ag)	ug/L	0.1	<0.090	0.090	7874515				<0.090	0.090	7874515
Dissolved Sodium (Na)	ug/L	-	61000	100	7874515				21000	100	7874515
Dissolved Strontium (Sr)	ug/L	-	1400	1.0	7874515				630	1.0	7874515
Dissolved Tellurium (Te)	ug/L	-	<1.0	1.0	7874515				<1.0	1.0	7874515
Dissolved Thallium (TI)	ug/L	0.3	<0.050	0.050	7874515				<0.050	0.050	7874515
Dissolved Thorium (Th)	ug/L	-	<2.0	2.0	7874515				<2.0	2.0	7874515
Dissolved Tin (Sn)	ug/L	-	1.1	1.0	7874515				<1.0	1.0	7874515
Dissolved Titanium (Ti)	ug/L	-	<5.0	5.0	7874515				<5.0	5.0	7874515
Dissolved Tungsten (W)	ug/L	30	<1.0	1.0	7874515				<1.0	1.0	7874515
Dissolved Uranium (U)	ug/L	5	5.6	0.10	7874515				5.4	0.10	7874515
Dissolved Vanadium (V)	ug/L	6	<0.50	0.50	7874515				0.77	0.50	7874515
Dissolved Zinc (Zn)	ug/L	30	<5.0	5.0	7874515				<5.0	5.0	7874515
Dissolved Zirconium (Zr)	ug/L	4	<1.0	1.0	7874515				<1.0	1.0	7874515

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Ontario Provincial Water Quality Objectives

Ref. to MOEE Water Management document dated Feb.1999

Site Location: REGION OF PEEL SNOW STORAGE

Sampler Initials: DP

TEST SUMMARY

Bureau Veritas ID: SAN903 Sample ID: BH6-1/MW Collected: Shipped:

2022/03/07

Matrix: Water

Received: 2022/03/08

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	АТ	7874087	N/A	2022/03/10	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	7872700	N/A	2022/03/11	Automated Statchk
Chloride by Automated Colourimetry	KONE	7873885	N/A	2022/03/14	Avneet Kour Sudan
Conductivity	AT	7874066	N/A	2022/03/11	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	7873137	N/A	2022/03/10	Anna-Kay Gooden
Hardness (calculated as CaCO3)		7872394	N/A	2022/03/11	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	7874515	N/A	2022/03/10	Nan Raykha
Ion Balance (% Difference)	CALC	7872695	N/A	2022/03/15	Automated Statchk
Anion and Cation Sum	CALC	7872697	N/A	2022/03/11	Automated Statchk
Total Ammonia-N	LACH/NH4	7875196	N/A	2022/03/10	Raiq Kashif
Nitrate & Nitrite as Nitrogen in Water	LACH	7873950	N/A	2022/03/15	Amanpreet Sappal
рН	AT	7874088	2022/03/09	2022/03/10	Surinder Rai
Orthophosphate	KONE	7873903	N/A	2022/03/10	Avneet Kour Sudan
Sat. pH and Langelier Index (@ 20C)	CALC	7872701	N/A	2022/03/15	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	7872702	N/A	2022/03/15	Automated Statchk
Sulphate by Automated Colourimetry	KONE	7873895	N/A	2022/03/15	Avneet Kour Sudan
Total Dissolved Solids (TDS calc)	CALC	7872703	N/A	2022/03/15	Automated Statchk

Bureau Veritas ID: SAN903 Dup Sample ID: BH6-1/MW

Matrix: Water

Collected: 2022/03/07

Shipped:

Received: 2022/03/08

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	7874087	N/A	2022/03/10	Surinder Rai
Conductivity	AT	7874066	N/A	2022/03/11	Surinder Rai
На	AT	7874088	2022/03/09	2022/03/10	Surinder Rai

Bureau Veritas ID: SAN904 Collected: 2022/03/08
Sample ID: BH9-3/MW Shipped:

Matrix: Water Received: 2022/03/08

Test Description Instrumentation Extracted **Date Analyzed** Batch Analyst Alkalinity ΑT 7874087 N/A 2022/03/10 Surinder Rai CALC 7872700 N/A 2022/03/11 Carbonate, Bicarbonate and Hydroxide Automated Statchk Chloride by Automated Colourimetry **KONE** 7873885 N/A 2022/03/14 Avneet Kour Sudan Conductivity ΑТ 7874066 N/A 2022/03/11 Surinder Rai Dissolved Organic Carbon (DOC) TOCV/NDIR 7873137 N/A 2022/03/10 Anna-Kay Gooden Hardness (calculated as CaCO3) 7872394 N/A 2022/03/11 **Automated Statchk** ICP/MS 7874515 N/A Dissolved Metals by ICPMS 2022/03/10 Nan Raykha Ion Balance (% Difference) CALC N/A 7872695 2022/03/15 **Automated Statchk Anion and Cation Sum** CALC N/A 7872697 2022/03/11 **Automated Statchk** Total Ammonia-N LACH/NH4 7875196 N/A 2022/03/10 Raiq Kashif Nitrate & Nitrite as Nitrogen in Water LACH 7873950 N/A **Amanpreet Sappal** 2022/03/15 рΗ ΑT 7874088 2022/03/09 2022/03/10 Surinder Rai

Report Date: 2022/03/23

Matrix: Water

AECOM Canada Ltd Client Project #: 60646784

Site Location: REGION OF PEEL SNOW STORAGE

Sampler Initials: DP

TEST SUMMARY

Bureau Veritas ID: SAN904 Sample ID: BH9-3/MW **Collected:** 2022/03/08

Shipped:

Received: 2022/03/08

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Orthophosphate	KONF	7873903	N/A	2022/03/10	Avneet Kour Sudan
Sat. pH and Langelier Index (@ 20C)	CALC	7872701	N/A	2022/03/15	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	7872702	N/A	2022/03/15	Automated Statchk
Sulphate by Automated Colourimetry	KONE	7873895	N/A	2022/03/15	Avneet Kour Sudan
Total Dissolved Solids (TDS calc)	CALC	7872703	N/A	2022/03/15	Automated Statchk

Site Location: REGION OF PEEL SNOW STORAGE

Sampler Initials: DP

GENERAL COMMENTS

Each te	Each temperature is the average of up to three cooler temperatures taken at receipt										
	Package 1	4.7°C									
Revised	Revised Report (2022/03/23) : Results have been split onto separate reports per client request.										
Results	Results relate only to the items tested.										

QUALITY ASSURANCE REPORT

AECOM Canada Ltd Client Project #: 60646784

Site Location: REGION OF PEEL SNOW STORAGE Sampler Initials: DP

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
7873137	Dissolved Organic Carbon	2022/03/10	89	80 - 120	93	80 - 120	<0.40	mg/L	0.44 (1)	20
7873885	Dissolved Chloride (CI-)	2022/03/14	106	80 - 120	106	80 - 120	<1.0	mg/L	0.43 (1)	20
7873895	Dissolved Sulphate (SO4)	2022/03/15	118	75 - 125	104	80 - 120	<1.0	mg/L	0.60 (1)	20
7873903	Orthophosphate (P)	2022/03/10	106	75 - 125	99	80 - 120	<0.010	mg/L	NC (1)	25
7873950	Nitrate (N)	2022/03/15	NC	80 - 120	96	80 - 120	<0.10	mg/L	2.1 (1)	20
7873950	Nitrite (N)	2022/03/15	102	80 - 120	103	80 - 120	<0.010	mg/L	9.0 (1)	20
7874066	Conductivity	2022/03/11			103	85 - 115	<1.0	umho/cm	0.21 (2)	25
7874087	Alkalinity (Total as CaCO3)	2022/03/10			98	85 - 115	<1.0	mg/L	1.9 (2)	20
7874088	рН	2022/03/10			102	98 - 103			0.51 (2)	N/A
7874515	Dissolved Aluminum (AI)	2022/03/10	122 (3)	80 - 120	102	80 - 120	<4.9	ug/L		
7874515	Dissolved Antimony (Sb)	2022/03/10	100	80 - 120	102	80 - 120	<0.50	ug/L	4.6 (1)	20
7874515	Dissolved Arsenic (As)	2022/03/10	99	80 - 120	100	80 - 120	<1.0	ug/L	NC (1)	20
7874515	Dissolved Barium (Ba)	2022/03/10	106	80 - 120	105	80 - 120	<2.0	ug/L	4.0 (1)	20
7874515	Dissolved Beryllium (Be)	2022/03/10	94	80 - 120	105	80 - 120	<0.40	ug/L	NC (1)	20
7874515	Dissolved Bismuth (Bi)	2022/03/10	86	80 - 120	99	80 - 120	<1.0	ug/L		
7874515	Dissolved Boron (B)	2022/03/10	NC	80 - 120	100	80 - 120	<10	ug/L	3.2 (1)	20
7874515	Dissolved Cadmium (Cd)	2022/03/10	95	80 - 120	99	80 - 120	<0.090	ug/L	NC (1)	20
7874515	Dissolved Calcium (Ca)	2022/03/10	NC	80 - 120	103	80 - 120	<200	ug/L		
7874515	Dissolved Cesium (Cs)	2022/03/10	107	80 - 120	104	80 - 120	<0.20	ug/L		
7874515	Dissolved Chromium (Cr)	2022/03/10	103	80 - 120	96	80 - 120	<5.0	ug/L	NC (1)	20
7874515	Dissolved Cobalt (Co)	2022/03/10	98	80 - 120	98	80 - 120	<0.50	ug/L	4.5 (1)	20
7874515	Dissolved Copper (Cu)	2022/03/10	109	80 - 120	101	80 - 120	<0.90	ug/L	11 (1)	20
7874515	Dissolved Iron (Fe)	2022/03/10	100	80 - 120	98	80 - 120	<100	ug/L		
7874515	Dissolved Lead (Pb)	2022/03/10	92	80 - 120	99	80 - 120	<0.50	ug/L	NC (1)	20
7874515	Dissolved Lithium (Li)	2022/03/10	96	80 - 120	107	80 - 120	<5.0	ug/L		
7874515	Dissolved Magnesium (Mg)	2022/03/10	NC	80 - 120	97	80 - 120	<50	ug/L		
7874515	Dissolved Manganese (Mn)	2022/03/10	NC	80 - 120	99	80 - 120	<2.0	ug/L		
7874515	Dissolved Molybdenum (Mo)	2022/03/10	116	80 - 120	104	80 - 120	<0.50	ug/L	4.3 (1)	20
7874515	Dissolved Nickel (Ni)	2022/03/10	94	80 - 120	95	80 - 120	<1.0	ug/L	6.4 (1)	20
7874515	Dissolved Phosphorus (P)	2022/03/10	121 (3)	80 - 120	111	80 - 120	<100	ug/L		
7874515	Dissolved Potassium (K)	2022/03/10	116	80 - 120	104	80 - 120	<200	ug/L		

Page 8 of 12

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

QUALITY ASSURANCE REPORT(CONT'D)

AECOM Canada Ltd Client Project #: 60646784

Site Location: REGION OF PEEL SNOW STORAGE

Sampler Initials: DP

			Matrix	Spike	SPIKED	BLANK	Method B	Blank	RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
7874515	Dissolved Rubidium (Rb)	2022/03/10	95	80 - 120	99	80 - 120	<0.20	ug/L		
7874515	Dissolved Selenium (Se)	2022/03/10	101	80 - 120	98	80 - 120	<2.0	ug/L	NC (1)	20
7874515	Dissolved Silicon (Si)	2022/03/10	NC	80 - 120	99	80 - 120	<50	ug/L		
7874515	Dissolved Silver (Ag)	2022/03/10	80	80 - 120	101	80 - 120	<0.090	ug/L	NC (1)	20
7874515	Dissolved Sodium (Na)	2022/03/10	NC	80 - 120	97	80 - 120	<100	ug/L		
7874515	Dissolved Strontium (Sr)	2022/03/10	NC	80 - 120	98	80 - 120	<1.0	ug/L		
7874515	Dissolved Tellurium (Te)	2022/03/10	90	80 - 120	101	80 - 120	<1.0	ug/L		
7874515	Dissolved Thallium (TI)	2022/03/10	92	80 - 120	101	80 - 120	<0.050	ug/L	8.4 (1)	20
7874515	Dissolved Thorium (Th)	2022/03/10	84	80 - 120	95	80 - 120	<2.0	ug/L		
7874515	Dissolved Tin (Sn)	2022/03/10	100	80 - 120	102	80 - 120	<1.0	ug/L		
7874515	Dissolved Titanium (Ti)	2022/03/10	105	80 - 120	99	80 - 120	<5.0	ug/L		
7874515	Dissolved Tungsten (W)	2022/03/10	104	80 - 120	103	80 - 120	<1.0	ug/L		
7874515	Dissolved Uranium (U)	2022/03/10	82	80 - 120	97	80 - 120	<0.10	ug/L	8.3 (1)	20
7874515	Dissolved Vanadium (V)	2022/03/10	108	80 - 120	99	80 - 120	<0.50	ug/L	14 (1)	20
7871515	Dissolved Zinc (Zn)	2022/03/10	91	80 - 120	97	80 - 120	<5.0	ug/L	3.7 (1)	20
7874515	Dissolved Zirconium (Zr)	2022/03/10	116	80 - 120	104	80 - 120	<1.0	ug/L		
7875196	Total Ammonia-N	2022/03/10	101	75 - 125	101	80 - 120	<0.050	mg/L	NC (1)	20

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

- (1) Duplicate Parent ID
- (2) Duplicate Parent ID [SAN903-02]
- (3) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

Site Location: REGION OF PEEL SNOW STORAGE

Sampler Initials: DP

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

BUREAU	Th.	VOICE TO:				REPOR	RT TO:			_			PROJEC	T INFOR	AATION:			08-Mar-22 12:43		
	#23482 AECON			Company	v Name: AF-C		of Utal					PROJECT INFORMATION: C20375				Mai	rijane Cruz			
sany Name:	Accounts Payabl			Attention	D-1 1		hwonish	Paril	1.		Quotation w.			-						
ess:		crossing Rd Suite 29	90	Address:		Unmerce 4	My Drvv	7/4 1	Lion		P.O. #: Project: 60646784					TWO IS	C260765			
	Kitchener ON N2				May	kham, ON	,		Project Name: Region Of Pect Snow Force		now Storage	KTN	ENV-1712 O 1053 Manage							
	(519) 650-5313		19) 650-3422	4 Tet		340-1617	Fax				Site #:		Site			0				
THE SHARE SHARE	CANSSC.E-billin			Email	The second second	nolden@aecom	n.com , lbu	anish	ov. Whe		Bampled I			nish				C#060050-01-01		
MOE REC	ULATED DRINKIN	G WATER OR WATE THE BUREAU VERITA	R INTENDED F	OR HUMAN C	ONSUMPTION	MUST BE				AN	ALYSIS RE	QUESTED	(PLEASE B	E SPECI	FIC)		Section 2	Turnaround Time (TAT) Required: Please provide advance notice for rush projects		
Best Alliance	e activities de la company	Manager and the second	SOCIAL SECTION OF A	ANGEL DECEMBER	Maria de la Maria dela Maria dela Maria dela Maria dela Maria de la Maria dela Mari	THE PARTY OF THE P	circle):				, kg	(QC		(99)			Regular (Standard) TAT:		
	on 153 (2011)		Other Regulations		Special li	nstructions	E G	1-F4		1	e P	d (BC		clay f			(will be appli	lied if Rush TAT is not specified):		
	Res/Park Medius		Sanitary Sewer		100		Cr	HS & F1-F4		(in	orgar	man		(0.2 u.				AT = 5-7 Working days for most tests		
ble 3	Agri/Other For R		Municipality	nun .			Hg /			(Wate	8 10	en De	Solids	(0) E	usive		Please note: days - conta	: Standard TAT for certain tests such as BOD and Dioxins/Furans a lict your Project Manager for details.		
ble			Reg 406 Table	e			Field Filtered (pease of Metals / Hg / Cr VI	SOCs	AH S	CBs	etals	Oxygen Demand (BOD)	pep	min	xehe		Job Specif	fic Rush TAT (if applies to entire submission)		
		Other					Mets Mets	53 V	53 P	53 P	153 M	ES	sbeu	d Alt	Juo C		Date Requir	red:Time Required:		
	Include Criteri	a on Certificate of An			1000		i ii	Reg 153 VOCs by	Reg 153 PAHs	Reg 153 PCBs (Water)	O.Reg 1 (Wtr)	chem	otal Su	solve	9			mation Number: (call lab for #)		
Sampl	e Barcode Label	Sample (Location) I	Identification	Date Sampled	Time Sampled	Matrix		0	0.6	0	So	Bio	Tot	Dis	20		# of Bottles	Comments		
		2011		100	1	1.1	y	1	11	11	1	1/	11	. /			18	Limited bromewater & filled out		
		BH6-1/mw	1/4	nh 7, 202	10.00	6W	1		-	-				V	V			both set to minimal requirem		
		Bh9-3/mw	(A)	rech 8,2002	1000	GW	4	V	V	11	10	11	11	1	1		10	both set to minimal nationing on suggested by Manigare Me.		
		13177-3 Haw	1 v #	WW. I MANY	10 30	Cino	/	ν.	-	V	V	0	V	-			18	7		
		l d	10				1000								1					
							701													
											15									
							13/6		7											
							IN.													
					-	-	100	-		-										
							187													
	RELINQUISHED BY: (Signature/Print)	Date: (YY/	MM/DD) 1	Time		BY: (Signature/	Print)	_	Date: (YY/	1		ime		used and ubmitted		Labor	atory Use Only NPK 202		
Manie	n Verilen d	why	22/03	0.8 11	30 11	rid NIRA	I PATE	L	2	02210	3/08	13	2:43	-		Time Sensitive		iture ("C) on Recei Custody Seal Yes		
							DARD TERMS										1 5	SISIU Intact		

Site Location: REGION OF PEEL SNOW STORAGE

Sampler Initials: DP

Exceedance Summary Table – Prov. Water Quality Obj. Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
BH6-1/MW	SAN903-06	Dissolved Uranium (U)	5	5.6	0.10	ug/L
BH9 3/MW	SAN904 06	Dissolved Uranium (U)	5	5.4	0.10	ug/L

The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to applicable regulatory guidelines.

Appendix **F**

Calculated Un-ionized Ammonia Concentration in Sampled Monitoring Wells

Calculated Un-Ionized Ammonia Concentration in Sampled Monitoring Wells

Well ID	Sampling Date	Water Temperature °C (Field)* ¹	pH (Field)* ¹	Total Ammonia From Laboratory Certificate of Analysis (mg/L)	Ambient Water Temperature in Kelvin (T)	рКа	f	Ammonia Un-ionized (Calculated) (mg/L)
		(i ieiu)		0.05* ²	(1)			0.02*3,4
BH3-4/MW	February 11, 2022	9.20	6.80	0.29	282.36	9.76	0.001099	0.0003
BH6-1/MW	March 7, 2022	4.00	7.73	<0.05	277.16	9.94	0.006131	N/A
BH9-3/MW	March 8, 2022	8.00	7.33	0.07	281.16	9.80	0.003380	0.0002

Notes: "Water Temperature and pH values were obtained at the time of sample collection.

^{*2-}Laboratory Reporting Detection Limit (RDL) for Total Ammonia = 0.05 mg/L.

^{*3-}PWQO Threshold for Un-Ionized Ammonia = 0.02 mg/L.

^{*4-} N/A = Un-Ionized Ammonia was not calculated for the sample of well BH6-1/MW where the Total Ammonia Concentration was found to be below the Laboratory RDL.

Appendix **G**

Soil Quality Results – Laboratory Certificate of Analysis

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: AECOM CANADA LTD

105 COMMERCE VALLEY DR.W 7TH FLOOR

MARKHAM, ON L3T7W3

(905) 886-7022

ATTENTION TO: Arif Chowdhury

PROJECT: 60646784

AGAT WORK ORDER: 21T846798

SOIL ANALYSIS REVIEWED BY: Amanjot Bhela, Inorganic Lab Manager TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

DATE REPORTED: Jan 06, 2022

PAGES (INCLUDING COVER): 18 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 18

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 21T846798

PROJECT: 60646784

ATTENTION TO: Arif Chowdhury

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - Metals & Inorganics (Soil)

						s & inorgan	
DATE RECEIVED: 2021-12-17							DATE REPORTED: 2022-01-06
	;	SAMPLE DESC	CRIPTION:	BH-1-1 SS2	BH-1-2 SS2	BH-1-3 SS2	
		SAME	PLE TYPE:	Soil	Soil	Soil	
		DATE S	SAMPLED:	2021-12-17	2021-12-17	2021-12-17	
Parameter	l lait	G/S	RDL	13:00	13:00	13:00	
	Unit	40	0.8	3363515	3363516	3363517	
Antimony Arsenic	μg/g	18		<0.8	<0.8 3	<0.8 5	
Barium	μg/g	670	1 2.0	4 82.9	3 152	79.1	
	μg/g		0.4	0.7			
Beryllium Boron	μg/g	8 120	5	8	0.7 11	0.7 8	
	μg/g		0.10	<0.10	<0.10	o <0.10	
Boron (Hot Water Soluble)	μg/g	2					
Cadmium	µg/g	1.9	0.5	<0.5	<0.5	<0.5	
Chromium	µg/g	160	5	22	29	22	
Cobalt	µg/g	80	0.5	10.5	10.5	11.5	
Copper	μg/g	230	1.0	23.4	19.6	24.1	
Lead	μg/g	120	1	10	9	11	
Molybdenum	μg/g	40	0.5	0.5	<0.5	<0.5	
Nickel	μg/g	270	1	20	20	22	
Selenium	μg/g	5.5	0.8	<0.8	<0.8	<0.8	
Silver	μg/g	40	0.5	<0.5	<0.5	<0.5	
Thallium	μg/g	3.3	0.5	<0.5	<0.5	<0.5	
Uranium	μg/g	33	0.50	0.58	0.61	0.58	
√anadium	μg/g	86	0.4	29.0	38.1	29.1	
Zinc	μg/g	340	5	54	52	52	
Chromium, Hexavalent	μg/g	8	0.2	<0.2	<0.2	<0.2	
Cyanide, Free	μg/g	0.051	0.040	<0.040	< 0.040	<0.040	
Mercury	μg/g	3.9	0.10	<0.10	<0.10	<0.10	
Electrical Conductivity (2:1)	mS/cm	1.4	0.005	0.157	0.151	0.203	
Sodium Adsorption Ratio (2:1) (Calc.)	N/A	12	N/A	0.417	0.383	0.661	
pH, 2:1 CaCl2 Extraction	pH Units	5.0-9.0	NA	7.54	7.47	7.48	

Certificate of Analysis

AGAT WORK ORDER: 21T846798

PROJECT: 60646784

SAMPLED BY:

ATTENTION TO: Arif Chowdhury

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2021-12-17 **DATE REPORTED: 2022-01-06**

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil -

Industrial/Commercial/Community Property Use - Coarse Textured Soils Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

3363515-3363517 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated

parameter.

CLIENT NAME: AECOM CANADA LTD

SAMPLING SITE:

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

TEL (905)712-5100 FAX (905)712-5122

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 21T846798

PROJECT: 60646784

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

ATTENTION TO: Arif Chowdhury

SAMPLED BY:

O. Reg. 153(511)) - PAHs (Soil)
------------------	-----------------

				0.110	9. 100(011)	71110 (3011)
DATE RECEIVED: 2021-12-17						DATE REPORTED: 2022-01-06
	;	SAMPLE DES	CRIPTION:	BH-1-2 SS1	BH-1-3 SS1	
		SAMI	PLE TYPE:	Soil	Soil	
		DATE S	SAMPLED:	2021-12-17 13:00	2021-12-17 13:00	
Parameter	Unit	G/S	RDL	3363591	3363592	
Naphthalene	μg/g	9.6	0.05	<0.05	< 0.05	
Acenaphthylene	μg/g	0.15	0.05	< 0.05	< 0.05	
Acenaphthene	μg/g	21	0.05	<0.05	<0.05	
Fluorene	μg/g	62	0.05	<0.05	< 0.05	
Phenanthrene	μg/g	12	0.05	< 0.05	< 0.05	
Anthracene	μg/g	0.67	0.05	< 0.05	<0.05	
Fluoranthene	μg/g	9.6	0.05	< 0.05	<0.05	
Pyrene	μg/g	96	0.05	< 0.05	<0.05	
Benz(a)anthracene	μg/g	0.96	0.05	< 0.05	< 0.05	
Chrysene	μg/g	9.6	0.05	< 0.05	< 0.05	
Benzo(b)fluoranthene	μg/g	0.96	0.05	< 0.05	< 0.05	
Benzo(k)fluoranthene	μg/g	0.96	0.05	< 0.05	<0.05	
Benzo(a)pyrene	μg/g	0.3	0.05	< 0.05	< 0.05	
ndeno(1,2,3-cd)pyrene	μg/g	0.76	0.05	< 0.05	< 0.05	
Dibenz(a,h)anthracene	μg/g	0.1	0.05	< 0.05	< 0.05	
Benzo(g,h,i)perylene	μg/g	9.6	0.05	< 0.05	< 0.05	
and 2 Methlynaphthalene	μg/g	30	0.05	<0.05	<0.05	
Noisture Content	%		0.1	20.2	25.9	
Surrogate	Unit	Acceptab	le Limits			
Naphthalene-d8	%	50-1	40	109	93	
Acridine-d9	%	50-1	40	85	94	
Terphenyl-d14	%	50-1	40	99	98	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil -

Industrial/Commercial/Community Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

3363591-3363592 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

Analysis performed at AGAT Toronto (unless marked by *)

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 21T846798

PROJECT: 60646784

ATTENTION TO: Arif Chowdhury

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O Reg. 153(511) - PHCs F1 - F4 (-BTFX) (Soil)

			Ο.	ixeg. 155(5	11) - F1103 1	1-14 (-BTEX) (3011)
DATE RECEIVED: 2021-12-17						DATE REPORTED: 2022-01-06
	S	AMPLE DESC	RIPTION:	BH-1-1 SS5	BH-1-3 SS5	
		SAMP	LE TYPE:	Soil	Soil	
		DATE SAMPLED:		2021-12-17 13:00	2021-12-17 13:00	
Parameter	Unit	G/S	RDL	3363593	3363594	
F1 (C6 - C10)	μg/g	55	5	<5	<5	
F1 (C6 to C10) minus BTEX	μg/g	55	5	<5	<5	
F2 (C10 to C16)	μg/g	230	10	<10	<10	
F3 (C16 to C34)	μg/g	1700	50	<50	<50	
F4 (C34 to C50)	μg/g	3300	50	<50	<50	
Gravimetric Heavy Hydrocarbons	μg/g	3300	50	NA	NA	
Moisture Content	%		0.1	13.7	11.2	
Surrogate	Unit	Acceptabl	e Limits			
Toluene-d8	% Recovery	50-1	40	104	76	
Terphenyl	%	60-1	40	85	76	

Comments:

RDL - Reported Detection Limit: G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil -

Industrial/Commercial/Community Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

3363593-3363594 Results are based on sample dry weight. The C6-C10 fraction is calculated using toluene response factor.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX contribution.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified without the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Analysis performed at AGAT Toronto (unless marked by *)

Certificate of Analysis

AGAT WORK ORDER: 21T846798

PROJECT: 60646784

ATTENTION TO: Arif Chowdhury

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

SAMPLING SITE:

				O. Re	g. 153(511) - V	OCs (Soil)
DATE RECEIVED: 2021-12-17						DATE REPORTED: 2022-01-06
	S	SAMPLE DESC	RIPTION:	BH-1-1 SS5	BH-1-3 SS5	
		SAMP	LE TYPE:	Soil	Soil	
	D		AMPLED:	2021-12-17	2021-12-17	
				13:00	13:00	
Parameter	Unit	G/S	RDL	3363593	3363594	
Dichlorodifluoromethane	μg/g	16	0.05	<0.05	<0.05	
Vinyl Chloride	ug/g	0.032	0.02	<0.02	<0.02	
Bromomethane	ug/g	0.05	0.05	<0.05	<0.05	
Trichlorofluoromethane	ug/g	4	0.05	<0.05	<0.05	
Acetone	ug/g	16	0.50	<0.50	<0.50	
1,1-Dichloroethylene	ug/g	0.064	0.05	<0.05	<0.05	
Methylene Chloride	ug/g	1.6	0.05	< 0.05	<0.05	
Trans- 1,2-Dichloroethylene	ug/g	1.3	0.05	< 0.05	<0.05	
Methyl tert-butyl Ether	ug/g	1.6	0.05	< 0.05	<0.05	
1,1-Dichloroethane	ug/g	0.47	0.02	< 0.02	<0.02	
Methyl Ethyl Ketone	ug/g	70	0.50	< 0.50	<0.50	
Cis- 1,2-Dichloroethylene	ug/g	1.9	0.02	< 0.02	<0.02	
Chloroform	ug/g	0.47	0.04	< 0.04	<0.04	
1,2-Dichloroethane	ug/g	0.05	0.03	< 0.03	<0.03	
1,1,1-Trichloroethane	ug/g	6.1	0.05	< 0.05	<0.05	
Carbon Tetrachloride	ug/g	0.21	0.05	< 0.05	< 0.05	
Benzene	ug/g	0.32	0.02	< 0.02	<0.02	
1,2-Dichloropropane	ug/g	0.16	0.03	< 0.03	< 0.03	
Trichloroethylene	ug/g	0.55	0.03	< 0.03	< 0.03	
Bromodichloromethane	ug/g	1.5	0.05	< 0.05	< 0.05	
Methyl Isobutyl Ketone	ug/g	31	0.50	< 0.50	<0.50	
1,1,2-Trichloroethane	ug/g	0.05	0.04	< 0.04	< 0.04	
Toluene	ug/g	6.4	0.05	< 0.05	< 0.05	
Dibromochloromethane	ug/g	2.3	0.05	<0.05	<0.05	
Ethylene Dibromide	ug/g	0.05	0.04	<0.04	<0.04	
Tetrachloroethylene	ug/g	1.9	0.05	< 0.05	<0.05	
1,1,1,2-Tetrachloroethane	ug/g	0.087	0.04	< 0.04	<0.04	
Chlorobenzene	ug/g	2.4	0.05	<0.05	<0.05	
Ethylbenzene	ug/g	1.1	0.05	< 0.05	<0.05	

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 21T846798

PROJECT: 60646784

ATTENTION TO: Arif Chowdhury

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

\circ	Rea	153(511)	- VOCs	(Soil)
◡.	ilcu.	1000011		100111

					9 ,	
DATE RECEIVED: 2021-12-17						DATE REPORTED: 2022-01-06
	SA	AMPLE DES	CRIPTION:	BH-1-1 SS5	BH-1-3 SS5	
	SAMPLE TYP			Soil	Soil	
		DATE SAMPLED:		2021-12-17 13:00	2021-12-17 13:00	
Parameter	Unit	G/S	RDL	3363593	3363594	
m & p-Xylene	ug/g		0.05	<0.05	<0.05	
Bromoform	ug/g	0.61	0.05	< 0.05	<0.05	
Styrene	ug/g	34	0.05	< 0.05	< 0.05	
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	< 0.05	<0.05	
o-Xylene	ug/g		0.05	< 0.05	< 0.05	
1,3-Dichlorobenzene	ug/g	9.6	0.05	< 0.05	< 0.05	
1,4-Dichlorobenzene	ug/g	0.2	0.05	< 0.05	<0.05	
1,2-Dichlorobenzene	ug/g	1.2	0.05	< 0.05	<0.05	
Xylenes (Total)	ug/g	26	0.05	< 0.05	< 0.05	
1,3-Dichloropropene (Cis + Trans)	μg/g	0.059	0.04	< 0.04	<0.04	
n-Hexane	μg/g	46	0.05	< 0.05	< 0.05	
Moisture Content	%		0.1	13.7	11.2	
Surrogate	Unit	Acceptab	le Limits			
Toluene-d8	% Recovery	50-	140	102	98	
4-Bromofluorobenzene	% Recovery	50-	140	87	89	
1						

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil -

Industrial/Commercial/Community Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

3363593-3363594 The sample was analyzed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certificate of Analysis

AGAT WORK ORDER: 21T846798

PROJECT: 60646784

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Arif Chowdhury

SAMPLED BY:

Total PCBs (soil)										
DATE RECEIVED: 2021-12-17					DATE REPORTED: 2022-01-06					
	;	SAMPLE DES	CRIPTION:	BH-1-3 SS1						
		SAM	PLE TYPE:	Soil						
DATE SAMPLED:				2021-12-17 13:00						
Parameter	Unit	G/S	RDL	3363542						
Polychlorinated Biphenyls	μg/g	1.1	0.1	<0.1						
Moisture Content	%		0.1	18.0						

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil -

84

Industrial/Commercial/Community Property Use - Coarse Textured Soils

Acceptable Limits

60-130

Unit

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Results are based on the dry weight of soil extracted.

Analysis performed at AGAT Toronto (unless marked by *)

Surrogate

Decachlorobiphenyl

CLIENT NAME: AECOM CANADA LTD

SAMPLING SITE:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: AECOM CANADA LTD

AGAT WORK ORDER: 21T846798 PROJECT: 60646784 ATTENTION TO: Arif Chowdhury

SAMPLING SITE: SAMPLED BY:

				Soi	l Ana	alysis	3								
RPT Date: Jan 06, 2022			DUPLICATE				REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits	
		Id	·					Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals & Inorganics (Soil)															
Antimony	3379761		<0.8	<0.8	NA	< 0.8	137%	70%	130%	102%	80%	120%	96%	70%	130%
Arsenic	3379761		<1	<1	NA	< 1	121%	70%	130%	105%	80%	120%	109%	70%	130%
Barium	3379761		12.0	12.3	2.5%	< 2.0	118%	70%	130%	101%	80%	120%	105%	70%	130%
Beryllium	3379761		<0.4	<0.4	NA	< 0.4	113%	70%	130%	108%	80%	120%	101%	70%	130%
Boron	3379761		<5	<5	NA	< 5	87%	70%	130%	99%	80%	120%	106%	70%	130%
Boron (Hot Water Soluble)	3384560		0.24	0.24	NA	< 0.10	99%	60%	140%	94%	70%	130%	94%	60%	140%
Cadmium	3379761		<0.5	<0.5	NA	< 0.5	104%	70%	130%	104%	80%	120%	104%	70%	130%
Chromium	3379761		<5	<5	NA	< 5	103%	70%	130%	102%	80%	120%	108%	70%	130%
Cobalt	3379761		1.5	1.5	NA	< 0.5	105%	70%	130%	105%	80%	120%	101%	70%	130%
Copper	3379761		2.9	2.9	NA	< 1.0	101%	70%	130%	111%	80%	120%	98%	70%	130%
Lead	3379761		2	2	NA	< 1	115%	70%	130%	104%	80%	120%	98%	70%	130%
Molybdenum	3379761		<0.5	<0.5	NA	< 0.5	112%	70%	130%	110%	80%	120%	111%	70%	130%
Nickel	3379761		<1	<1	NA	< 1	105%	70%	130%	104%	80%	120%	97%	70%	130%
Selenium	3379761		<0.8	<0.8	NA	< 0.8	71%	70%	130%	105%	80%	120%	107%	70%	130%
Silver	3379761		<0.5	<0.5	NA	< 0.5	104%	70%	130%	101%	80%	120%	95%	70%	130%
Thallium	3379761		<0.5	<0.5	NA	< 0.5	114%	70%	130%	99%	80%	120%	94%	70%	130%
Uranium	3379761		< 0.50	< 0.50	NA	< 0.50	120%	70%	130%	103%	80%	120%	105%	70%	130%
Vanadium	3379761		6.8	7.0	2.9%	< 0.4	108%	70%	130%	96%	80%	120%	106%	70%	130%
Zinc	3379761		9	9	NA	< 5	112%	70%	130%	110%	80%	120%	110%	70%	130%
Chromium, Hexavalent	3363711		<0.2	<0.2	NA	< 0.2	95%	70%	130%	91%	80%	120%	83%	70%	130%
Cyanide, Free	3386261		<0.040	<0.040	NA	< 0.040	91%	70%	130%	94%	80%	120%	91%	70%	130%
Mercury	3379761		<0.10	<0.10	NA	< 0.10	109%	70%	130%	98%	80%	120%	95%	70%	130%
Electrical Conductivity (2:1)	3384560		0.136	0.139	2.2%	< 0.005	104%	80%	120%	NA			NA		
Sodium Adsorption Ratio (2:1) (Calc.)	3384560		0.087	0.090	3.4%	N/A	NA			NA			NA		
pH, 2:1 CaCl2 Extraction	3370404		6.72	7.93	16.5%	NA	99%	80%	120%	NA			NA		

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

More than 90% of the elements met acceptance limits and overall data quality is acceptable for use. For a multi-element scan up to 10% of analytes may exceed the quoted limits by up to 10% absolute.

O. Reg. 153(511) - Metals & Inorganics (Soil)

Sodium Adsorption Ratio (2:1) 3363702 1.45 1.42 1.7% N/A NA NA 7% (Calc.)

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

AGAT QUALITY ASSURANCE REPORT (V1)

Page 9 of 18

Quality Assurance

CLIENT NAME: AECOM CANADA LTD

AGAT WORK ORDER: 21T846798

PROJECT: 60646784

ATTENTION TO: Arif Chowdhury

SAMPLING SITE: SAMPLED BY:

			Soil	Anal	ysis	(Con	tinue	d)							
RPT Date: Jan 06, 2022 DUPLICATE						REFERENCE MATERIAL METHOD BLANK SPIKE MATRIX						RIX SPI	KE		
PARAMETER	Batch	Sample	Dup #1 Dup #2 RPD		Method Blank	Measured		ptable nits	Recovery	Acceptable Limits		Recovery	Lin	ptable nits	
		ld	''	''			Value	Lower	Upper	,	Lower	Upper		Lower	Upper

Quality Assurance

CLIENT NAME: AECOM CANADA LTD

AGAT WORK ORDER: 21T846798 PROJECT: 60646784 ATTENTION TO: Arif Chowdhury

SAMPLING SITE: SAMPLED BY:

SAMPLING SITE: SAMPLED BY:															
			Trac	e Or	gani	cs Ar	nalys	is							
RPT Date: Jan 06, 2022			Г	UPLICAT	E		REFERE			METHOD	_		MAT	RIX SPI	
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		eptable mits	Recovery	1 1 1	eptable mits	Recovery	Lie	eptable mits
							Lower Upper		Lower Upper			Lower	Uppe		
Total PCBs (soil)	0070700		0.4	0.4	NIA	0.4	4000/	000/	4.400/	4000/	000/	4.400/	000/	000/	4.400/
Polychlorinated Biphenyls	3378722		< 0.1	< 0.1	NA	< 0.1	103%	60%	140%	102%	60%	140%	98%	60%	140%
O. Reg. 153(511) - PAHs (Soil)															
Naphthalene	3354673		< 0.05	< 0.05	NA	< 0.05	90%	50%	140%	97%	50%	140%	93%	50%	140%
Acenaphthylene	3354673		< 0.05	< 0.05	NA	< 0.05	105%	50%	140%	85%	50%	140%	92%	50%	140%
Acenaphthene	3354673		< 0.05	< 0.05	NA	< 0.05	78%	50%	140%	90%	50%	140%	91%	50%	140%
Fluorene	3354673		< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	75%	50%	140%	78%	50%	140%
Phenanthrene	3354673		< 0.05	< 0.05	NA	< 0.05	71%	50%	140%	93%	50%	140%	78%	50%	140%
Anthracene	3354673		< 0.05	< 0.05	NA	< 0.05	82%	50%	140%	92%	50%	140%	85%	50%	140%
Fluoranthene	3354673		< 0.05	< 0.05	NA	< 0.05	93%	50%	140%	101%	50%	140%	93%	50%	140%
Pyrene	3354673		< 0.05	< 0.05	NA	< 0.05	92%	50%	140%	71%	50%	140%	92%	50%	140%
Benz(a)anthracene	3354673		< 0.05	< 0.05	NA	< 0.05	101%	50%	140%	85%	50%	140%	101%	50%	140%
Chrysene	3354673		< 0.05	< 0.05	NA	< 0.05	78%	50%	140%	93%	50%	140%	54%	50%	140%
Benzo(b)fluoranthene	3354673		< 0.05	< 0.05	NA	< 0.05	95%	50%	140%	92%	50%	140%	85%	50%	140%
Benzo(k)fluoranthene	3354673		< 0.05	< 0.05	NA	< 0.05	93%	50%	140%	105%	50%	140%	93%	50%	140%
Benzo(a)pyrene	3354673		< 0.05	< 0.05	NA	< 0.05	82%	50%	140%	98%	50%	140%	92%	50%	140%
Indeno(1,2,3-cd)pyrene	3354673		< 0.05	< 0.05	NA	< 0.05	91%	50%	140%	86%	50%	140%	98%	50%	140%
Dibenz(a,h)anthracene	3354673		< 0.05	< 0.05	NA	< 0.05	105%	50%	140%	85%	50%	140%	105%	50%	140%
Benzo(g,h,i)perylene	3354673		< 0.05	< 0.05	NA	< 0.05	78%	50%	140%	80%	50%	140%	98%	50%	140%
O. Reg. 153(511) - PHCs F1 - F4	-BTEX) (So	il)													
F1 (C6 - C10)	3377182	,	<5	<5	NA	< 5	113%	60%	140%	97%	60%	140%	107%	60%	140%
F2 (C10 to C16)	3384564		< 10	< 10	NA	< 10	101%	60%	140%	75%	60%	140%	84%	60%	140%
F3 (C16 to C34)	3384564		< 50	< 50	NA	< 50	102%	60%	140%	74%	60%	140%	78%	60%	140%
F4 (C34 to C50)	3384564		< 50	< 50	NA	< 50	99%	60%	140%	71%	60%		85%	60%	140%
O Dog 452/544) \/OCo (Coil)															
O. Reg. 153(511) - VOCs (Soil) Dichlorodifluoromethane	2202222		- 0.05	- 0.05	NIA	- 0.05	1020/	E00/	1.400/	1020/	E00/	1.400/	F20/	E00/	140%
	3393322		< 0.05	< 0.05	NA	< 0.05	103%	50%	140%	103%	50%	140%	53%	50%	
Vinyl Chloride	3393322		< 0.02	< 0.02	NA	< 0.02	104%	50%	140%	94%	50%	140%	103%	50%	140%
Bromomethane	3393322		< 0.05	< 0.05	NA	< 0.05	101%	50%	140%	69%	50%	140%	79%	50%	140%
Trichlorofluoromethane Acetone	3393322 3393322		< 0.05 < 0.50	< 0.05 < 0.50	NA NA	< 0.05 < 0.50	89% 88%	50% 50%	140% 140%	56% 97%		140% 140%	83% 101%	50% 50%	140% 140%
1,1-Dichloroethylene	3393322		< 0.05	< 0.05	NA	< 0.05	119%		140%	83%		130%	93%		140%
Methylene Chloride	3393322		< 0.05	< 0.05	NA	< 0.05	79%		140%	112%	60%		83%		140%
Trans- 1,2-Dichloroethylene	3393322		< 0.05	< 0.05	NA	< 0.05	115%		140%	82%		130%	82%	50%	140%
Methyl tert-butyl Ether	3393322		< 0.05	< 0.05	NA	< 0.05	105%		140%	71%		130%	90%	50%	140%
1,1-Dichloroethane	3393322		< 0.02	< 0.02	NA	< 0.02	72%	50%	140%	112%	60%	130%	78%	50%	140%
Methyl Ethyl Ketone	3393322		< 0.50	< 0.50	NA	< 0.50	102%	50%		85%	50%		98%	50%	140%
Cis- 1,2-Dichloroethylene	3393322		< 0.02	< 0.02	NA	< 0.02	75%		140%	101%		130%	109%	50%	140%
Chloroform	3393322		< 0.04	< 0.04	NA	< 0.04	117%	50%	140%	107%	60%	130%	95%	50%	140%
1,2-Dichloroethane	3393322		< 0.03	< 0.03	NA	< 0.03	111%	50%	140%	101%	60%	130%	83%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 11 of 18

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: AECOM CANADA LTD

AGAT WORK ORDER: 21T846798

PROJECT: 60646784

ATTENTION TO: Arif Chowdhury

SAMPLING SITE: SAMPLED BY:

	Trace Organics Analysis (Continued)														
RPT Date: Jan 06, 2022				DUPLICATE			REFERE	ENCE MATERIAL		METHOD	BLAN	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery		ptable nits
		la la	·	·				Lower	Upper	ĺ	Lower	Upper	7	Lower	Upper
1,1,1-Trichloroethane	3393322		< 0.05	< 0.05	NA	< 0.05	92%	50%	140%	86%	60%	130%	81%	50%	140%
Carbon Tetrachloride	3393322		< 0.05	< 0.05	NA	< 0.05	103%	50%	140%	78%	60%	130%	80%	50%	140%
Benzene	3393322		< 0.02	< 0.02	NA	< 0.02	110%	50%	140%	112%	60%	130%	92%	50%	140%
1,2-Dichloropropane	3393322		< 0.03	< 0.03	NA	< 0.03	85%	50%	140%	96%	60%	130%	99%	50%	140%
Trichloroethylene	3393322		< 0.03	< 0.03	NA	< 0.03	103%	50%	140%	118%	60%	130%	111%	50%	140%
Bromodichloromethane	3393322		< 0.05	< 0.05	NA	< 0.05	91%	50%	140%	96%	60%	130%	112%	50%	140%
Methyl Isobutyl Ketone	3393322		< 0.50	< 0.50	NA	< 0.50	104%	50%	140%	98%	50%	140%	100%	50%	140%
1,1,2-Trichloroethane	3393322		< 0.04	< 0.04	NA	< 0.04	96%	50%	140%	112%	60%	130%	105%	50%	140%
Toluene	3393322		< 0.05	< 0.05	NA	< 0.05	110%	50%	140%	76%	60%	130%	102%	50%	140%
Dibromochloromethane	3393322		< 0.05	< 0.05	NA	< 0.05	88%	50%	140%	119%	60%	130%	109%	50%	140%
Ethylene Dibromide	3393322		< 0.04	< 0.04	NA	< 0.04	89%	50%	140%	106%	60%	130%	93%	50%	140%
Tetrachloroethylene	3393322		< 0.05	< 0.05	NA	< 0.05	76%	50%	140%	108%	60%	130%	80%	50%	140%
1,1,1,2-Tetrachloroethane	3393322		< 0.04	< 0.04	NA	< 0.04	110%	50%	140%	84%	60%	130%	91%	50%	140%
Chlorobenzene	3393322		< 0.05	< 0.05	NA	< 0.05	98%	50%	140%	106%	60%	130%	82%	50%	140%
Ethylbenzene	3393322		< 0.05	< 0.05	NA	< 0.05	84%	50%	140%	97%	60%	130%	82%	50%	140%
m & p-Xylene	3393322		< 0.05	< 0.05	NA	< 0.05	101%	50%	140%	94%	60%	130%	106%	50%	140%
Bromoform	3393322		< 0.05	< 0.05	NA	< 0.05	87%	50%	140%	89%	60%	130%	103%	50%	140%
Styrene	3393322		< 0.05	< 0.05	NA	< 0.05	90%	50%	140%	85%	60%	130%	118%	50%	140%
1,1,2,2-Tetrachloroethane	3393322		< 0.05	< 0.05	NA	< 0.05	88%	50%	140%	96%	60%	130%	94%	50%	140%
o-Xylene	3393322		< 0.05	< 0.05	NA	< 0.05	82%	50%	140%	89%	60%	130%	92%	50%	140%
1,3-Dichlorobenzene	3393322		< 0.05	< 0.05	NA	< 0.05	83%	50%	140%	89%	60%	130%	96%	50%	140%
1,4-Dichlorobenzene	3393322		< 0.05	< 0.05	NA	< 0.05	111%	50%	140%	105%	60%	130%	85%	50%	140%
1,2-Dichlorobenzene	3393322		< 0.05	< 0.05	NA	< 0.05	91%	50%	140%	102%	60%	130%	86%	50%	140%
n-Hexane	3393322		< 0.05	< 0.05	NA	< 0.05	106%	50%	140%	103%	60%	130%	114%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

QC Exceedance

CLIENT NAME: AECOM CANADA LTD AGAT WORK ORDER: 21T846798
PROJECT: 60646784 ATTENTION TO: Arif Chowdhury

RPT Date: Jan 06, 2022		REFERENC	E MATERIA	AL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Sample Id	Measured	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Lin	ptable nits
	55	Value	Lower Up		,		Upper	,		Upper

O. Reg. 153(511) - Metals & Inorganics (Soil)

Antimony 137% 70% 130% 102% 80% 120% 96% 70% 130%

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

More than 90% of the elements met acceptance limits and overall data quality is acceptable for use. For a multi-element scan up to 10% of analytes may exceed the quoted limits by up to 10% absolute.

Method Summary

CLIENT NAME: AECOM CANADA LTD

PROJECT: 60646784

SAMPLING SITE:

AGAT WORK ORDER: 21T846798 ATTENTION TO: Arif Chowdhury

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron (Hot Water Soluble)	MET-93-6104	modified from EPA 6010D and MSA PART 3, CH 21	ICP/OES
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Zinc	MET 93 -6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium, Hexavalent	INOR-93-6068	modified from EPA 3060 and EPA 7196	SPECTROPHOTOMETER
Cyanide, Free	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	TECHNICON AUTO ANALYZER
Mercury	MET-93-6103	modified from EPA 7471B and SM 3112 B	ICP-MS
Electrical Conductivity (2:1)	INOR-93-6036	modified from MSA PART 3, CH 14 and SM 2510 B	EC METER
Sodium Adsorption Ratio (2:1) (Calc.)	INOR-93-6007	modified from EPA 6010D & Analytical Protocol	ICP/OES
pH, 2:1 CaCl2 Extraction	INOR-93-6031	modified from EPA 9045D and MCKEAGUE 3.11	PH METER

Method Summary

CLIENT NAME: AECOM CANADA LTD

PROJECT: 60646784

SAMPLING SITE:

AGAT WORK ORDER: 21T846798 ATTENTION TO: Arif Chowdhury

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis		·	
Naphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acenaphthylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acenaphthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Fluorene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Phenanthrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benz(a)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Chrysene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(b)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(k)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(a)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Dibenz(a,h)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(g,h,i)perylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
1 and 2 Methlynaphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Naphthalene-d8	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acridine-d9	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Terphenyl-d14	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Moisture Content	VOL-91-5009	CCME Tier 1 Method	BALANCE
F1 (C6 - C10)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID
Toluene-d8	VOL-91-5009	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
F2 (C10 to C16)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F4 (C34 to C50)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
Terphenyl	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Dichlorodifluoromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Vinyl Chloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: AECOM CANADA LTD

PROJECT: 60646784

SAMPLING SITE:

AGAT WORK ORDER: 21T846798 ATTENTION TO: Arif Chowdhury

OAIMI EINO OITE.		O/ (WII EED D I .	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Bromomethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Acetone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trans- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methyl tert-butyl Ether	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Cis- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Chloroform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Benzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Toluene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
m & p-Xylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: AECOM CANADA LTD

PROJECT: 60646784

SAMPLING SITE:

AGAT WORK ORDER: 21T846798 ATTENTION TO: Arif Chowdhury

		O, 220 2 1 1	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Bromoform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene (Cis + Trans)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS
Moisture Content	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
Polychlorinated Biphenyls	ORG-91-5113	modified from EPA SW-846 3541 & 8082	GC/ECD
Decachlorobiphenyl	ORG-91-5113	modified from EPA SW-846 3541 & 8082	GC/ECD
Moisture Content	ORG-91-5009	CCME Tier 1 Method	BALANCE

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph; 905.712.5100 Fax: 905.712.5122 **Laboratory Use Only**

webearth.agatlabs.com Cooler Quantity: Arrival Temperatures: **Chain of Custody Record** If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water consumed by humans) Report Information: **Regulatory Requirements:** Custody Seal Intact: □No AFROM COMONDO CHS Notes: Company: Arif Chowdhung Regulation 153/04 Excess Soils R406 Sewer Use Contact: ☐ Sanitary ☐ Storm **Turnaround Time (TAT) Required:** 105 commerce vally Dr, w, 7/1 floor Address: Table Indicate One Indicate One Mucham, on Regular TAT 5 to 7 Business Days Region Res/Park 416 420 5590 Prov. Water Quality Rush TAT (Rush Surcharges Apply Regulation 558 Agriculture Phone: Objectives (PWQO) Arit. Chowdhung Quecom. wm Reports to be sent to: Soil Texture (Check One) 3 Business Next Business 1. Email: □ ссме Other Coarse Dav Shromish Parish (a) ascen com OR Date Required (Rush Surcharges May Apply): Fine 2. Email: Indicate One Is this submission for a **Report Guideline on Project Information** Please provide prior notification for rush TAT **Record of Site Condition? Certificate of Analysis** Project: *TAT is exclusive of weekends and statutory holidays NO Yes □ No ☐ Yes Site Location: For 'Same Day' analysis, please contact your AGAT CPM Sampled By: 0. Reg O. Reg 153 O. Reg 406 8 AGAT Quote #: PO: **Sample Matrix Legend** □VOCS □ ABNS □ B(a)P□PCBe Soils Characterization Package Please note: If quotation number is not provided, client will be billed full price for analysis ςς, Rainwater Leach Landfill Disposal Characterization TCLP. HWSB □ SVOCs **Invoice Information:** Bill To Same: Yes ₩ No □ GW Ground Water Field Filtered - Metals, Hg, BTEX, F1-F4 BTEX, F1-F4 PHCs Analyze F4G if required □ Yes 0 Company: Paint □ vocs [Contact: Metals - □ CrVI, □ Hg, S Soil Address: SD Sediment SPLP:

Metals Email: SW Surface Water ICLP: | M& Excess : PCBs Sample Comments/ Date Time # of Y/N Sample Identification Containers Matrix Special Instructions Sampled Sampled Dec 17,221 1:00 AM PM S AM PM S 9 AM PM 3 AM PM S 2 AM PM X 2 AM PM Time 12:00 Date Time Page _ of Time Samples Received By (Print Name and Sign) Date Samples Relinquished By (Print Name and Sign):

CLIENT NAME: AECOM CANADA LTD

105 Commerce Valley Drive West 7th Floor

MARKHAM, ON L3T7W3

(905) 886-7022

ATTENTION TO: Arif Chowdhury

PROJECT: 60646784 AGAT WORK ORDER: 21T846922

SOIL ANALYSIS REVIEWED BY: Amanjot Bhela, Inorganic Lab Manager TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

DATE REPORTED: Jan 10, 2022

PAGES (INCLUDING COVER): 15 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 15

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 21T846922

PROJECT: 60646784

ATTENTION TO: Arif Chowdhury

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - Metals & Inorganics (Soil)

			O.	11 6 9. 133(311) - Metals & Inorganics (Soil)
DATE RECEIVED: 2021-12-17					DATE REPORTED: 2022-01-10
	S		CRIPTION: PLE TYPE: SAMPLED:	BH-3-1 SS2 Soil 2021-12-17 13:30	
Parameter	Unit	G/S	RDL	3363623	
Antimony	µg/g	40	0.8	<0.8	
Arsenic	μg/g	18	1	5	
Barium	µg/g	670	2.0	98.6	
Beryllium	μg/g	8	0.4	0.6	
Boron	μg/g	120	5	10	
Boron (Hot Water Soluble)	μg/g	2	0.10	0.26	
Cadmium	μg/g	1.9	0.5	<0.5	
Chromium	μg/g	160	5	21	
Cobalt	μg/g	80	0.5	10.2	
Copper	μg/g	230	1.0	27.0	
∟ead	μg/g	120	1	13	
Molybdenum	μg/g	40	0.5	<0.5	
Nickel	μg/g	270	1	21	
Selenium	μg/g	5.5	8.0	<0.8	
Silver	μg/g	40	0.5	<0.5	
Гhallium	μg/g	3.3	0.5	<0.5	
Jranium	μg/g	33	0.50	0.61	
/anadium	μg/g	86	0.4	30.7	
Zinc	μg/g	340	5	61	
Chromium, Hexavalent	μg/g	8	0.2	<0.2	
Cyanide, Free	μg/g	0.051	0.040	<0.040	
Mercury	μg/g	3.9	0.10	<0.10	
Electrical Conductivity (2:1)	mS/cm	1.4	0.005	0.761	
Sodium Adsorption Ratio (2:1) (Calc.)	N/A	12	N/A	3.23	
pH, 2:1 CaCl2 Extraction	pH Units	5.0-9.0	NA	7.54	

Certificate of Analysis

AGAT WORK ORDER: 21T846922

PROJECT: 60646784

CANADA L4Z 1Y2 TEL (905)712-5100

FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

CLIENT NAME: AECOM CANADA LTD

SAMPLING SITE:

3363623

ATTENTION TO: Arif Chowdhury

SAMPLED BY:

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2021-12-17 **DATE REPORTED: 2022-01-10**

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil -

Industrial/Commercial/Community Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated parameter.

Analysis performed at AGAT Toronto (unless marked by *)

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 21T846922

PROJECT: 60646784

ATTENTION TO: Arif Chowdhury

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (Soil)

			O. Reg. 153	(511) - PHOS F1 - F4 (-B1EA) (5011)
DATE RECEIVED: 2021-12-17				DATE REPORTED: 2022-01-10
	SA	AMPLE DESCRIPT	TION: BH-3-1 SS	4
		SAMPLE T	YPE: Soil	
		DATE SAMP	LED: 2021-12-17 13:30	7
Parameter	Unit	G/S RI	DL 3363630	
F1 (C6 - C10)	μg/g	55 5	5 <5	
F1 (C6 to C10) minus BTEX	μg/g	55 5	5 <5	
F2 (C10 to C16)	μg/g	230 1	0 <10	
F3 (C16 to C34)	μg/g	1700 5	0 <50	
F4 (C34 to C50)	μg/g	3300 5	0 <50	
Gravimetric Heavy Hydrocarbons	μg/g	3300 5	0 NA	
Moisture Content	%	0.	.1 17.0	
Surrogate	Unit	Acceptable Lim	nits	
Toluene-d8	% Recovery	50-140	83	
Terphenyl	%	60-140	88	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil -

Industrial/Commercial/Community Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

3363630 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX contribution.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor. nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified without the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Analysis performed at AGAT Toronto (unless marked by *)

Certificate of Analysis

AGAT WORK ORDER: 21T846922

PROJECT: 60646784

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Arif Chowdhury

SAMPLING SITE:					SAMPLED BY:
				O. Reg.	153(511) - VOCs (Soil)
DATE RECEIVED: 2021-12-17					DATE REPORTED: 2022-01-10
		SAMPLE DES	CRIPTION:	BH-3-1 SS4	
		SAM	PLE TYPE:	Soil	
		DATE	SAMPLED:	2021-12-17 13:30	
Parameter	Unit	G/S	RDL	3363630	
Dichlorodifluoromethane	μg/g	16	0.05	<0.05	
Vinyl Chloride	ug/g	0.032	0.02	<0.02	
Bromomethane	ug/g	0.05	0.05	<0.05	
Trichlorofluoromethane	ug/g	4	0.05	<0.05	
Acetone	ug/g	16	0.50	<0.50	
1,1-Dichloroethylene	ug/g	0.064	0.05	<0.05	
Methylene Chloride	ug/g	1.6	0.05	< 0.05	
Trans- 1,2-Dichloroethylene	ug/g	1.3	0.05	<0.05	
Methyl tert-butyl Ether	ug/g	1.6	0.05	<0.05	
1,1-Dichloroethane	ug/g	0.47	0.02	<0.02	
Methyl Ethyl Ketone	ug/g	70	0.50	<0.50	
Cis- 1,2-Dichloroethylene	ug/g	1.9	0.02	<0.02	
Chloroform	ug/g	0.47	0.04	<0.04	
1,2-Dichloroethane	ug/g	0.05	0.03	< 0.03	
1,1,1-Trichloroethane	ug/g	6.1	0.05	<0.05	
Carbon Tetrachloride	ug/g	0.21	0.05	<0.05	
Benzene	ug/g	0.32	0.02	<0.02	
1,2-Dichloropropane	ug/g	0.16	0.03	< 0.03	
Trichloroethylene	ug/g	0.55	0.03	< 0.03	
Bromodichloromethane	ug/g	1.5	0.05	< 0.05	
Methyl Isobutyl Ketone	ug/g	31	0.50	<0.50	
1,1,2-Trichloroethane	ug/g	0.05	0.04	<0.04	
Toluene	ug/g	6.4	0.05	<0.05	
Dibromochloromethane	ug/g	2.3	0.05	<0.05	
Ethylene Dibromide	ug/g	0.05	0.04	<0.04	
Tetrachloroethylene	ug/g	1.9	0.05	<0.05	
1,1,1,2-Tetrachloroethane	ug/g	0.087	0.04	<0.04	
Chlorobenzene	ug/g	2.4	0.05	<0.05	

Certified By:

1.1

ug/g

0.05

< 0.05

Ethylbenzene

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 21T846922

PROJECT: 60646784

ATTENTION TO: Arif Chowdhury

SAMPLED BY:

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

O Reg. 153(511) - VOCs (Soil)

				O. Reg.	153(511) - VOCS (S011)
DATE RECEIVED: 2021-12-17					DATE REPORTED: 2022-01-10
	SA	AMPLE DESC	CRIPTION:	BH-3-1 SS4	
		SAME	PLE TYPE:	Soil	
		DATE S	SAMPLED:	2021-12-17 13:30	
Parameter	Unit	G/S	RDL	3363630	
m & p-Xylene	ug/g		0.05	<0.05	
Bromoform	ug/g	0.61	0.05	< 0.05	
Styrene	ug/g	34	0.05	<0.05	
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	< 0.05	
o-Xylene	ug/g		0.05	< 0.05	
1,3-Dichlorobenzene	ug/g	9.6	0.05	< 0.05	
1,4-Dichlorobenzene	ug/g	0.2	0.05	<0.05	
1,2-Dichlorobenzene	ug/g	1.2	0.05	< 0.05	
Xylenes (Total)	ug/g	26	0.05	<0.05	
1,3-Dichloropropene (Cis + Trans)	μg/g	0.059	0.04	<0.04	
n-Hexane	μg/g	46	0.05	< 0.05	
Moisture Content	%		0.1	17.0	
Surrogate	Unit	Acceptab	e Limits		
Toluene-d8	% Recovery	50-1	40	98	
4-Bromofluorobenzene	% Recovery	50-1	40	78	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil -

Industrial/Commercial/Community Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

3363630 The sample was analyzed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certificate of Analysis

ATTENTION TO: Arif Chowdhury

AGAT WORK ORDER: 21T846922

PROJECT: 60646784

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: AECOM CANADA LTD

SAMPLING SITE: SAMPLED BY:

					Total PCBs (soil)
DATE RECEIVED: 2021-12-17					DATE REPORTED: 2022-01-10
	5	SAMPLE DES	CRIPTION:	BH-3-1 SS1	
		SAMI	PLE TYPE:	Soil	
		DATE S	SAMPLED:		
				13:30	
Parameter	Unit	G/S	RDL	3363627	
Polychlorinated Biphenyls	μg/g	1.1	0.1	<0.1	
Moisture Content	%		0.1	16.0	
Surrogate	Unit	Acceptab	le Limits		
Decachlorobiphenyl	%	60-1	30	88	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil -

Industrial/Commercial/Community Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

3363627 Results are based on the dry weight of soil extracted.

Analysis performed at AGAT Toronto (unless marked by *)

Quality Assurance

CLIENT NAME: AECOM CANADA LTD

AGAT WORK ORDER: 21T846922 PROJECT: 60646784 ATTENTION TO: Arif Chowdhury

SAMPLING SITE: SAMPLED BY:

				Soi	l Ana	alysis	3										
RPT Date: Jan 10, 2022				UPLICATI	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits				Recovery	Lie	ptable nits	Recovery		ptable nits
		ld	·	·			Value	Lower	Upper	,	Lower	Upper		Lower	Upper		
O. Reg. 153(511) - Metals & Inor	ganics (Soil)																
Antimony	3386164		<0.8	<0.8	NA	< 0.8	139%	70%	130%	99%	80%	120%	100%	70%	130%		
Arsenic	3386164		8	8	0.0%	< 1	118%	70%	130%	95%	80%	120%	95%	70%	130%		
Barium	3386164		105	104	1.0%	< 2.0	110%	70%	130%	103%	80%	120%	99%	70%	130%		
Beryllium	3386164		0.9	0.9	NA	< 0.4	87%	70%	130%	81%	80%	120%	84%	70%	130%		
Boron	3386164		8	9	NA	< 5	75%	70%	130%	80%	80%	120%	73%	70%	130%		
Boron (Hot Water Soluble)	3370053		0.45	0.49	NA	< 0.10	102%	60%	140%	90%	70%	130%	110%	60%	140%		
Cadmium	3386164		<0.5	<0.5	NA	< 0.5	107%	70%	130%	103%	80%	120%	103%	70%	130%		
Chromium	3386164		27	27	0.0%	< 5	99%	70%	130%	102%	80%	120%	90%	70%	130%		
Cobalt	3386164		15.8	15.8	0.0%	< 0.5	104%	70%	130%	93%	80%	120%	92%	70%	130%		
Copper	3386164		44.7	44.2	1.1%	< 1.0	100%	70%	130%	100%	80%	120%	101%	70%	130%		
Lead	3386164		17	17	0.0%	< 1	102%	70%	130%	99%	80%	120%	100%	70%	130%		
Molybdenum	3386164		0.5	0.5	NA	< 0.5	111%	70%	130%	107%	80%	120%	103%	70%	130%		
Nickel	3386164		34	35	2.9%	< 1	102%	70%	130%	94%	80%	120%	92%	70%	130%		
Selenium	3386164		<0.8	<0.8	NA	< 0.8	85%	70%	130%	104%	80%	120%	102%	70%	130%		
Silver	3386164		<0.5	<0.5	NA	< 0.5	107%	70%	130%	103%	80%	120%	96%	70%	130%		
Thallium	3386164		<0.5	<0.5	NA	< 0.5	108%	70%	130%	97%	80%	120%	98%	70%	130%		
Uranium	3386164		0.59	0.60	NA	< 0.50	109%	70%	130%	98%	80%	120%	104%	70%	130%		
Vanadium	3386164		38.9	39.2	0.8%	< 0.4	110%	70%	130%	91%	80%	120%	92%	70%	130%		
Zinc	3386164		85	84	1.2%	< 5	103%	70%	130%	100%	80%	120%	114%	70%	130%		
Chromium, Hexavalent	3363702		<0.2	<0.2	NA	< 0.2	92%	70%	130%	97%	80%	120%	84%	70%	130%		
Cyanide, Free	3386261		<0.040	<0.040	NA	< 0.040	91%	70%	130%	94%	80%	120%	91%	70%	130%		
Mercury	3386164		0.15	0.13	NA	< 0.10	118%	70%	130%	99%	80%	120%	100%	70%	130%		
Electrical Conductivity (2:1)	3384560		0.136	0.139	2.2%	< 0.005	104%	80%	120%	NA			NA				
Sodium Adsorption Ratio (2:1) (Calc.)	3363702		1.45	1.42	2.1%	N/A	NA			NA			NA				
pH, 2:1 CaCl2 Extraction	3370404		6.72	7.93	16.5%	NA	99%	80%	120%	NA			NA				

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

More than 90% of the elements met acceptance limits and overall data quality is acceptable for use. For a multi-element scan up to 10% of analytes may exceed the quoted limits by up to 10% absolute.

Certified By:

AGAT QUALITY ASSURANCE REPORT (V1)

Page 8 of 15

Quality Assurance

CLIENT NAME: AECOM CANADA LTD

AGAT WORK ORDER: 21T846922 PROJECT: 60646784 ATTENTION TO: Arif Chowdhury

SAMPLING SITE: SAMPLED BY:

PARAMETER Batch Sample Index Dup #1 Dup #2 RPD Method Blank Measured Recovery Limits Dup #2 Dup #3 Dup #4 Dup #4																L		
PARAMETER Batch Batch Barb Dup #1 Dup #2 Rep Blank Measurer Limits Recovery Limits Limits	XIX SPIKE	//ATRIX	MA	SPIKE	BLANK	METHOD	TERIAL	ICE MA	REFEREN		.	UPLICATI			PT Date: Jan 10, 2022			
Total PCBs (soil)	Acceptab Limits		Recovery			Recovery					RPD	Dup #2	Dup #1		Batch	PARAMETER		
Polychlorinated Biphenyls 3378722 < 0.1 < 0.1 NA < 0.1 103% 60% 140% 102% 60% 140% 98%	Lower Upp	Lov		Upper	Lower		Upper	Lower	value				-	Iu				
Dichlorodifluoromethane 3393322 < 0.05 < 0.05 NA < 0.05 103% 50% 140% 103% 50% 140% 103% 53% 140% 103% 53% 140% 103% 53% 140% 103% 50% 140% 103% 53% 140% 103% 50% 140% 103% 50% 140% 103% 50% 140% 103% 50% 140% 103% 50% 140% 103% 50% 140% 103% 50% 140% 103% 50% 140% 103% 50% 140% 103% 50% 140% 103% 50% 140% 103% 50% 140% 103% 50% 140% 103% 50% 140% 103% 50% 140% 103% 50% 140% 103% 50% 140% 103% 140% 103% 140% 103% 140% 103% 140% 103% 140% 103% 140% 103% 140% 103% 140% 103% 140% 103% 140% 103% 140% 120% 140%																` ,		
Dichlorodifluoromethane 3393322 0.05 0.05 NA 0.05 103% 50% 140% 103% 50% 140% 103	60% 140	60	98%	140%	60%	102%	140%	60%	103%	< 0.1	NA	< 0.1	< 0.1		3378722	Polychlorinated Biphenyls		
Vinyl Chloride 3393322																O. Reg. 153(511) - VOCs (Soil)		
Bromomethane 3393322 < 0.05 < 0.05 NA < 0.05 101% 50% 69% 50% 140% 79% Trichlorofluoromethane 3393322 < 0.05	50% 140	6 50	53%	140%	50%	103%	140%	50%	103%	< 0.05	NA	< 0.05	< 0.05		3393322	Dichlorodifluoromethane		
Trichlorofluoromethane 3393322	50% 140	% 50	103%	140%	50%	94%	140%	50%	104%	< 0.02	NA	< 0.02	< 0.02		3393322	Vinyl Chloride		
Acetone 3393322	50% 140	6 50	79%	140%	50%	69%	140%	50%	101%	< 0.05	NA	< 0.05	< 0.05		3393322	Bromomethane		
1.1-Dichloroethylene 3393322 0.05 0.	50% 140	6 50	83%	140%	50%	56%	140%	50%	89%	< 0.05	NA	< 0.05	< 0.05		3393322	Trichlorofluoromethane		
Methylene Chloride 3393322 < 0.05 < 0.05 NA < 0.05 79% 50% 140% 112% 60% 130% 83% Trans- 1,2-Dichloroethylene 3393322 < 0.05	50% 140	% 50	101%	140%	50%	97%	140%	50%	88%	< 0.50	NA	< 0.50	< 0.50		3393322	Acetone		
Methylene Chloride 3393322 < 0.05 < 0.05 NA < 0.05 79% 50% 140% 112% 60% 130% 83% Trans- 1,2-Dichloroethylene 3393322 < 0.05	50% 140	6 50	93%	130%	60%	83%	140%	50%	119%	< 0.05	NA	< 0.05	< 0.05		3393322	1,1-Dichloroethylene		
Trans- 1,2-Dichloroethylene 3393322 < 0.05	50% 140	6 50	83%	130%	60%	112%	140%	50%	79%	< 0.05	NA	< 0.05	< 0.05		3393322	Methylene Chloride		
Methyl tert-butyl Ether 3393322 < 0.05 < 0.05 NA < 0.05 105% 50% 140% 71% 60% 130% 90% 1,1-Dichloroethane 3393322 < 0.02	50% 140	6 5C	82%	130%	60%	82%	140%	50%	115%	< 0.05	NA	< 0.05	< 0.05		3393322	•		
1,1-Dichloroethane 3393322 < 0.02	50% 140														3393322	· · · · · · · · · · · · · · · · · · ·		
Cis- 1,2-Dichloroethylene 3393322	50% 140															•		
Cis- 1,2-Dichloroethylene 3393322	50% 140	6 50	98%	140%	50%	85%	140%	50%	102%	< 0.50	NA	< 0.50	< 0.50		3393322	Methyl Ethyl Ketone		
Chloroform 3393322 < 0.04 < 0.04 NA < 0.04 117% 50% 140% 107% 60% 130% 95% 1,2-Dichloroethane 3393322 < 0.03 < 0.03 NA < 0.03 111% 50% 140% 101% 60% 130% 83% 1,1,1-Trichloroethane 3393322 < 0.05 < 0.05 NA < 0.05 NA < 0.05 92% 50% 140% 86% 60% 130% 81% 1,1,1-Trichloroethane 3393322 < 0.05 < 0.05 NA < 0.05 NA < 0.05 92% 50% 140% 86% 60% 130% 81% 1,1,1-Trichloroethane 3393322 < 0.02 < 0.02 NA < 0.02 110% 50% 140% 112% 60% 130% 92% 1,2-Dichloropropane 3393322 < 0.03 < 0.03 NA < 0.03 NA < 0.03 85% 50% 140% 96% 60% 130% 99% 1,2-Dichloroethylene 3393322 < 0.03 < 0.03 NA < 0.03 NA < 0.03 85% 50% 140% 96% 60% 130% 99% 111% 11% 11% 11% 11% 11% 11% 11% 1	50% 140																	
1,2-Dichloroethane 3393322 < 0.03	50% 140															•		
1,1,1-Trichloroethane 3393322 < 0.05	50% 140																	
Benzene 3393322 < 0.02	50% 140															•		
Benzene 3393322 < 0.02	50% 140	ر اد	80%	130%	60%	78%	140%	50%	103%	< 0.05	NΔ	< 0.05	< 0.05		3303322	Carbon Tetrachloride		
1,2-Dichloropropane 3393322 < 0.03	50% 140																	
Trichloroethylene 3393322 < 0.03	50% 140																	
Bromodichloromethane 3393322 < 0.05 < 0.05 NA < 0.05 91% 50% 140% 96% 60% 130% 112% Methyl Isobutyl Ketone 3393322 < 0.50	50% 140																	
Methyl Isobutyl Ketone 3393322 < 0.50 < 0.50 NA < 0.50 104% 50% 140% 98% 50% 140% 100% 1,1,2-Trichloroethane 3393322 < 0.04	50% 140															•		
1,1,2-Trichloroethane 3393322 < 0.04	30% 140	% JC	11270	130%	00%	90%	140%	30%	91%	< 0.05	INA	< 0.05	< 0.05		3393322	Biomodiciliorometrane		
Toluene 3393322 < 0.05 < 0.05 NA < 0.05 110% 50% 140% 76% 60% 130% 102% Dibromochloromethane 3393322 < 0.05 < 0.05 NA < 0.05 88% 50% 140% 119% 60% 130% 109% Ethylene Dibromide 3393322 < 0.04 < 0.04 NA < 0.04 89% 50% 140% 106% 60% 130% 93% Tetrachloroethylene 3393322 < 0.05 < 0.05 NA < 0.05 NA < 0.05 76% 50% 140% 108% 60% 130% 80% 1,1,1,2-Tetrachloroethane 3393322 < 0.04 < 0.04 NA < 0.04 NA < 0.05 76% 50% 140% 108% 60% 130% 91% Chlorobenzene 3393322 < 0.05 < 0.05 NA < 0.05 NA < 0.05 98% 50% 140% 106% 60% 130% 82% Ethylbenzene 3393322 < 0.05 < 0.05 NA < 0.05 NA < 0.05 84% 50% 140% 97% 60% 130% 82%	50% 140															•		
Dibromochloromethane 3393322 < 0.05 < 0.05 NA < 0.05 88% 50% 140% 119% 60% 130% 109% Ethylene Dibromide 3393322 < 0.04	50% 140										NA							
Ethylene Dibromide 3393322 < 0.04	50% 140	% 50	102%	130%	60%	76%	140%	50%	110%	< 0.05	NA	< 0.05	< 0.05		3393322			
Tetrachloroethylene 3393322 < 0.05 < 0.05 NA < 0.05 76% 50% 140% 108% 60% 130% 80% 1,1,1,2-Tetrachloroethane 3393322 < 0.04 < 0.04 NA < 0.04 110% 50% 140% 84% 60% 130% 91% Chlorobenzene 3393322 < 0.05 < 0.05 NA < 0.05 98% 50% 140% 106% 60% 130% 82% Ethylbenzene 3393322 < 0.05 < 0.05 NA < 0.05 84% 50% 140% 97% 60% 130% 82%	50% 140	% 50	109%		60%		140%	50%	88%	< 0.05	NA	< 0.05	< 0.05					
1,1,1,2-Tetrachloroethane 3393322 < 0.04	50% 140	6 50	93%	130%	60%	106%	140%	50%	89%	< 0.04	NA	< 0.04	< 0.04		3393322	Ethylene Dibromide		
Chlorobenzene 3393322 < 0.05 < 0.05 NA < 0.05 98% 50% 140% 106% 60% 130% 82% Ethylbenzene 3393322 < 0.05	50% 140	6 50	80%	130%	60%	108%	140%	50%	76%	< 0.05	NA	< 0.05	< 0.05		3393322	Tetrachloroethylene		
Ethylbenzene 3393322 < 0.05 < 0.05 NA < 0.05 84% 50% 140% 97% 60% 130% 82%	50% 140	6 50	91%	130%	60%	84%	140%	50%	110%	< 0.04	NA	< 0.04	< 0.04		3393322	1,1,1,2-Tetrachloroethane		
•	50% 140	6 50	82%	130%	60%	106%	140%	50%	98%	< 0.05	NA	< 0.05	< 0.05		3393322	Chlorobenzene		
	50% 140	6 50	82%	130%	60%	97%	140%	50%	84%	< 0.05	NA	< 0.05	< 0.05		3393322	Ethylbenzene		
m & p-Xylene 3393322 < 0.05 < 0.05 NA < 0.05 101% 50% 140% 94% 60% 130% 106%	50% 140	% 50	106%	130%	60%	94%	140%	50%	101%	< 0.05	NA	< 0.05	< 0.05		3393322	m & p-Xylene		
Bromoform 3393322 < 0.05 < 0.05 NA < 0.05 87% 50% 140% 89% 60% 130% 103%	50% 140	% 50	103%	130%	60%	89%	140%	50%	87%	< 0.05	NA	< 0.05	< 0.05		3393322	Bromoform		
Styrene 3393322 < 0.05 < 0.05 NA < 0.05 90% 50% 140% 85% 60% 130% 118%	50% 140																	
1,1,2,2-Tetrachloroethane 3393322 < 0.05 < 0.05 NA < 0.05 88% 50% 140% 96% 60% 130% 94%	50% 140															•		
o-Xylene 3393322 < 0.05 < 0.05 NA < 0.05 82% 50% 140% 89% 60% 130% 92%	50% 140																	
1,3-Dichlorobenzene 3393322 < 0.05 < 0.05 NA < 0.05 83% 50% 140% 89% 60% 130% 96%	50% 140															•		
1,4-Dichlorobenzene 3393322 < 0.05 < 0.05 NA < 0.05 111% 50% 140% 105% 60% 130% 85%	50% 140	<u> </u>	85%	130%	60%	105%	140%	50%	111%	< 0.05	NΔ	< 0.05	< 0.05		3303333	1 4-Dichlorohenzene		

AGAT QUALITY ASSURANCE REPORT (V1)

Page 9 of 15

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: AECOM CANADA LTD

AGAT WORK ORDER: 21T846922

PROJECT: 60646784

ATTENTION TO: Arif Chowdhury

SAMPLING SITE: SAMPLED BY:

	Trace Organics Analysis (Continued)														
RPT Date: Jan 10, 2022		DUPLICATE				REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE	
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits	
		Iu	·	·			value	Lower	Upper		Lower	Upper	,	Lower	Upper
1,2-Dichlorobenzene	3393322		< 0.05	< 0.05	NA	< 0.05	91%	50%	140%	102%	60%	130%	86%	50%	140%
n-Hexane	3393322		< 0.05	< 0.05	NA	< 0.05	106%	50%	140%	103%	60%	130%	114%	50%	140%
O. Reg. 153(511) - PHCs F1 - F4 (-	-BTEX) (So	il)													
F1 (C6 - C10)	3377182		<5	<5	NA	< 5	113%	60%	140%	97%	60%	140%	107%	60%	140%
F2 (C10 to C16)	3384564		< 10	< 10	NA	< 10	101%	60%	140%	75%	60%	140%	84%	60%	140%
F3 (C16 to C34)	3384564		< 50	< 50	NA	< 50	102%	60%	140%	74%	60%	140%	78%	60%	140%
F4 (C34 to C50)	3384564		< 50	< 50	NA	< 50	99%	60%	140%	71%	60%	140%	85%	60%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

QC Exceedance

CLIENT NAME: AECOM CANADA LTD AGAT WORK ORDER: 21T846922
PROJECT: 60646784 ATTENTION TO: Arif Chowdhury

RPT Date: Jan 10, 2022		REFERENC	E MATERIA	AL METHO	D BLAN	SPIKE	MAT	RIX SPI	KE
PARAMETER	Sample Id	Measured	Acceptat Limits		1.6	ptable nits	Recovery	Lin	ptable nits
		Value	Lower Up	per	'	Upper	, ,		Upper

O. Reg. 153(511) - Metals & Inorganics (Soil)

Antimony 139% 70% 130% 99% 80% 120% 100% 70% 130%

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

More than 90% of the elements met acceptance limits and overall data quality is acceptable for use. For a multi-element scan up to 10% of analytes may exceed the quoted limits by up to 10% absolute.

AGAT WORK ORDER: 21T846922

ATTENTION TO: Arif Chowdhury

Method Summary

CLIENT NAME: AECOM CANADA LTD

PROJECT: 60646784

SAMPLING SITE: SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE				
Soil Analysis							
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS				
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS				
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS				
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS				
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS				
Boron (Hot Water Soluble)	MET-93-6104	modified from EPA 6010D and MSA PART 3, CH 21	ICP/OES				
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS				
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS				
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS				
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS				
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS				
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS				
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS				
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS				
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS				
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS				
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS				
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS				
Zinc	MET 93 -6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS				
Chromium, Hexavalent	INOR-93-6068	modified from EPA 3060 and EPA 7196	SPECTROPHOTOMETER				
Cyanide, Free	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	TECHNICON AUTO ANALYZER				
Mercury	MET-93-6103	modified from EPA 7471B and SM 3112 B	ICP-MS				
Electrical Conductivity (2:1)	INOR-93-6036	modified from MSA PART 3, CH 14 and SM 2510 B	EC METER				
Sodium Adsorption Ratio (2:1) (Calc.)	INOR-93-6007	modified from EPA 6010D & Analytical Protocol	ICP/OES				
pH, 2:1 CaCl2 Extraction	INOR-93-6031	modified from EPA 9045D and MCKEAGUE 3.11	PH METER				

Method Summary

CLIENT NAME: AECOM CANADA LTD AGAT WORK ORDER: 21T846922
PROJECT: 60646784 ATTENTION TO: Arif Chowdhury

SAMPLING SITE: SAMPLED BY:

PARAMETER						
Trace Organics Analysis						
F1 (C6 - C10)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID			
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID			
Toluene-d8	VOL-91-5009	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS			
F2 (C10 to C16)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID			
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID			
F4 (C34 to C50)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID			
Gravimetric Heavy Hydrocarbons	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE			
Moisture Content	VOL-91-5009	CCME Tier 1 Method	BALANCE			
Terphenyl	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID			
Dichlorodifluoromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS			
Vinyl Chloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS			
Bromomethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS			
Trichlorofluoromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS			
Acetone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS			
1,1-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS			
Methylene Chloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS			
Trans- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS			
Methyl tert-butyl Ether	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS			
1,1-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS			
Methyl Ethyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS			
Cis- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS			
Chloroform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS			
1,2-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS			
1,1,1-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS			
Carbon Tetrachloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS			
Benzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS			
1,2-Dichloropropane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS			
Trichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS			
Bromodichloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS			
Methyl Isobutyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS			
1,1,2-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS			

Method Summary

CLIENT NAME: AECOM CANADA LTD

AGAT WORK ORDER: 21T846922 PROJECT: 60646784 ATTENTION TO: Arif Chowdhury

SAMPLING SITE: SAMPLED BY:

SAMELING SITE.		SAMIFLED BT.	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Toluene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
m & p-Xylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromoform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene (Cis + Trans)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS
Moisture Content	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
Polychlorinated Biphenyls	ORG-91-5113	modified from EPA SW-846 3541 & 8082	GC/ECD
Decachlorobiphenyl	ORG-91-5113	modified from EPA SW-846 3541 & 8082	GC/ECD
Moisture Content	ORG-91-5009	CCME Tier 1 Method	BALANCE

Laboratories

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2

Ph: 905.712.5100 Fax: 905.712.5122 webearth.agatlabs.com

Laboratory Use Only

Work Order #: 215846922

Chain of Custody Recor	d services	. 3	or comple n	eseo uco Di	rinking Water Chain of	Custody Form (notable w	_	ebearth.aga		om —		oler Qu val Ter		-		ach 3.6	+	1770	3.2
Report Information: Company: AFLOM Canada	11102021	a Drinking wat	er sample, p	R	Regulatory Requires check all applicable boxes)	irements:					nent		stody S		tact:		2]Yes }	113	7]No	3.8
Contact: Arif Chowshum	1 / Dha	anish Par	un	_	Regulation 153/04	Sewe	r Use		Regulation	558		Tur	naro				AT\ P	equire	aq.	
Address: 105 Commerce Val	My DY, W	17 My		- -	Table Indicate One	∏Sani	itary		ССМЕ				ular '			-		Busines		
Marcham 10N 416 920 5590					Res/Park	□Stor	rm		Prov. Water	Ouality			h TA1		Surchai	1.		Busines	s Days	
Priorie.	Fax:				☐ Agriculture	Region			Objectives Other			11.00					2 Bus	inocc	NI.	ext Business
1. Email: Arf. choudhung	6			— ⁵⁰	Dil Texture (Check One)		ite One		Jourei		i	[Da Da	Busine ys	255		Days	111055		
2. Email: Arminh Perilon	(a) 00 (U)	n Com		-1	Fine	MISA			Indicate	One	-		OF	≀ Date	e Requ	Jired (Rush S	urcharge	s May Ap	ply):
Project Information:					Is this submissio				Guldelin					Ploat	co neo	uldo r	rlor not	ification	for rush	TAT
Project: 60646784				_	Record of Site Co	7.0		1 100	ate of An				*TA					ds and st		
Site Location: Strk 3 Sampled By: Dhwanish faith				- 16	☐ Yes ☐	No		Ye	S L	No		F	or 'Sai	ne Da	ay' an	alysis.	, please	contact	your AG	AT CPM
Sampled By: Dhwanh Va Vh AGAT Quote #:	PO:							0. R	teg 153			T					□PCBs			
Please note: If quotation number		ill be billed full price	for analysis	S B	Sample Matrix Leg Biota	end	, CrVI	G S	rides)						1					
Invoice Information:		Bill To Same:	Yes No		W Ground Water		Field Filtered - Metals, Hg, CrVI	lydride	N IOI. Hyd		N. Y.	THM					□ B(a)P			
Company:				_ 0 P			Meta	excl	Tals (inci.		Custom Metals TP □ NH, □ TKN □ NO,+NO,	EX			ors	des	□ ABNs			
Contact:			-21	_ s			l- pa	anics letals	S C C		NO.	BIEX			□ Aroclors	esticl	2			
Address:				SI			Filte	Inorganics	. WS □	can	Ousto	NOC .				ine P	□ vocs			
Linaii.				S	W Surface Water		Field	and I	e Meta	tals 5	tion/c	.S.	1-F		Tota	chlor		3		
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Commer Special Instr		Y/N	Metals and Inorganics ☐ All Metals ☐ 153 Metals (excl. Hydrides)	ORPs: OB-HWS OC! COMPOSED OF COMPOSED OC! CO	Full Metals Scan	Nutrients: Nutrients: TP NH3	Volatiles:	PHCs F1 - F4	PAHS	PCBs: Total	Organochlorine Pesticldes	TCLP: M&	3		
Bn-3-1552 I	XC TTIZES	1:36	1	S				*							1	Ш		-		
Bn-3-4 SS2	-1	1	1					X		1	-			-	1				-	
Bn-3-5 SS,			1					7					-	+		H		+++		
Bn-3-6 SS,			1					×		-				+	×	H				
Bn-3-155,			1							-	-			×	1	H				
BN-3-5 554			+ 1							\vdash				>	_					
16n-3-6 S			2-									*	×	-		H		12		
M-3-1 354	4		2									×	×			П				- 3
41-3-4 35	1	4		1									7							
									11	20										
Samples Relinquished By (Print Name and Sign):		Date	Ti	ne .	Samples Received By (F	Name and Sign):		9	W Á	1	Date	1.	1 Tim	~ \						
Samples Relinquished by (Print Name and Sign):	7	Dec 17		3:0~ me	Samples Received By (F	rint Name and Sign):	away	MO	u ev	,	Dec	. 1-	T /	2	5.0		P:	age	of	
Samples Relinquished By (Print Name and Sign):		Date	т.	me	Samples Received By (F	rint Name and Sign):					Date		Tim) <i>- \</i>	Śγ	7		77		<u> </u>

CLIENT NAME: AECOM CANADA LTD

105 COMMERCE VALLEY DR.W 7TH FLOOR

MARKHAM, ON L3T7W3

(905) 886-7022

ATTENTION TO: Arif Chowdhury

PROJECT: 60646784

AGAT WORK ORDER: 21T847546

SOIL ANALYSIS REVIEWED BY: Amanjot Bhela, Inorganic Lab Manager TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

DATE REPORTED: Jan 10, 2022

PAGES (INCLUDING COVER): 16 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 16

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 21T847546

PROJECT: 60646784

ATTENTION TO: Arif Chowdhury

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O Reg. 153(511) - Metals & Inorganics (Soil)

			<u> </u>	11eg. 133(o11) - Metais	s & illulyali	108 (3011)		
DATE RECEIVED: 2021-12-20									DATE REPORTED: 2022-01-10
	;	SAMPLE DES	CRIPTION:	Bh-5-1 SS2	Bh-5-2 SS1	Bh-5-3 SS1	Bh-5-4 SS2	Bh-5-5 SS2	
		SAMI	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	
		DATE S	SAMPLED:	2021-12-20	2021-12-20	2021-12-20	2021-12-20	2021-12-20	
_				17:00	17:00	17:00	17:00	17:00	
Parameter	Unit	G/S	RDL	3378851	3378853	3378854	3378855	3378856	
Antimony	μg/g	40	8.0	<0.8	<0.8	<0.8	<0.8	<0.8	
Arsenic	μg/g	18	1	4	4	5	5	4	
Barium	μg/g	670	2.0	116	88.6	109	117	97.5	
Beryllium	μg/g	8	0.4	0.7	0.7	0.8	0.7	0.7	
Boron	μg/g	120	5	13	9	11	9	12	
Boron (Hot Water Soluble)	μg/g	2	0.10	0.12	0.26	<0.10	0.10	<0.10	
Cadmium	μg/g	1.9	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Chromium	μg/g	160	5	26	22	27	25	25	
Cobalt	μg/g	80	0.5	10.8	8.2	12.1	12.5	10.3	
Copper	μg/g	230	1.0	19.4	16.3	23.3	26.1	21.3	
Lead	μg/g	120	1	10	13	10	11	9	
Molybdenum	μg/g	40	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Nickel	μg/g	270	1	21	17	24	23	20	
Selenium	μg/g	5.5	8.0	<0.8	<0.8	<0.8	<0.8	<0.8	
Silver	μg/g	40	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Thallium	μg/g	3.3	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Uranium	μg/g	33	0.50	0.85	1.12	0.67	0.94	0.80	
Vanadium	μg/g	86	0.4	37.0	30.7	38.4	34.2	35.1	
Zinc	μg/g	340	5	51	66	53	51	49	
Chromium, Hexavalent	μg/g	8	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
Cyanide, Free	μg/g	0.051	0.040	< 0.040	<0.040	<0.040	<0.040	< 0.040	
Mercury	μg/g	3.9	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Electrical Conductivity (2:1)	mS/cm	1.4	0.005	0.249	0.232	0.144	0.214	0.225	
Sodium Adsorption Ratio (2:1) (Calc.)	N/A	12	N/A	1.08	0.554	0.316	1.11	1.33	
pH, 2:1 CaCl2 Extraction	pH Units	5.0-9.0	NA	7.68	7.42	7.62	6.79	7.38	

Certificate of Analysis

AGAT WORK ORDER: 21T847546

PROJECT: 60646784

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122

5835 COOPERS AVENUE

http://www.agatlabs.com

CLIENT NAME: AECOM CANADA LTD

SAMPLED BY:

ATTENTION TO: Arif Chowdhury

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2021-12-20 **DATE REPORTED: 2022-01-10**

Comments:

SAMPLING SITE:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil -

Industrial/Commercial/Community Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

3378851-3378856 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated parameter.

Analysis performed at AGAT Toronto (unless marked by *)

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 21T847546

PROJECT: 60646784

ATTENTION TO: Arif Chowdhury

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - PAHs (Soil)

				O. IN	g. 153(511) - 1	A113 (3011)
DATE RECEIVED: 2021-12-20						DATE REPORTED: 2022-01-10
	\$	SAMPLE DES	CRIPTION:	Bh-5-2 SS1	Bh-5-1 SS1	
		SAMI	PLE TYPE:	Soil	Soil	
		DATES	SAMPLED:	2021-12-20 17:00	2021-12-20 17:00	
Parameter	Unit	G/S	RDL	3378853	3378859	
Naphthalene	μg/g	0.6	0.05	<0.05	<0.05	
Acenaphthylene	μg/g	0.15	0.05	< 0.05	<0.05	
Acenaphthene	μg/g	7.9	0.05	<0.05	<0.05	
Fluorene	μg/g	62	0.05	<0.05	<0.05	
Phenanthrene	μg/g	6.2	0.05	< 0.05	<0.05	
Anthracene	μg/g	0.67	0.05	< 0.05	<0.05	
Fluoranthene	μg/g	0.69	0.05	<0.05	<0.05	
Pyrene	μg/g	78	0.05	< 0.05	<0.05	
Benz(a)anthracene	μg/g	0.5	0.05	< 0.05	<0.05	
Chrysene	μg/g	7	0.05	< 0.05	<0.05	
Benzo(b)fluoranthene	μg/g	0.78	0.05	< 0.05	< 0.05	
Benzo(k)fluoranthene	μg/g	0.78	0.05	< 0.05	<0.05	
Benzo(a)pyrene	μg/g	0.3	0.05	< 0.05	<0.05	
Indeno(1,2,3-cd)pyrene	μg/g	0.38	0.05	<0.05	<0.05	
Dibenz(a,h)anthracene	μg/g	0.1	0.05	< 0.05	<0.05	
Benzo(g,h,i)perylene	μg/g	6.6	0.05	<0.05	<0.05	
1 and 2 Methlynaphthalene	μg/g	0.99	0.05	< 0.05	< 0.05	
Moisture Content	%		0.1	18.4	21.0	
Surrogate	Unit	Acceptab	le Limits			
Naphthalene-d8	%	50-1	140	105	93	
Acridine-d9	%	50-1	140	78	97	
Terphenyl-d14	%	50-1	140	88	98	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils **pH range listed applies to surface soil only**

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

3378853-3378859 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

Analysis performed at AGAT Toronto (unless marked by *)

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 21T847546

PROJECT: 60646784

ATTENTION TO: Arif Chowdhury

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (So

					· · · · · · · · · · · · · · · · · · ·
					DATE REPORTED: 2022-01-10
S	AMPLE DESC	CRIPTION:	Bh-5-2 SS2	BH-5-3 SS6A	
	SAME	PLE TYPE:	Soil	Soil	
	DATE S	SAMPLED:	2021-12-20 17:00	2021-12-20 17:00	
Unit	G/S	RDL	3378861	3378862	
μg/g	55	5	<5	<5	
μg/g	55	5	<5	<5	
μg/g	230	10	<10	<10	
μg/g	1700	50	<50	<50	
μg/g	3300	50	<50	<50	
μg/g	3300	50	NA	NA	
%		0.1	19.6	8.7	
Unit	Acceptab	le Limits			
% Recovery	50-1	40	101	100	
%	60-1	40	74	78	
	Unit µg/g µg/g µg/g µg/g µg/g µg/g µg/g % Unit % Recovery	SAME DATE S Unit G / S µg/g 55 µg/g 55 µg/g 230 µg/g 1700 µg/g 3300 µg/g 3300 µg/g 3300 % Unit Acceptable % Recovery 50-1	μg/g 55 5 μg/g 55 5 μg/g 230 10 μg/g 1700 50 μg/g 3300 50 μg/g 3300 50 % 0.1 Unit Acceptable Limits % Recovery 50-140	SAMPLE TYPE: Soil DATE SAMPLED: 2021-12-20 17:00 Unit G / S RDL 3378861 μg/g 55 5 <5	SAMPLE TYPE: Soil Soil DATE SAMPLED: 2021-12-20 2021-12-20 17:00 17:00 17:00 Unit G / S RDL 3378861 3378862 μg/g 55 5 <5

Comments: RDL - Reported Detection Limit: G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil -

Industrial/Commercial/Community Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

3378861-3378862 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons > C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX contribution.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified without the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Analysis performed at AGAT Toronto (unless marked by *)

Certificate of Analysis

AGAT WORK ORDER: 21T847546

PROJECT: 60646784

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Arif Chowdhury

SAMPLING SITE:						SAMP	LED BY:		
				O. Re	g. 153(511) - V	OCs (Soil)			
DATE RECEIVED: 2021-12-20								DATE REPORTED: 2022-01-10	
	;	SAMPLE DES	CRIPTION:	Bh-5-2 SS2	BH-5-3 SS6A				
		SAMI	PLE TYPE:	Soil	Soil				
		DATES	SAMPLED:	2021-12-20 17:00	2021-12-20 17:00				
Parameter	Unit	G/S	RDL	3378861	3378862				
Dichlorodifluoromethane	μg/g	16	0.05	<0.05	<0.05				
Vinyl Chloride	ug/g	0.032	0.02	<0.02	<0.02				
Bromomethane	ug/g	0.05	0.05	<0.05	<0.05				
Trichlorofluoromethane	ug/g	4	0.05	<0.05	<0.05				
Acetone	ug/g	16	0.50	<0.50	<0.50				
1,1-Dichloroethylene	ug/g	0.064	0.05	<0.05	<0.05				
Methylene Chloride	ug/g	1.6	0.05	< 0.05	<0.05				
Trans- 1,2-Dichloroethylene	ug/g	1.3	0.05	<0.05	<0.05				
Methyl tert-butyl Ether	ug/g	1.6	0.05	< 0.05	<0.05				
1,1-Dichloroethane	ug/g	0.47	0.02	<0.02	<0.02				
Methyl Ethyl Ketone	ug/g	70	0.50	<0.50	<0.50				
Cis- 1,2-Dichloroethylene	ug/g	1.9	0.02	< 0.02	< 0.02				
Chloroform	ug/g	0.47	0.04	< 0.04	<0.04				
1,2-Dichloroethane	ug/g	0.05	0.03	< 0.03	< 0.03				
1,1,1-Trichloroethane	ug/g	6.1	0.05	< 0.05	< 0.05				
Carbon Tetrachloride	ug/g	0.21	0.05	< 0.05	<0.05				
Benzene	ug/g	0.32	0.02	< 0.02	<0.02				
1,2-Dichloropropane	ug/g	0.16	0.03	< 0.03	< 0.03				
Trichloroethylene	ug/g	0.55	0.03	< 0.03	< 0.03				
Bromodichloromethane	ug/g	1.5	0.05	< 0.05	<0.05				
Methyl Isobutyl Ketone	ug/g	31	0.50	< 0.50	<0.50				
1,1,2-Trichloroethane	ug/g	0.05	0.04	<0.04	<0.04				
Toluene	ug/g	6.4	0.05	< 0.05	<0.05				
Dibromochloromethane	ug/g	2.3	0.05	< 0.05	<0.05				
Ethylene Dibromide	ug/g	0.05	0.04	<0.04	<0.04				
Tetrachloroethylene	ug/g	1.9	0.05	<0.05	<0.05				
1,1,1,2-Tetrachloroethane	ug/g	0.087	0.04	<0.04	<0.04				
Chlorobenzene	ug/g	2.4	0.05	< 0.05	<0.05				

Certified By:

1.1

ug/g

0.05

< 0.05

Ethylbenzene

< 0.05

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 21T847546

PROJECT: 60646784

CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

ATTENTION TO: Arif Chowdhury

SAMPLED BY:

O. Reg. 153(511) - VOCs (Soil)

				• • • • • • • • • • • • • • • • • • • •	9()	(30.1)
DATE RECEIVED: 2021-12-20						DATE REPORTED: 2022-01-10
	S	AMPLE DES	CRIPTION:	Bh-5-2 SS2	BH-5-3 SS6A	
		SAMI	PLE TYPE:	Soil	Soil	
		DATES	SAMPLED:	2021-12-20 17:00	2021-12-20 17:00	
Parameter	Unit	G/S	RDL	3378861	3378862	
m & p-Xylene	ug/g		0.05	< 0.05	<0.05	
Bromoform	ug/g	0.61	0.05	< 0.05	<0.05	
Styrene	ug/g	34	0.05	< 0.05	< 0.05	
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	< 0.05	< 0.05	
o-Xylene	ug/g		0.05	< 0.05	< 0.05	
1,3-Dichlorobenzene	ug/g	9.6	0.05	< 0.05	< 0.05	
1,4-Dichlorobenzene	ug/g	0.2	0.05	< 0.05	< 0.05	
1,2-Dichlorobenzene	ug/g	1.2	0.05	< 0.05	< 0.05	
Xylenes (Total)	ug/g	26	0.05	< 0.05	< 0.05	
1,3-Dichloropropene (Cis + Trans)	μg/g	0.059	0.04	< 0.04	<0.04	
n-Hexane	μg/g	46	0.05	< 0.05	< 0.05	
Moisture Content	%		0.1	19.6	8.7	
Surrogate	Unit	Acceptab	le Limits			
Toluene-d8	% Recovery	50-1	40	84	79	
4-Bromofluorobenzene	% Recovery	50-1	40	75	85	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil - Industrial/Commercial/Community Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

3378861-3378862 The sample was analyzed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certificate of Analysis

ATTENTION TO: Arif Chowdhury

AGAT WORK ORDER: 21T847546

PROJECT: 60646784

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: AECOM CANADA LTD

SAMPLING SITE: SAMPLED BY:

Total PCBs (soil)									
DATE RECEIVED: 2021-12-20					DATE REPORTED: 2022-01-10				
	;	SAMPLE DES	CRIPTION:	Bh-5-2 SS1					
		SAM	PLE TYPE:	Soil					
		DATE	SAMPLED:	2021-12-20 17:00					
Parameter	Unit	G/S	RDL	3378853					
Polychlorinated Biphenyls	μg/g	0.35	0.1	<0.1					
Moisture Content	%		0.1	18.4					
Surrogate	Unit	Acceptab	le Limits						
Decachlorobiphenyl	%	60-	130	104					

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils **pH range listed applies to surface soil only**

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

3378853 Results are based on the dry weight of soil extracted.

Analysis performed at AGAT Toronto (unless marked by *)

Quality Assurance

CLIENT NAME: AECOM CANADA LTD

AGAT WORK ORDER: 21T847546 PROJECT: 60646784 ATTENTION TO: Arif Chowdhury

SAMPLING SITE: SAMPLED BY:

				Soi	l Ana	alysis	3								
RPT Date: Jan 10, 2022			С	DUPLICATE			REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		eptable mits	Recovery	Acceptable Limits		Recovery	Lin	ptable nits
		la la	·	,			Value	Lower	Upper	ĺ	Lower	Upper	,	Lower	Upper
O. Reg. 153(511) - Metals & Inorg	ganics (Soil))													
Antimony	3378851	3378851	<0.8	<0.8	NA	< 0.8	123%	70%	130%	91%	80%	120%	101%	70%	130%
Arsenic	3378851	3378851	4	4	NA	< 1	117%	70%	130%	92%	80%	120%	95%	70%	130%
Barium	3378851	3378851	116	125	7.5%	< 2.0	106%	70%	130%	89%	80%	120%	101%	70%	130%
Beryllium	3378851	3378851	0.7	8.0	NA	< 0.4	109%	70%	130%	94%	80%	120%	93%	70%	130%
Boron	3378851	3378851	13	14	NA	< 5	95%	70%	130%	91%	80%	120%	87%	70%	130%
Boron (Hot Water Soluble)	3394165		0.18	0.20	NA	< 0.10	85%	60%	140%	106%	70%	130%	94%	60%	140%
Cadmium	3378851	3378851	<0.5	<0.5	NA	< 0.5	114%	70%	130%	95%	80%	120%	98%	70%	130%
Chromium	3378851	3378851	26	27	3.8%	< 5	108%	70%	130%	106%	80%	120%	98%	70%	130%
Cobalt	3378851	3378851	10.8	11.1	2.7%	< 0.5	102%	70%	130%	93%	80%	120%	94%	70%	130%
Copper	3378851	3378851	19.4	20.0	3.0%	< 1.0	98%	70%	130%	98%	80%	120%	89%	70%	130%
Lead	3378851	3378851	10	10	0.0%	< 1	107%	70%	130%	95%	80%	120%	95%	70%	130%
Molybdenum	3378851	3378851	<0.5	<0.5	NA	< 0.5	109%	70%	130%	100%	80%	120%	103%	70%	130%
Nickel	3378851	3378851	21	22	4.7%	< 1	99%	70%	130%	92%	80%	120%	89%	70%	130%
Selenium	3378851	3378851	<0.8	<0.8	NA	< 0.8	101%	70%	130%	95%	80%	120%	95%	70%	130%
Silver	3378851	3378851	<0.5	<0.5	NA	< 0.5	102%	70%	130%	95%	80%	120%	91%	70%	130%
Thallium	3378851	3378851	<0.5	<0.5	NA	< 0.5	115%	70%	130%	94%	80%	120%	93%	70%	130%
Uranium	3378851	3378851	0.85	0.91	NA	< 0.50	118%	70%	130%	96%	80%	120%	102%	70%	130%
Vanadium	3378851	3378851	37.0	37.3	0.8%	< 0.4	110%	70%	130%	87%	80%	120%	86%	70%	130%
Zinc	3378851	3378851	51	51	0.0%	< 5	107%	70%	130%	97%	80%	120%	102%	70%	130%
Chromium, Hexavalent	3379720		<0.2	<0.2	NA	< 0.2	94%	70%	130%	93%	80%	120%	92%	70%	130%
Cyanide, Free	3394289		<0.040	<0.040	NA	< 0.040	95%	70%	130%	106%	80%	120%	104%	70%	130%
Mercury	3378851	3378851	<0.10	<0.10	NA	< 0.10	101%	70%	130%	100%	80%	120%	102%	70%	130%
Electrical Conductivity (2:1)	3378851	3378851	0.249	0.250	0.4%	< 0.005	109%	80%	120%	NA			NA		
Sodium Adsorption Ratio (2:1) (Calc.)	3378851	3378851	1.08	1.09	0.9%	N/A	NA			NA			NA		
pH, 2:1 CaCl2 Extraction	3384671		6.59	6.91	4.7%	NA	99%	80%	120%	NA			NA		

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

O. Reg. 153(511) - Metals & Inorganics (Soil)

pH, 2:1 CaCl2 Extraction 3378855 3378855 6.79 7.20 5.9% 99% 80% 120% NA

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Certified By:

AGAT QUALITY ASSURANCE REPORT (V1)

Page 9 of 16

Quality Assurance

CLIENT NAME: AECOM CANADA LTD

AGAT WORK ORDER: 21T847546 PROJECT: 60646784 ATTENTION TO: Arif Chowdhury

SAMPLING SITE: SAMPLED BY:

	Trace Organics Analysis														
RPT Date: Jan 10, 2022			DUPLICATE				REFERE	NCE MA	TERIAL	METHOD	BLANK	(SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		eptable mits	Recovery	Lin	eptable mits	Recovery		ptable nits
		ld	- 44				Value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - PAHs (Soil)															
Naphthalene	3354673		< 0.05	< 0.05	NA	< 0.05	90%	50%	140%	97%	50%	140%	93%	50%	140%
Acenaphthylene	3354673		< 0.05	< 0.05	NA	< 0.05	105%	50%	140%	85%	50%	140%	92%	50%	140%
Acenaphthene	3354673		< 0.05	< 0.05	NA	< 0.05	78%	50%	140%	90%	50%	140%	91%	50%	140%
Fluorene	3354673		< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	75%	50%	140%	78%	50%	140%
Phenanthrene	3354673		< 0.05	< 0.05	NA	< 0.05	71%	50%	140%	93%	50%	140%	78%	50%	140%
Anthracene	3354673		< 0.05	< 0.05	NA	< 0.05	82%	50%	140%	92%	50%	140%	85%	50%	140%
Fluoranthene	3354673		< 0.05	< 0.05	NA	< 0.05	93%	50%	140%	101%	50%	140%	93%	50%	140%
Pyrene	3354673		< 0.05	< 0.05	NA	< 0.05	92%	50%	140%	71%	50%	140%	92%	50%	140%
Benz(a)anthracene	3354673		< 0.05	< 0.05	NA	< 0.05	101%	50%	140%	85%	50%	140%	101%	50%	140%
Chrysene	3354673		< 0.05	< 0.05	NA	< 0.05	78%	50%	140%	93%	50%	140%	54%	50%	140%
Benzo(b)fluoranthene	3354673		< 0.05	< 0.05	NA	< 0.05	95%	50%	140%	92%	50%	140%	85%	50%	140%
Benzo(k)fluoranthene	3354673		< 0.05	< 0.05	NA	< 0.05	93%	50%	140%	105%	50%	140%	93%	50%	140%
Benzo(a)pyrene	3354673		< 0.05	< 0.05	NA	< 0.05	82%	50%	140%	98%	50%	140%	92%	50%	140%
Indeno(1,2,3-cd)pyrene	3354673		< 0.05	< 0.05	NA	< 0.05	91%	50%	140%	86%	50%	140%	98%	50%	140%
Dibenz(a,h)anthracene	3354673		< 0.05	< 0.05	NA	< 0.05	105%	50%	140%	85%	50%	140%	105%	50%	140%
Benzo(g,h,i)perylene	3354673		< 0.05	< 0.05	NA	< 0.05	78%	50%	140%	80%	50%	140%	98%	50%	140%
Total PCBs (soil)															
Polychlorinated Biphenyls	3393873		< 0.1	< 0.1	NA	< 0.1	105%	60%	140%	103%	60%	140%	105%	60%	140%
O. Reg. 153(511) - PHCs F1 - F4 (-BTFX) (So	il)													
F1 (C6 - C10)	3394272	,	<5	<5	NA	< 5	102%	60%	140%	104%	60%	140%	94%	60%	140%
F2 (C10 to C16)	3386566		< 10	< 10	NA	< 10	78%	60%	140%	76%	60%	140%	61%	60%	140%
F3 (C16 to C34)	3386566		< 50	< 50	NA	< 50	84%	60%	140%	84%	60%	140%	76%	60%	140%
F4 (C34 to C50)	3386566		< 50	< 50	NA	< 50	78%	60%	140%	87%	60%	140%	68%	60%	140%
O Dog 152/511) \/OCo (Coil)															
O. Reg. 153(511) - VOCs (Soil) Dichlorodifluoromethane	3377976		< 0.05	. 0.05	NA	. 0.05	82%	50%	140%	80%	50%	1.400/	110%	50%	140%
Vinyl Chloride	3377976		< 0.03	< 0.05 < 0.02	NA	< 0.05 < 0.02	105%	50%	140%	84%	50%	140% 140%	80%	50%	140%
Bromomethane	3377976		< 0.02	< 0.02	NA	< 0.02	105%	50%	140%	97%	50%	140%	100%	50%	140%
Trichlorofluoromethane	3377976		< 0.05	< 0.05	NA	< 0.05	77%	50%	140%	84%	50%	140%	93%	50%	140%
Acetone	3377976		< 0.50	< 0.50	NA	< 0.50	96%	50%	140%	101%	50%	140%	101%	50%	140%
1.1 Diablaraathulana	227727		. 0. 05	. 0.05	NIA	. 0.05	040/	F00/	4.400/	000/	000/	4000/	050/	F00/	1.400/
1,1-Dichloroethylene	3377976		< 0.05	< 0.05	NA	< 0.05	91%	50%		96%	60%	130%	85%		140%
Methylene Chloride	3377976		< 0.05	< 0.05	NA	< 0.05	92%	50%	140%	100%	60%	130%	87%		140%
Trans- 1,2-Dichloroethylene Methyl tert-butyl Ether	3377976 3377976		< 0.05 < 0.05	< 0.05 < 0.05	NA NA	< 0.05	88% 91%	50% 50%	140% 140%	86% 70%	60% 60%	130% 130%	81% 91%	50%	140% 140%
1,1-Dichloroethane	3377976		< 0.05	< 0.05	NA NA	< 0.05 < 0.02	91% 76%	50%	140%	79% 71%		130%	91% 83%	50%	140%
Methyl Ethyl Ketone	3377976		< 0.50	< 0.50	NA	< 0.50	102%	50%	140%	98%	50%	140%	103%	50%	140%
Cis- 1,2-Dichloroethylene	3377976		< 0.02	< 0.02	NA	< 0.02	98%	50%	140%	111%	60%	130%	89%		140%
Chloroform	3377976		< 0.04	< 0.04	NA	< 0.04	114%	50%	140%	80%	60%	130%	82%	50%	
1,2-Dichloroethane	3377976		< 0.03	< 0.03	NA	< 0.03	97%	50%	140%	86%	60%	130%	77%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 10 of 16

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: AECOM CANADA LTD

AGAT WORK ORDER: 21T847546

PROJECT: 60646784

ATTENTION TO: Arif Chowdhury

SAMPLING SITE: SAMPLED BY:

Trace Organics Analysis (Continued)															
RPT Date: Jan 10, 2022			DUPLICATE				REFERENCE MATERIAL			METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		eptable mits	Recovery	Lie	ptable	Recovery	منا أ	ptable nits
		Id	·	·			value	Lower	Upper		Lower	Upper	,	Lower	Upper
1,1,1-Trichloroethane	3377976		< 0.05	< 0.05	NA	< 0.05	89%	50%	140%	80%	60%	130%	82%	50%	140%
Carbon Tetrachloride	3377976		< 0.05	< 0.05	NA	< 0.05	103%	50%	140%	85%	60%	130%	79%	50%	140%
Benzene	3377976		< 0.02	< 0.02	NA	< 0.02	109%	50%	140%	81%	60%	130%	89%	50%	140%
1,2-Dichloropropane	3377976		< 0.03	< 0.03	NA	< 0.03	91%	50%	140%	88%	60%	130%	78%	50%	140%
Trichloroethylene	3377976		< 0.03	< 0.03	NA	< 0.03	101%	50%	140%	100%	60%	130%	90%	50%	140%
Bromodichloromethane	3377976		< 0.05	< 0.05	NA	< 0.05	84%	50%	140%	94%	60%	130%	80%	50%	140%
Methyl Isobutyl Ketone	3377976		< 0.50	< 0.50	NA	< 0.50	105%	50%	140%	105%	50%	140%	103%	50%	140%
1,1,2-Trichloroethane	3377976		< 0.04	< 0.04	NA	< 0.04	114%	50%	140%	87%	60%	130%	118%	50%	140%
Toluene	3377976		< 0.05	< 0.05	NA	< 0.05	119%	50%	140%	98%	60%	130%	87%	50%	140%
Dibromochloromethane	3377976		< 0.05	< 0.05	NA	< 0.05	83%	50%	140%	97%	60%	130%	118%	50%	140%
Ethylene Dibromide	3377976		< 0.04	< 0.04	NA	< 0.04	99%	50%	140%	95%	60%	130%	100%	50%	140%
1,1,1,2-Tetrachloroethane	3377976		< 0.04	< 0.04	NA	< 0.04	80%	50%	140%	82%	60%	130%	94%	50%	140%
Chlorobenzene	3377976		< 0.05	< 0.05	NA	< 0.05	93%	50%	140%	104%	60%	130%	97%	50%	140%
Ethylbenzene	3377976		< 0.05	< 0.05	NA	< 0.05	106%	50%	140%	88%	60%	130%	85%	50%	140%
m & p-Xylene	3377976		< 0.05	< 0.05	NA	< 0.05	100%	50%	140%	107%	60%	130%	107%	50%	140%
Bromoform	3377976		< 0.05	< 0.05	NA	< 0.05	80%	50%	140%	99%	60%	130%	86%	50%	140%
Styrene	3377976		< 0.05	< 0.05	NA	< 0.05	72%	50%	140%	112%	60%	130%	119%	50%	140%
1,1,2,2-Tetrachloroethane	3377976		< 0.05	< 0.05	NA	< 0.05	103%	50%	140%	91%	60%	130%	111%	50%	140%
o-Xylene	3377976		< 0.05	< 0.05	NA	< 0.05	76%	50%	140%	80%	60%	130%	101%	50%	140%
1,3-Dichlorobenzene	3377976		< 0.05	< 0.05	NA	< 0.05	72%	50%	140%	91%	60%	130%	73%	50%	140%
1,4-Dichlorobenzene	3377976		< 0.05	< 0.05	NA	< 0.05	84%	50%	140%	92%	60%	130%	83%	50%	140%
1,2-Dichlorobenzene	3377976		< 0.05	< 0.05	NA	< 0.05	98%	50%	140%	105%	60%	130%	81%	50%	140%
n-Hexane	3377976		< 0.05	< 0.05	NA	< 0.05	73%	50%	140%	88%	60%	130%	74%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Method Summary

CLIENT NAME: AECOM CANADA LTD

PROJECT: 60646784

SAMPLING SITE:

AGAT WORK ORDER: 21T847546 ATTENTION TO: Arif Chowdhury

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron (Hot Water Soluble)	MET-93-6104	modified from EPA 6010D and MSA PART 3, CH 21	ICP/OES
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Zinc	MET 93 -6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium, Hexavalent	INOR-93-6068	modified from EPA 3060 and EPA 7196	SPECTROPHOTOMETER
Cyanide, Free	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	TECHNICON AUTO ANALYZER
Mercury	MET-93-6103	modified from EPA 7471B and SM 3112 B	ICP-MS
Electrical Conductivity (2:1)	INOR-93-6036	modified from MSA PART 3, CH 14 and SM 2510 B	EC METER
Sodium Adsorption Ratio (2:1) (Calc.)	INOR-93-6007	modified from EPA 6010D & Analytical Protocol	ICP/OES
pH, 2:1 CaCl2 Extraction	INOR-93-6031	modified from EPA 9045D and MCKEAGUE 3.11	PH METER

AGAT WORK ORDER: 21T847546

Method Summary

CLIENT NAME: AECOM CANADA LTD

OLILIA IVANE. ALGONI GANADA L	. 5	ACATI WORKE OIL	DEIX. 211011010
PROJECT: 60646784		ATTENTION TO:	Arif Chowdhury
SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Naphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acenaphthylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acenaphthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Fluorene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Phenanthrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benz(a)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Chrysene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(b)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(k)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(a)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Dibenz(a,h)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(g,h,i)perylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
1 and 2 Methlynaphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Naphthalene-d8	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acridine-d9	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Terphenyl-d14	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Moisture Content	VOL-91-5009	CCME Tier 1 Method	BALANCE
F1 (C6 - C10)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID
Toluene-d8	VOL-91-5009	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
F2 (C10 to C16)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F4 (C34 to C50)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
Terphenyl	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Dichlorodifluoromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Vinyl Chloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: AECOM CANADA LTD

PROJECT: 60646784

SAMPLING SITE:

AGAT WORK ORDER: 21T847546 ATTENTION TO: Arif Chowdhury

SAMPLED BY:

OAIMI EINO OITE.		OAIMI ELD DT.						
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE					
Bromomethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
Trichlorofluoromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
Acetone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
1,1-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
Methylene Chloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
Trans- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
Methyl tert-butyl Ether	VOL-91-5002	(P&T)GC/MS						
1,1-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
Methyl Ethyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
Cis- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
Chloroform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
1,2-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
1,1,1-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
Carbon Tetrachloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
Benzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
1,2-Dichloropropane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
Trichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
Bromodichloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
Methyl Isobutyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
1,1,2-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
Toluene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
Dibromochloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
Ethylene Dibromide	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
Tetrachloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
1,1,1,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
Chlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
Ethylbenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
m & p-Xylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					

Method Summary

CLIENT NAME: AECOM CANADA LTD

PROJECT: 60646784

SAMPLING SITE:

AGAT WORK ORDER: 21T847546 ATTENTION TO: Arif Chowdhury

SAMPLED BY:

SAMPLING SITE.		SAIVIPLED BY.					
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE				
Bromoform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Styrene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
1,1,2,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
o-Xylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
1,3-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
1,4-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
1,2-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Xylenes (Total)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
1,3-Dichloropropene (Cis + Trans)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
n-Hexane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Toluene-d8	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS				
4-Bromofluorobenzene	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS				
Moisture Content	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE				
Polychlorinated Biphenyls	ORG-91-5113	modified from EPA SW-846 3541 & 8082	GC/ECD				
Decachlorobiphenyl	ORG-91-5113	modified from EPA SW-846 3541 & 8082	1 & GC/ECD				
Moisture Content	ORG-91-5009	CCME Tier 1 Method	BALANCE				

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122 webearth.agatlabs.com

Laboratory Use	Only
Work Order #:	217847546
Cooler Quantity:	I large block
Arrival Temperatures:	3.0 2.2 2.4
Custody Seal Intact:	□Yes □No □M/A

Chain	of	Custody	Record
-------	----	---------	--------

Chain of Custody Record	If this is a I	Orinking Water s	ample, pleas	e use Drink	ing Water Chain of Custody Form (pota	able water c	onsume	d by humar	is)			Arriv	/al Temp	erature	s: 📆	0,1	0.2	12.	1_
Report Information: Company: AECom Canada C	41.	^		Reg	ulatory Requirements:								tody Sea		رحو ازدو	Yes	□No	1	M/A
Contact: Anit Chown hwy	u I Dhu	vanish the	165		gulation 153/04 Excess Soils F	.100	_ Sew □Sa	er Use initary] Storm	1					me (TA	NT) Req	uired:		
michan, ON	I	′		. 1	Ind/Com		_	Region	_			_	ular T/		-		isiness Da	ys	
	Fax:				Agriculture Regulation 55	58 [. Water Q ctives (P\				Rusi			ıarg e s Apply				
11 ~ ~		Coly		- 1	exture (Check One) Codrse CCME	[Othe	er					3 Bu Days	isiness S		2 Busines Days	ss	Next Bu	ısiness
2. Email: arunh Parkh (a)	accomile by				Fine	-		Indicate One			- 1		OR	Date Re	quired (F	ush Surch	harges Ma	ay Apply):	
Project Information:		41	l l		this submission for a cord of Site Condition?	Cer	tifica	Guidell te of A	alys	ls							ation for ru		
Site Location: Site 5					Yes No		Yes		3 N	0		*TAT is exclusive of weekends and statutory holidays For 'Same Day' analysis, please contact your AGAT CPM							
Report Information: Company: Contact: Amf Chowdhung Dhwandh Raddy Michael Dr. (Simbar Co. Vally Dr. W., Hinder Dr. W.) Phone: Reports to be sent to: 1. Email: Amf Chowdhung again. (bh Project Information: Project Information: Sampled By: AGAT Quote #: Please note: If quotation number is not provided, client will be billed full price for unabjets. Invoice Information: Sample Identification Sampled Sampled S				-		2	0.	Reg 153		US.		0. Reg 558		g 406			108	4	(Z)
AGAT QUOTE #: Please note: If quotation number is r		be billed full price for	unistysis.	San B	nple Matrix Legend Biota	IVI, DC	-		2			7. U	-ch	kage	-	5 3			ation ()
Company: Contact: Address:	В	ill To Same: Ye	s ☑ No □	GW O P S SD SW	Ground Water Oil Paint Soil Sediment Surface Water	Field Filtered - Metals, Hg, CrVI, DOC	& Inorganics	Metals - □ CrVI, □ Hg, □ HWSB BTEX, F1-F4 PHCs				Landfill Disposal Characterization TCLP: TCLP: ☐ M& ☐ VOCs ☐ ABNs ☐ B(a)P ☐ PCBs	Excess Soils SPLP Rainwater Leach SPLP: ☐ Metals ☐ vocs ☐ svocs	Excess Soils Characterization Package pH, ICPMS Metals, BTEX, F1-F4	EC/SAR				lly Hazardous or High Concentr
Sample Identification			# of Containers	Sample Matrix	Comments/ Special Instructions	Y/N	Metals	Metals BTEX, F	PAHS	PCBs	VOC	Landfill To.P. 🗆	Excess SPLP:	Excess pH, ICP	Salt - E			9 -	Potentia
BD-5-1 Sz 1		- V		S			X												
Bn-5-2 SSI							×		X	×								-	
Bn-5-3 SS,							X		1				-	200					
							x		1										
						- 30	JYJ		X					Gi)					
Bh- 1-2 56						- n		X	A		×			ш		111		10 1 1	v
DD-7-3 5510							11112	×			X			148					
3 35/4																-			
_	8.						-		-		-								
757		PN	-		Complet Received Bu (Reint Name and Side):		00			Date			Time		-	70	10E0	TOTAL S	EDIA
Simples Relinquished By (Print Name and Styn):		T&C 20,2	6 G	20	Samples Received By (Print Name and Sign):	via	46	000	L.	de							LUEV	7 T	PAU
Samples Relinquished By (Print Name and Sign):	J	Date	Time		Samples Received by (Print Nume and Sign):					Date	Page of								
Samples Relinquished By (Print Name and Sign):		Date	Time		Samples Received By (Print Name and Sign):					Date	8		Time		Nº:	T 1	289	193	
								Pinl	Copy	- Clier	nt I Y	ellow C	Opv - AC	GAT 1 V	Vhite Cor	y- AGAT	Date '	Issued: Maior	49 2021

CLIENT NAME: AECOM CANADA LTD

105 COMMERCE VALLEY DR.W 7TH FLOOR

MARKHAM, ON L3T7W3

(905) 886-7022

ATTENTION TO: Arif Chowdhury

PROJECT: 60646784

AGAT WORK ORDER: 21T848552

SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

DATE REPORTED: Jan 10, 2022

PAGES (INCLUDING COVER): 9
VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 9

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA)

AGAT WORK ORDER: 21T848552

PROJECT: 60646784

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: AECOM CANADA LTD

SAMPLING SITE: Site 6

ATTENTION TO: Arif Chowdhury SAMPLED BY:Dhwanish P.

SAMPLING SITE:Site 6							SAMPLE	D BY:Dhwan	ish P.
			0.	Reg. 153(5	511) - Metals	& Inorgan	ics (Soil)		
DATE RECEIVED: 2021-12-22									DATE REPORTED: 2022-01-10
		SAMPLE DES	CRIPTION:	BH6-1/MW SS2	BH6-1/MW SS4	BH6-2 SS1	BH6-3 SS1	BH6-3 SS3	
		SAMI	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	
		DATE S	SAMPLED:	2021-12-22	2021-12-22	2021-12-22	2021-12-22	2021-12-22	
				13:00	13:00	13:00	13:00	13:00	
Parameter	Unit	G/S	RDL	3386920	3386921	3386923	3386924	3386925	
Antimony	μg/g	40	8.0	<0.8	<0.8	<0.8	<0.8	<0.8	
Arsenic	µg/g	18	1	5	5	5	4	4	
Barium	µg/g	670	2.0	96.1	98.6	57.6	111	103	
Beryllium	µg/g	8	0.4	8.0	0.5	0.5	0.7	0.6	
Boron	μg/g	120	5	6	8	7	5	9	
Boron (Hot Water Soluble)	μg/g	2	0.10	0.24	<0.10	0.32	0.11	<0.10	
Cadmium	μg/g	1.9	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Chromium	μg/g	160	5	26	24	20	25	26	
Cobalt	μg/g	80	0.5	12.9	13.9	9.9	10.6	14.1	
Copper	μg/g	230	1.0	26.0	26.2	21.9	20.6	23.1	
Lead	μg/g	120	1	14	10	8	13	10	
Molybdenum	μg/g	40	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Nickel	μg/g	270	1	27	26	20	22	26	
Selenium	μg/g	5.5	0.8	<0.8	<0.8	0.8	<0.8	<0.8	
Silver	μg/g	40	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Thallium	μg/g	3.3	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Uranium	μg/g	33	0.50	0.72	0.63	0.59	0.65	0.71	
Vanadium	μg/g	86	0.4	36.4	32.1	29.1	35.8	31.6	
Zinc	μg/g	340	5	72	58	56	62	58	
Chromium, Hexavalent	μg/g	8	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
Cyanide, Free	μg/g	0.051	0.040	< 0.040	<0.040	< 0.040	< 0.040	< 0.040	
Mercury	μg/g	3.9	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Electrical Conductivity (2:1)	mS/cm	1.4	0.005	0.477	0.201	0.175	1.01	0.413	
Sodium Adsorption Ratio (2:1) (Calc.)	N/A	12	N/A	0.709	0.385	0.185	0.430	0.770	
pH, 2:1 CaCl2 Extraction	pH Units	5.0-9.0	NA	7.10	7.45	7.52	7.55	7.63	

AGAT WORK ORDER: 21T848552

PROJECT: 60646784

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: AECOM CANADA LTD

SAMPLING SITE: Site 6

ATTENTION TO: Arif Chowdhury SAMPLED BY: Dhwanish P.

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2021-12-22 DATE REPORTED: 2022-01-10

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil -

Industrial/Commercial/Community Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

3386920-3386925 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated

parameter.

Analysis performed at AGAT Toronto (unless marked by *)

CHARTERED OF MYNNE BASILY OF CHEMIST OF CHEM

AGAT WORK ORDER: 21T848552

PROJECT: 60646784

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Arif Chowdhury SAMPLED BY:Dhwanish P.

Total	PCBs	(a a i i)
iolai	TUDS:	(5011)

					TOTAL PODS	5 (5011)
DATE RECEIVED: 2021-12-22						DATE REPORTED: 2022-01-10
	S	AMPLE DES	CRIPTION:	BH6-1/MW SS1	BH6-2 SS1	
		SAME	PLE TYPE:	Soil	Soil	
		DATE S	SAMPLED:	2021-12-22 13:00	2021-12-22 13:00	
Parameter	Unit	G/S	RDL	3386922	3386923	
Polychlorinated Biphenyls	μg/g	1.1	0.1	<0.1	<0.1	
Moisture Content	%		0.1	12.8	16.4	
Surrogate	Unit	Acceptab	le Limits			
Decachlorobiphenyl	%	60-1	30	120	112	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil -

Industrial/Commercial/Community Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

3386922-3386923 Results are based on the dry weight of soil extracted.

Analysis performed at AGAT Toronto (unless marked by *)

CLIENT NAME: AECOM CANADA LTD

SAMPLING SITE: Site 6

Quality Assurance

CLIENT NAME: AECOM CANADA LTD

AGAT WORK ORDER: 21T848552 PROJECT: 60646784 ATTENTION TO: Arif Chowdhury SAMPLING SITE: Site 6 SAMPLED BY: Dhwanish P.

				Soi	l Ana	alysis	5								
RPT Date: Jan 10, 2022			DUPLICATE				REFERE	NCE MA	TERIAL	METHOD BLANK SPIKE			MAT	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery		eptable mits	Recovery	Lie	ptable nits
		lu lu					Value	Lower	Upper		Lower Upper			Lower Upper	
O. Reg. 153(511) - Metals & Inor	ganics (Soil)														
Antimony	3386556		<0.8	<0.8	NA	< 0.8	117%	70%	130%	103%	80%	120%	87%	70%	130%
Arsenic	3386556		3	3	NA	< 1	119%	70%	130%	109%	80%	120%	113%	70%	130%
Barium	3386556		37.2	38.5	3.4%	< 2.0	110%	70%	130%	110%	80%	120%	112%	70%	130%
Beryllium	3386556		<0.4	< 0.4	NA	< 0.4	74%	70%	130%	93%	80%	120%	94%	70%	130%
Boron	3386556		<5	<5	NA	< 5	72%	70%	130%	93%	80%	120%	87%	70%	130%
Boron (Hot Water Soluble)	3387208		0.39	0.37	NA	< 0.10	95%	60%	140%	97%	70%	130%	107%	60%	140%
Cadmium	3386556		<0.5	< 0.5	NA	< 0.5	107%	70%	130%	104%	80%	120%	103%	70%	130%
Chromium	3386556		11	11	NA	< 5	93%	70%	130%	96%	80%	120%	106%	70%	130%
Cobalt	3386556		4.8	4.7	2.1%	< 0.5	97%	70%	130%	91%	80%	120%	102%	70%	130%
Copper	3386556		12.7	13.0	2.3%	< 1.0	96%	70%	130%	98%	80%	120%	105%	70%	130%
Lead	3386556		10	10	0.0%	< 1	98%	70%	130%	101%	80%	120%	105%	70%	130%
Molybdenum	3386556		<0.5	<0.5	NA	< 0.5	123%	70%	130%	105%	80%	120%	119%	70%	130%
Nickel	3386556		8	8	0.0%	< 1	96%	70%	130%	92%	80%	120%	102%	70%	130%
Selenium	3386556		1.1	<0.8	NA	< 0.8	104%	70%	130%	114%	80%	120%	114%	70%	130%
Silver	3386556		<0.5	<0.5	NA	< 0.5	98%	70%	130%	101%	80%	120%	101%	70%	130%
Thallium	3386556		<0.5	<0.5	NA	< 0.5	96%	70%	130%	98%	80%	120%	100%	70%	130%
Uranium	3386556		< 0.50	< 0.50	NA	< 0.50	102%	70%	130%	98%	80%	120%	107%	70%	130%
Vanadium	3386556		20.0	20.5	2.5%	< 0.4	98%	70%	130%	90%	80%	120%	106%	70%	130%
Zinc	3386556		52	52	0.0%	< 5	102%	70%	130%	104%	80%	120%	118%	70%	130%
Chromium, Hexavalent	3387226		<0.2	<0.2	NA	< 0.2	104%	70%	130%	103%	80%	120%	81%	70%	130%
Cyanide, Free	3406495		<0.040	<0.040	NA	< 0.040	105%	70%	130%	104%	80%	120%	105%	70%	130%
Mercury	3386556		<0.10	<0.10	NA	< 0.10	104%	70%	130%	94%	80%	120%	100%	70%	130%
Electrical Conductivity (2:1)	3411794		0.184	0.190	3.2%	< 0.005	109%	80%	120%						
Sodium Adsorption Ratio (2:1) (Calc.)	3411794		0.098	0.099	1.0%	NA									
pH, 2:1 CaCl2 Extraction	3383368		6.67	6.74	1.0%	NA	99%	80%	120%						

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Quality Assurance

CLIENT NAME: AECOM CANADA LTD

AGAT WORK ORDER: 21T848552 PROJECT: 60646784 ATTENTION TO: Arif Chowdhury SAMPLING SITE: Site 6 SAMPLED BY: Dhwanish P.

	Trace Organics Analysis														
RPT Date: Jan 10, 2022	Έ		REFERENCE MATERIAL			METHOD BLANK SPIKE			MAT	KE					
PARAMETER	Batch	Batch Sample		Dup #2	RPD	Method Blank	Measured	Accept Limit		Recovery	Accep Recovery Lim		Recovery	Lin	ptable nits
PARAMETER	Batch	ld	- '				Value	Lower Uppe			Lower	Upper		Lower	Upper

Total PCBs (soil)

Polychlorinated Biphenyls 3393873 103% 60% 140% < 0.1 NA 105% 60% 140% 60% 140% 105% < 0.1 < 0.1

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Method Summary

CLIENT NAME: AECOM CANADA LTD

PROJECT: 60646784 SAMPLING SITE:Site 6 AGAT WORK ORDER: 21T848552 ATTENTION TO: Arif Chowdhury SAMPLED BY:Dhwanish P.

o o o		O 222 2 2	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron (Hot Water Soluble)	MET-93-6104	modified from EPA 6010D and MSA PART 3, CH 21	ICP/OES
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Zinc	MET 93 -6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium, Hexavalent	INOR-93-6068	modified from EPA 3060 and EPA 7196	SPECTROPHOTOMETER
Cyanide, Free	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	TECHNICON AUTO ANALYZER
Mercury	MET-93-6103	modified from EPA 7471B and SM 3112 B	ICP-MS
Electrical Conductivity (2:1)	INOR-93-6036	modified from MSA PART 3, CH 14 and SM 2510 B	EC METER
Sodium Adsorption Ratio (2:1) (Calc.)	INOR-93-6007	modified from EPA 6010D & Analytical Protocol	ICP/OES
pH, 2:1 CaCl2 Extraction	INOR-93-6031	modified from EPA 9045D and MCKEAGUE 3.11	PH METER

Method Summary

CLIENT NAME: AECOM CANADA LTD

AGAT WORK ORDER: 21T848552 PROJECT: 60646784 ATTENTION TO: Arif Chowdhury SAMPLING SITE: Site 6 SAMPLED BY: Dhwanish P.

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Polychlorinated Biphenyls	ORG-91-5113	modified from EPA SW-846 3541 & 8082	GC/ECD
Decachlorobiphenyl	ORG-91-5113	modified from EPA SW-846 3541 & 8082	GC/ECD
Moisture Content	ORG-91-5009	CCME Tier 1 Method	BALANCE

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2

Ph: 905.712.5100 Fax: 905.712.5122 webearth.agatlabs.com

Laboratory Use Only Work Order #: 217848552 Cooler Quantity:

Chain of Custody Record	If this is a	Drinking Wat	er sample, pl	ease use [Orinking Water Chain o	of Custody Form	(potable v	water c	onsumed	i by humans)		/	Arrival	Temp	eratu	res:	(0		16)
Report Information: Company: AE/CM Cyrey Lon				F	Regulatory Requirements: No Regulatory Requirement (Please check all applicable boxes)					11	Custoo Notes:	-	al Inta	ct:		es Q		No	□N/A		
Contact: Arif Chowdhun	1 Dh	wanish	Perilan	_ [Regulation 153/04	Sew	er Use		R	egulation 558		T	urna	roll	nd T	'ime	/TA	T) Re	quire	d.	
Address: 105 (Ombre oct 16 Mexicham, ON Phone: 416 420 5590	ly DY V	J, 7me	their	_	Table	∏Sa	nitary		Пс	CME		11									
Merchan, ON	/	100 10			☐ Res/Park		-					П	egul					to 7 E	Business	Days	
Phone: 416 416 5590	Fax:				Agriculture	□Sto	orm			rov. Water Qua bjectives (PW		R	ush '	TAT (F	Rush Su	rcharge	s Apply)				
Reports to be sent to: 1. Email: Ar.f. Choudhund				s	oil Texture (Check One)	Region	cate One	-		-					sines	s		2 Busir	iess		t Busines
					Coarse							Ш	Days				Days		□ Day		
2. Email: Chumbh Parith	e cien	om (on	1		Fine	MISA	4		_	Indicate One				OR [Date F	Requir	ed (Ru	ısh Sur	charges	May Appl	y):
Project Information:					Is this submissi					auideline o					looso	nenul	do pelo	ar notif	ination f	or rush TA	AT.
Project: 60646784				_	Record of Site Co				-	te of Analy										tutory ho	
Site Location:				_	☐ Yes ☐	No			Yes	_ n	0		For	Same	e Day'	analy	/sis, p	lease (contact	your AGA	т СРМ
Sampled By: Dhwonish Parille				- -			1		O. Reg	153	-	+	T	T		T					T
AGAT Quote #: Please note: If quotation number is	PO:not provided, client w	ill be billed full pro	o for analysis.		Sample Matrix Le Biota	egend	C.V.		les)								900				
Invoice Information: Bill To Same: Yes No					GW Ground Water		Field Filtered - Metals, Hg,		Hydrides) Incl. Hydric	z	X	HE					0(c)a	(a)			
Company:					Oil Paint		Meta	Г	(excl. fi	S C C C C C C C C C C C C C C C C C C C	stals	Š Ž				ors	ticides	SNIG			
Contact:				- 5			- pa	nics	s e	5 G	M M	NO3+NO2				□ Aroclors	Pesticides	Ì		1000	
Address:		-		- 5	SD Sediment		ilter	orga	53 M	S G	ustor IP [Š. [200			
Email:				s	SW Surface Water		eld	P P	etals	B-HV EC AR	Ş	§ [-F			Fotal	lorir	Use			
					Comme	anto /		Metals and Inorganics	Metals dride N	ORPs: DB-HWS DCre DEC DpH DSAR Full Metals Scan	Regulation/Custom Metals Nutrients: □TP □NH, □TKN] 	PHCs F1 -	S	ω l	PCBs: X Total	Organochlorine	er Us			
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Special Ins		Y/N	Meta	☐ All Metals ☐ 153 Metal ☐ Hydride Metals ☐ 153 M	ORPs: DB-HWS DCI (CC) CC Dp	Regu	Unlatiles:	PHG	ABNs	PAHs	PCB	Organ	Sewer			
RAG-1/MW SS2 D	(22,202)	1:00	1	2				×								1					
Bh6-1/MW SSG				S				X													
BAG-1/MW SS.			b	5												英					
DHG-2 SSI				S				X								X					
Rh4-3 &			14	S				X													
Rn1-2 CC			- 6	S				×													
242 373																					
in a second seco													Ш		LU						1
	3 44																				

	100000						
Samples Relinquished By (Print Name and Sign):	100	Date	1 2:00	Samples Recaived By (Print Name and Sign):	Date	- 3°	104 DEC 22 13102
Samples Relinquished By (Print Name and Sign):	Chry	Date	Time	Samples Received By (Print Name and Sign):	Date	Time	Page of
Samples Relinquished By (Print Name and Sign):	1	Date	Time	Samples Received By (Print Name and Sign):	Date	Time	Nº: T 092404

CLIENT NAME: AECOM CANADA LTD

105 COMMERCE VALLEY DR.W 7TH FLOOR

MARKHAM, ON L3T7W3

(905) 886-7022

ATTENTION TO: Arif Chowdhury

PROJECT: 60646784

AGAT WORK ORDER: 21T848556

SOIL ANALYSIS REVIEWED BY: Amanjot Bhela, Inorganic Lab Manager

TRACE ORGANICS REVIEWED BY: Oksana Gushyla, Trace Organics Lab Supervisor

DATE REPORTED: Jan 11, 2022

PAGES (INCLUDING COVER): 9
VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 9

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA)

AGAT WORK ORDER: 21T848556

PROJECT: 60646784

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: AECOM CANADA LTD SAMPLING SITE: Site 0

ATTENTION TO: Arif Chowdhury SAMPLED BV:Dhwanish P

SAMPLING SITE:Site 9							SAMPLE	D BY:Dhwani	sh P.		
			Ο.	Reg. 153(511) - Metal	s & Inorgan	ics (Soil)				
DATE RECEIVED: 2021-12-22									DATE REPORT	ED: 2022-01-11	
		SAMPLE DES	CRIPTION:	BH9-1 SS2	BH9-1 SS4	BH9-2 SS1	BH9-2 SS3	BH9-2 SS7	BH9-3/MW SS3	BH9-3/MW SS6	
		SAM	PLE TYPE:	Soil							
			SAMPLED:	2021-12-22 13:00							
Parameter	Unit	G/S	RDL	3387023	3387024	3387025	3387026	3387027	3387029	3387030	
Antimony	μg/g	1.3	8.0	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	
Arsenic	μg/g	18	1	6	6	4	5	5	3	8	
Barium	μg/g	220	2.0	85.2	84.5	84.7	94.3	109	52.9	84.3	
Beryllium	μg/g	2.5	0.4	0.5	0.6	0.6	0.6	0.7	<0.4	0.9	
Boron	μg/g	36	5	10	9	7	9	10	7	8	
Boron (Hot Water Soluble)	μg/g	NA	0.10	0.12	0.14	0.30	0.13	<0.10	0.25	<0.10	
Cadmium	μg/g	1.2	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Chromium	μg/g	70	5	22	22	20	22	25	17	26	
Cobalt	μg/g	21	0.5	13.7	13.0	10.2	12.5	12.9	6.5	14.6	
Copper	μg/g	92	1.0	40.6	38.3	25.3	34.1	27.5	13.6	37.9	
Lead	μg/g	120	1	12	10	12	10	11	9	12	
Molybdenum	μg/g	2	0.5	0.5	<0.5	<0.5	0.5	<0.5	1.4	<0.5	
Nickel	μg/g	82	1	25	24	19	23	25	11	31	
Selenium	μg/g	1.5	8.0	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	
Silver	μg/g	0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Thallium	μg/g	1	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Uranium	μg/g	2.5	0.50	0.68	0.68	0.67	0.72	0.73	1.27	0.55	
Vanadium	μg/g	86	0.4	33.0	30.7	30.5	29.8	33.7	24.3	38.0	
Zinc	μg/g	290	5	77	56	61	55	76	49	61	
Chromium, Hexavalent	μg/g	0.66	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
Cyanide, Free	μg/g	0.051	0.040	<0.040	<0.040	<0.040	<0.040	<0.040	< 0.040	<0.040	
Mercury	μg/g	0.27	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Electrical Conductivity (2:1)	mS/cm	0.57	0.005	0.270	0.296	0.312	0.299	0.284	0.449	0.266	
Sodium Adsorption Ratio (2:1) (Calc.)	N/A	2.4	N/A	0.251	0.375	0.247	0.318	0.222	0.261	0.146	
pH, 2:1 CaCl2 Extraction	pH Units		NA	7.59	7.58	7.43	7.54	7.60	7.55	7.65	

AGAT WORK ORDER: 21T848556

PROJECT: 60646784

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: AECOM CANADA LTD

SAMPLING SITE: Site 9

ATTENTION TO: Arif Chowdhury SAMPLED BY: Dhwanish P.

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2021-12-22 DATE REPORTED: 2022-01-11

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Soil -

Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

3387023-3387030 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated

parameter.

Analysis performed at AGAT Toronto (unless marked by *)

Amanjot Bhelas Amanor Bhelas Chemist

AGAT WORK ORDER: 21T848556

PROJECT: 60646784

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

111002011.000101

ATTENTION TO: Arif Chowdhury SAMPLED BY: Dhwanish P.

					Total PCBs (s	soil)					
DATE RECEIVED: 2021-12-22						DATE REPORTED: 2022-01-11					
		SAMPLE DES	CRIPTION:	BH9-1 SS1	BH9-3/MW SS1						
		SAM	PLE TYPE:	Soil	Soil						
		DATE	SAMPLED:	2021-12-22 13:00	2021-12-22 13:00						
Parameter	Unit	G/S	RDL	3386927	3387028						
Polychlorinated Biphenyls	μg/g	1.1	0.1	<0.1	<0.1						
Moisture Content	%		0.1	13.1	17.9						
Surrogate	Unit	Acceptab	le Limits								
Decachlorobiphenyl	%	60-	130	120	116						

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil -

Industrial/Commercial/Community Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

3386927-3387028 Results are based on the dry weight of soil extracted.

Analysis performed at AGAT Toronto (unless marked by *)

CLIENT NAME: AECOM CANADA LTD

SAMPLING SITE: Site 9

Quality Assurance

CLIENT NAME: AECOM CANADA LTD

AGAT WORK ORDER: 21T848556 PROJECT: 60646784 ATTENTION TO: Arif Chowdhury SAMPLING SITE: Site 9 SAMPLED BY: Dhwanish P.

Soil Analysis															
RPT Date: Jan 11, 2022			DUPLICATE			REFERE	EFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE		
PARAMETER	Batch Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		eptable mits	Recovery	Acceptable Limits		Recovery	Lie	ptable nits	
	ld ld	'	·			Value	Lower	Upper		Lower	Upper]	Lower	Upper	
O. Reg. 153(511) - Metals & Inor	ganics (Soil)														
Antimony	3393314	<0.8	<0.8	NA	< 0.8	113%	70%	130%	98%	80%	120%	103%	70%	130%	
Arsenic	3393314	<1	<1	NA	< 1	120%	70%	130%	102%	80%	120%	110%	70%	130%	
Barium	3393314	8.0	8.4	NA	< 2.0	114%	70%	130%	103%	80%	120%	112%	70%	130%	
Beryllium	3393314	< 0.4	< 0.4	NA	< 0.4	84%	70%	130%	115%	80%	120%	102%	70%	130%	
Boron	3393314	<5	<5	NA	< 5	79%	70%	130%	115%	80%	120%	116%	70%	130%	
Boron (Hot Water Soluble)	3393314	<0.10	<0.10	NA	< 0.10	112%	60%	140%	98%	70%	130%	102%	60%	140%	
Cadmium	3393314	<0.5	<0.5	NA	< 0.5	91%	70%	130%	102%	80%	120%	110%	70%	130%	
Chromium	3393314	<5	<5	NA	< 5	107%	70%	130%	102%	80%	120%	114%	70%	130%	
Cobalt	3393314	2.4	2.4	NA	< 0.5	110%	70%	130%	104%	80%	120%	114%	70%	130%	
Copper	3393314	2.6	2.8	NA	< 1.0	102%	70%	130%	97%	80%	120%	102%	70%	130%	
Lead	3393314	2	2	NA	< 1	107%	70%	130%	108%	80%	120%	103%	70%	130%	
Molybdenum	3393314	0.8	<0.5	NA	< 0.5	123%	70%	130%	109%	80%	120%	123%	70%	130%	
Nickel	3393314	1	<1	NA	< 1	111%	70%	130%	106%	80%	120%	106%	70%	130%	
Selenium	3393314	<0.8	<0.8	NA	< 0.8	100%	70%	130%	109%	80%	120%	112%	70%	130%	
Silver	3393314	<0.5	<0.5	NA	< 0.5	102%	70%	130%	112%	80%	120%	100%	70%	130%	
Thallium	3393314	<0.5	<0.5	NA	< 0.5	101%	70%	130%	106%	80%	120%	103%	70%	130%	
Uranium	3393314	< 0.50	< 0.50	NA	< 0.50	120%	70%	130%	114%	80%	120%	114%	70%	130%	
Vanadium	3393314	8.5	8.8	3.5%	< 0.4	112%	70%	130%	103%	80%	120%	117%	70%	130%	
Zinc	3393314	8	8	NA	< 5	106%	70%	130%	97%	80%	120%	113%	70%	130%	
Chromium, Hexavalent	3387226	<0.2	<0.2	NA	< 0.2	104%	70%	130%	103%	80%	120%	81%	70%	130%	
Cyanide, Free	3406495	<0.040	<0.040	NA	< 0.040	105%	70%	130%	104%	80%	120%	105%	70%	130%	
Mercury	3393314	<0.10	<0.10	NA	< 0.10	104%	70%	130%	100%	80%	120%	97%	70%	130%	
Electrical Conductivity (2:1)	3387023 3387023	0.270	0.264	2.2%	< 0.005	103%	80%	120%	NA			NA			
Sodium Adsorption Ratio (2:1) (Calc.)	3387023 3387023	0.251	0.262	4.3%	NA	NA			NA			NA			
pH, 2:1 CaCl2 Extraction	3383368	6.67	6.74	1.0%	NA	99%	80%	120%	NA			NA			

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Quality Assurance

CLIENT NAME: AECOM CANADA LTD

PROJECT: 60646784 SAMPLING SITE:Site 9 AGAT WORK ORDER: 21T848556 ATTENTION TO: Arif Chowdhury SAMPLED BY:Dhwanish P.

	Trace Organics Analysis											
RPT Date: Jan 11, 2022 DUPLICATE REFERENCE MATERIAL METHOD BLANK SPI	Œ MA?	TRIX SPI	KE									
PARAMETER Batch Sample Dup #1 Dup #2 RPD Method Blank Measured Limits Recovery Limits	e Recovery	Lin	ptable nits									
Value Lower Upper	er	Lower	Upper									

Total PCBs (soil)

Polychlorinated Biphenyls 3393873 < 0.1 < 0.1 NA < 0.1 105% 60% 140% 103% 60% 140% 105% 60% 140% 105% 60% 140% Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

Jeurg

Method Summary

CLIENT NAME: AECOM CANADA LTD

PROJECT: 60646784 SAMPLING SITE:Site 9 AGAT WORK ORDER: 21T848556 ATTENTION TO: Arif Chowdhury SAMPLED BY:Dhwanish P.

Or time Entro Off E. Orto o		O/ 222 2 2	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron (Hot Water Soluble)	MET-93-6104	modified from EPA 6010D and MSA PART 3, CH 21	ICP/OES
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Zinc	MET 93 -6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium, Hexavalent	INOR-93-6068	modified from EPA 3060 and EPA 7196	SPECTROPHOTOMETER
Cyanide, Free	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	TECHNICON AUTO ANALYZER
Mercury	MET-93-6103	modified from EPA 7471B and SM 3112 B	ICP-MS
Electrical Conductivity (2:1)	INOR-93-6036	modified from MSA PART 3, CH 14 and SM 2510 B	EC METER
Sodium Adsorption Ratio (2:1) (Calc.)	INOR-93-6007	modified from EPA 6010D & Analytical Protocol	ICP/OES
pH, 2:1 CaCl2 Extraction	INOR-93-6031	modified from EPA 9045D and MCKEAGUE 3.11	PH METER

Method Summary

CLIENT NAME: AECOM CANADA LTD

AGAT WORK ORDER: 21T848556 PROJECT: 60646784 ATTENTION TO: Arif Chowdhury SAMPLING SITE: Site 9 SAMPLED BY: Dhwanish P.

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Polychlorinated Biphenyls	ORG-91-5113	modified from EPA SW-846 3541 & 8082	GC/ECD
Decachlorobiphenyl	ORG-91-5113	modified from EPA SW-846 3541 & 8082	GC/ECD
Moisture Content	ORG-91-5009	CCME Tier 1 Method	BALANCE

Laboratories

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2

Ph: 905.712.5100 Fax: 905.712.5122 webearth.agatlabs.com

Work Order #: 21	T848	556	
Cooler Quantity: Arrival Temperatures:	79	83	8'
Custody Seal Intact: Notes:	□Yes	□No	□N/A

Laboratory Use Only

Chain of Custody Record If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water consumed by humans) Report Information: Regulatory Requirements: ☐ No Regulatory Requirement Company: Arif Choudhung Contact: Degulation 153/04 Regulation 558 Sewer Use **Turnaround Time (TAT) Required:** 105 Commerce Valley Dr W. 740 Address: CCME Sanitary Theo/Com **Regular TAT** 1 5 to 7 Business Days Res/Park Storm Prov. Water Quality Rush TAT (Rush Surcharges Apply) Phone: Agriculture Objectives (PWQO) Reports to be sent to: Soil Texture (Check One) Region Other 2 Business **Next Business** 3 Business 1. Email: Indicate One Doorse Days Day Davs □Fine OR Date Required (Rush Surcharges May Apply): 2. Email: MISA Is this submission for a **Report Guideline on Project Information:** Please provide prior notification for rush TAT **Record of Site Condition? Certificate of Analysis** Project: *TAT is exclusive of weekends and statutory holidays U No To Yes □ No ☐ Yes Site Location: For 'Same Day' analysis, please contact your AGAT CPM Sampled By: O. Reg 153 □PCBs AGAT Quote #: PO: Sample Matrix Legend Š Please note: If quotation number is not provided, client will be billed full price for analysis. Biota □ B(a)P Field Filtered - Metals, Hg, THM Invoice Information: Bill To Same: Yes No 🗆 Ground Water Nutrients: ☐TP ☐NH, ☐TKN ☐NO, ☐NO, ☐NO, ☐NO, NS □ SN 0 ABNS Regulation/Custom Metals Company: Organochlorine Pesticides □ BTEX ☐ Aroclors ORPs: □B-HWS □CI □ □Cre·□EC □FOC □H □ pH □SAR Paint Contact: S Soil TCLP: ☐ M&I ☐ VOCs Address: □ voc SD Sediment Email: PCBsX Total SW Surface Water PHCs F1 - F4 Sewer Use ABNs Comments/ PAHS Date Time Sample # of Sample Identification Containers Matrix Special Instructions Sampled Sampled TVC 22 202 X X × X

Samples Relinquished By (Pyrroglame and Sign)	Munit	Dr 22 les	1 Time	Samples Rigerred By (Print Name and Sign):	Date	1 3 ° 3	721DEC22 3 :0 3
Samples Relinquished By (Print Name and Sign):	37.00	Date	Time	Samples Received By (Print Name and Sign):	Date	Time	Page of
Samples Relinquished By (Print Name and Sign):		Date	Time	Samples Received By (Print Name and Sign):	Date	Time	Nº: T 092405

CLIENT NAME: AECOM CANADA LTD

105 Commerce Valley Drive West 7th Floor

MARKHAM, ON L3T7W3

(905) 886-7022

ATTENTION TO: Arif Chowdhury

PROJECT: 60646784

AGAT WORK ORDER: 22T853926

SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer

DATE REPORTED: Jan 25, 2022

PAGES (INCLUDING COVER): 6 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 6

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

AGAT WORK ORDER: 22T853926

PROJECT: 60646784

ATTENTION TO: Arif Chowdhury

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: AECOM CANADA LTD SAMPLING SITE:Site 3

SAMPLED BY:

			Ο.	Reg. 153(5	511) - Metals &	k Inorganics (Soil)
DATE RECEIVED: 2022-01-14						DATE REPORTED: 2022-01-25
	S	AMPLE DESC	CRIPTION:	BH-3-2 SS3	BH-3-2 SS2	
		SAME	PLE TYPE:	Soil	Soil	
		DATE S	SAMPLED:	2022-01-14 13:30	2022-01-14 13:30	
Parameter	Unit	G/S	RDL	3428845	3428846	
Antimony	μg/g	40	0.8	<0.8	<0.8	
Arsenic	μg/g	18	1	6	7	
Barium	μg/g	670	2.0	94.1	100	
Beryllium	μg/g	8	0.4	0.7	0.6	
Boron	μg/g	120	5	7	12	
Boron (Hot Water Soluble)	μg/g	2	0.10	0.26	0.12	
Cadmium	μg/g	1.9	0.5	<0.5	<0.5	
Chromium	μg/g	160	5	26	27	
Cobalt	μg/g	80	0.5	13.6	14.8	
Copper	μg/g	230	1.0	39.4	35.8	
Lead	μg/g	120	1	15	11	
Molybdenum	μg/g	40	0.5	<0.5	0.6	
Nickel	μg/g	270	1	26	29	
Selenium	μg/g	5.5	8.0	<0.8	<0.8	
Silver	μg/g	40	0.5	<0.5	<0.5	
Thallium	μg/g	3.3	0.5	<0.5	<0.5	
Uranium	μg/g	33	0.50	0.66	0.60	
Vanadium	μg/g	86	0.4	39.1	37.0	
Zinc	μg/g	340	5	73	66	
Chromium, Hexavalent	μg/g	8	0.2	<0.2	<0.2	
Cyanide, Free	μg/g	0.051	0.040	<0.040	<0.040	
Mercury	μg/g	3.9	0.10	<0.10	<0.10	
Electrical Conductivity (2:1)	mS/cm	1.4	0.005	0.267	0.402	
Sodium Adsorption Ratio (2:1) (Calc.)	N/A	12	N/A	0.209	3.59	
pH, 2:1 CaCl2 Extraction	pH Units	5.0-9.0	NA	7.22	7.38	

AGAT WORK ORDER: 22T853926

PROJECT: 60646784

TION TO: A wif Ob accedence

FAX (905)712-5122 http://www.agatlabs.com

TEL (905)712-5100

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

CLIENT NAME: AECOM CANADA LTD

SAMPLING SITE: Site 3

ATTENTION TO: Arif Chowdhury SAMPLED BY:

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2022-01-14 DATE REPORTED: 2022-01-25

Comments: RDL - Reported Detection L

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil -

Industrial/Commercial/Community Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

3428845-3428846 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated

parameter.

Analysis performed at AGAT Toronto (unless marked by *)

CHARTERED S NIVINE BASILY O CHEMIST OF CHARTER OF CHART

Quality Assurance

CLIENT NAME: AECOM CANADA LTD

AGAT WORK ORDER: 22T853926 PROJECT: 60646784 ATTENTION TO: Arif Chowdhury

SAMPLING SITE: Site 3 SAMPLED BY:

				Soi	l Ana	alysis	3								
RPT Date: Jan 25, 2022				UPLICATI	E		REFEREN	NCE MA	TERIAL	METHOD	BLAN	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		eptable mits	Recovery	1 1 1	ptable nits	Recovery		ptable nits
		ld	·	·			Value	Lower	Upper	ĺ	Lower	Upper	,	Lower	Upper
O. Reg. 153(511) - Metals & Inor	ganics (Soil)														
Antimony	3345073		<0.8	<0.8	NA	< 0.8	129%	70%	130%	93%	80%	120%	77%	70%	130%
Arsenic	3345073		26	26	0.0%	< 1	103%	70%	130%	97%	80%	120%	106%	70%	130%
Barium	3345073		271	269	0.7%	< 2.0	118%	70%	130%	99%	80%	120%	107%	70%	130%
Beryllium	3345073		0.4	< 0.4	NA	< 0.4	104%	70%	130%	98%	80%	120%	81%	70%	130%
Boron	3345073		19	19	NA	< 5	84%	70%	130%	101%	80%	120%	78%	70%	130%
Boron (Hot Water Soluble)	3430303		<0.10	<0.10	NA	< 0.10	106%	60%	140%	97%	70%	130%	97%	60%	140%
Cadmium	3345073		1.0	1.0	NA	< 0.5	103%	70%	130%	99%	80%	120%	100%	70%	130%
Chromium	3345073		13	13	NA	< 5	120%	70%	130%	106%	80%	120%	106%	70%	130%
Cobalt	3345073		9.3	9.4	1.1%	< 0.5	130%	70%	130%	108%	80%	120%	107%	70%	130%
Copper	3345073		23.0	22.7	1.3%	< 1.0	112%	70%	130%	108%	80%	120%	98%	70%	130%
Lead	3345073		99	99	0.0%	< 1	117%	70%	130%	105%	80%	120%	96%	70%	130%
Molybdenum	3345073		1.6	1.6	NA	< 0.5	130%	70%	130%	103%	80%	120%	121%	70%	130%
Nickel	3345073		14	14	0.0%	< 1	126%	70%	130%	106%	80%	120%	99%	70%	130%
Selenium	3345073		2.9	2.8	NA	< 0.8	105%	70%	130%	105%	80%	120%	117%	70%	130%
Silver	3345073		<0.5	<0.5	NA	< 0.5	99%	70%	130%	100%	80%	120%	93%	70%	130%
Thallium	3345073		<0.5	<0.5	NA	< 0.5	122%	70%	130%	99%	80%	120%	98%	70%	130%
Uranium	3345073		< 0.50	< 0.50	NA	< 0.50	127%	70%	130%	107%	80%	120%	111%	70%	130%
Vanadium	3345073		26.4	26.0	1.5%	< 0.4	122%	70%	130%	103%	80%	120%	106%	70%	130%
Zinc	3345073		435	438	0.7%	< 5	124%	70%	130%	109%	80%	120%	95%	70%	130%
Chromium, Hexavalent	3444542		<0.2	<0.2	NA	< 0.2	99%	70%	130%	98%	80%	120%	83%	70%	130%
Cyanide, Free	3430065		<0.040	<0.040	NA	< 0.040	94%	70%	130%	104%	80%	120%	94%	70%	130%
Mercury	3345073		<0.10	<0.10	NA	< 0.10	125%	70%	130%	95%	80%	120%	90%	70%	130%
Electrical Conductivity (2:1)	3430303		1.44	1.46	1.4%	< 0.005	109%	80%	120%						
Sodium Adsorption Ratio (2:1) (Calc.)	3430303		22.0	21.8	0.9%	NA									
pH, 2:1 CaCl2 Extraction	3430065		6.77	7.01	3.5%	NA	99%	80%	120%						

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Method Summary

CLIENT NAME: AECOM CANADA LTD

AGAT WORK ORDER: 22T853926 PROJECT: 60646784 ATTENTION TO: Arif Chowdhury

SAMPLING SITE:Site 3 SAMPLED BY:

SAMPLING SITE. SILE S		SAIVIPLED DT.	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron (Hot Water Soluble)	MET-93-6104	modified from EPA 6010D and MSA PART 3, CH 21	ICP/OES
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Zinc	MET 93 -6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium, Hexavalent	INOR-93-6068	modified from EPA 3060 and EPA 7196	SPECTROPHOTOMETER
Cyanide, Free	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	TECHNICON AUTO ANALYZER
Mercury	MET-93-6103	modified from EPA 7471B and SM 3112 B	ICP-MS
Electrical Conductivity (2:1)	INOR-93-6036	modified from MSA PART 3, CH 14 and SM 2510 B	EC METER
Sodium Adsorption Ratio (2:1) (Calc.)	INOR-93-6007	modified from EPA 6010D & Analytical Protocol	ICP/OES
pH, 2:1 CaCl2 Extraction	INOR-93-6031	modified from EPA 9045D and MCKEAGUE 3.11	PH METER

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 **Laboratory Use Only**

Work Order #: 227853926

Ph: 905.712.5100 Fax: 905.712.5122

hair of Custody Record	_			_		1112			ebearth.		s com		ooler Qu rrival Ter		ıres:		l	ter	K	>	_
Report Information: Company: AF (om Grada (Orinking Water s	ample, pleas	Reg	ing Water Chain o	f Custody Form (potal uirements:	ble water	consume	ed by hum	ans)			ustody S lotes:	Seal Inta	oct:	9 I	\$ 1°	7.º	+1		ľΑ
Arif Chowding / Address: Los Commerce Verte Working DIV	Dhiner	The fee		Tat	gulation 153/04 ple Indicate One	Table Indicate One		_	ver Use anitary Region	Stor	n		ırnaro egular			(TAT) F					
Phone: Reports to be sent to: 1. Email: 2. Email: Character of the sent to: Character of the sent				Soil Te	Res/Park Agriculture exture (Check One) Goarse Fine	Regulation 558			/ Water ectives (i er	WQO)		Rı	□ Da	Busines ays	rcharges S	Apply)	siness		□ Nex Day		iess
Project Information: Project: 60646785 Site Location: 5,1163		d in		ls Rec	this submissio		Ce	-	Guide te of A	ine o	is		*TA	Please T is exc	provid lusive o	le prior no of weeken	otification	on for I	rush TA tory ho	AT olidays	
AGAT Quote #: Please note: If quotation number is no number is number is no number is numb		be billed full price for a	Fig	Sam B GW	ple Matrix Le Biota Ground Water Oil	gend	s, Hg, CrVI, DOC	0.	Reg 153	□ Yes □ No		ation TCLP:	Rainwater Leach on SynCs SynCs SynCs	on Package 60 1-F4	- Z						concentration (Y/N)
Company: Contact: Address: Email:				P S SD SW	Paint Soil Sediment Surface Water	pat - Torre	Field Filtered - Metals, Hg, CrVI,	& Inorganics	Metals - □ CrVI, □ Hg, □ HWSB BTEX F1-F4 PHCs	f required		VOC Landfill Disposal Characterization TCLP:	Cs CABNs LP Rainwa	aracterials, BTE	EC/SAR						lly Hazardous or High C
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix		nments/ Instructions	Y/N	Metals	Metals BTEX F	Analyze F4G PAHs	PCBs	VOC	Excess SPI P: [Excess pH, ICP	Salt - E				11		Potentia
Bn-3-2 SS3 01	M/121 Salt	SAM AM PM AM PM AM PM AM PM		2.	- X = - A			X													
		AM PM AM PM AM PM AM PM				p = 60											(9:2)	ION	1.4	2:01	Re
mples Relinquished By (Print Name and Sign): mples Relinquished By (Print Name and Sign):		Date Date	Time	06	Samples Received By (I	16		-	8		Date		Time			Р	age	22157	of		
mptes Relinquished By (Print Name and Signt:		Date	Time		Samples Received By (I	² rint Name and Sign)					Date		Time	0		Nº: T	12	91	18(

Appendix H

Groundwater Quality Results – Laboratory Certificate of Analysis

Your Project #: 60646784

Site#: SITE 3

Site Location: PEEL REGION - WEST BRAMPTON RESERVOIR &

PLUMPING STATION

Your C.O.C. #: 865657-01-01

Attention: Brian Holden

AECOM Canada Ltd 50 Sportsworld Crossing Rd Suite 290 Kitchener, ON Canada N2P 0A4

Report Date: 2022/03/23

Report #: R7054807 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C237378 Received: 2022/02/11, 13:57

Sample Matrix: Water # Samples Received: 1

·		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Methylnaphthalene Sum	1	N/A	2022/02/17	CAM SOP-00301	EPA 8270D m
Dissolved Aluminum (0.2 u, clay free)	1	N/A	2022/02/14	CAM SOP-00447	EPA 6020B m
Biochemical Oxygen Demand (BOD)	1	2022/02/12	2022/02/17	CAM SOP-00427	SM 23 5210B m
1,3-Dichloropropene Sum	1	N/A	2022/02/15		EPA 8260C m
Chloride by Automated Colourimetry	1	N/A	2022/02/14	CAM SOP-00463	SM 23 4500-Cl E m
Chromium (VI) in Water	1	N/A	2022/02/15	CAM SOP-00436	FPA 7199 m
Free (WAD) Cyanide	1	N/A	2022/02/16	CAM SOP-00457	OMOE E3015 m
Petroleum Hydrocarbons F2-F4 in Water (1)	1	2022/02/15	2022/02/16	CAM SOP-00316	CCME PHC-CWS m
Mercury	1	2022/02/15	2022/02/15	CAM SOP-00453	EPA 7470A m
Dissolved Metals by ICPMS	1	N/A	2022/02/14	CAM SOP-00447	EPA 6020B m
PAH Compounds in Water by GC/MS (SIM)	1	2022/02/15	2022/02/16	CAM SOP-00318	EPA 8270D m
Polychlorinated Biphenyl in Water	1	2022/02/14	2022/02/15	CAM SOP-00309	EPA 8082A m
Total Suspended Solids	1	2022/02/12	2022/02/14	CAM SOP-00428	SM 23 2540D m
Volatile Organic Compounds and F1 PHCs	1	N/A	2022/02/14	CAM SOP-00230	EPA 8260C m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA. Where applicable, the analytical testing herein was performed in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. All methodologies comply with this document and are validated for use in the laboratory. The methods and techniques employed in this analysis conform to the performance criteria (detection limits, accuracy and precision) as outlined in the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. Bureau Veritas is accredited by SCC (Lab ID 97) for all specific parameters as required by Ontario Regulation 153/04.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report.

Attention: Brian Holden

AECOM Canada Ltd 50 Sportsworld Crossing Rd Suite 290 Kitchener, ON Canada N2P 0A4 Your Project #: 60646784

Site#: SITE 3

Site Location: PEEL REGION - WEST BRAMPTON RESERVOIR &

PLUMPING STATION

Your C.O.C. #: 865657-01-01

Report Date: 2022/03/23

Report #: R7054807 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C237378

Received: 2022/02/11, 13:57

Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Marijane Cruz Senior Project Manager 23 Mar 2022 11:49:27

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

The en

Marijane Cruz, Senior Project Manager Email: Marijane.Cruz@bureauveritas.com

Phone# (905)817-5756

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Site Location: PEEL REGION - WEST BRAMPTON RESERVOIR &

PLUMPING STATION

Sampler Initials: DP

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		RVK190							
Sampling Date		2022/02/11 10:30							
COC Number		865657-01-01							
	UNITS	BH-3-4	RDL	QC Batch					
Inorganics									
inorganies									
Total BOD	mg/L	<2	2	7830878					
	mg/L mg/L	<2 1100	2	7830878 7831000					

Site Location: PEEL REGION - WEST BRAMPTON RESERVOIR &

PLUMPING STATION

Sampler Initials: DP

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		RVK190								
Sampling Date		2022/02/11								
Sampling Date		10:30								
COC Number		865657-01-01								
	UNITS	BH-3-4	RDL	QC Batch						
Metals										
Dissolved (0.2u) Aluminum (Al)	ug/L	<5	5	7831086						
RDL = Reportable Detection Limit										
QC Batch = Quality Control Batch	า									

Site Location: PEEL REGION - WEST BRAMPTON RESERVOIR &

PLUMPING STATION

Sampler Initials: DP

O.REG 153 METALS & INORGANICS PKG (WTR)

Bureau Veritas ID			RVK190		
Sampling Date			2022/02/11		
			10:30		
COC Number			865657-01-01		
	UNITS	Criteria	BH-3-4	RDL	QC Batch
Inorganics					
WAD Cyanide (Free)	ug/L	66	<1	1	7836938
Dissolved Chloride (Cl-)	mg/L	790	210	3.0	7831168
Metals					
Chromium (VI)	ug/L	25	<0.50	0.50	7831933
Mercury (Hg)	ug/L	0.29	<0.10	0.10	7834018
Dissolved Antimony (Sb)	ug/L	6.0	<0.50	0.50	7831166
Dissolved Arsenic (As)	ug/L	25	<1.0	1.0	7831166
Dissolved Barium (Ba)	ug/L	1000	93	2.0	7831166
Dissolved Beryllium (Be)	ug/L	4.0	<0.40	0.40	7831166
Dissolved Boron (B)	ug/L	5000	28	10	7831166
Dissolved Cadmium (Cd)	ug/L	2.7	<0.090	0.090	7831166
Dissolved Chromium (Cr)	ug/L	50	<5.0	5.0	7831166
Dissolved Cobalt (Co)	ug/L	3.8	<0.50	0.50	7831166
Dissolved Copper (Cu)	ug/L	87	2.8	0.90	7831166
Dissolved Lead (Pb)	ug/L	10	<0.50	0.50	7831166
Dissolved Molybdenum (Mo)	ug/L	70	<0.50	0.50	7831166
Dissolved Nickel (Ni)	ug/L	100	2.0	1.0	7831166
Dissolved Selenium (Se)	ug/L	10	<2.0	2.0	7831166
Dissolved Silver (Ag)	ug/L	1.5	<0.090	0.090	7831166
Dissolved Sodium (Na)	ug/L	490000	42000	100	7831166
Dissolved Thallium (TI)	ug/L	2.0	<0.050	0.050	7831166
Dissolved Uranium (U)	ug/L	20	2.5	0.10	7831166
Dissolved Vanadium (V)	ug/L	6.2	<0.50	0.50	7831166
Dissolved Zinc (Zn)	ug/L	1100	<5.0	5.0	7831166

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water

Condition

Potable Ground Water- All Types of Property Uses - Coarse Textured Soil

Site Location: PEEL REGION - WEST BRAMPTON RESERVOIR &

PLUMPING STATION

Sampler Initials: DP

O.REG 153 PAHS (WATER)

Bureau Veritas ID			RVK190		
Sampling Date			2022/02/11		
			10:30		
COC Number			865657-01-01		
	UNITS	Criteria	BH-3-4	RDL	QC Batch
Calculated Parameters					
Methylnaphthalene, 2-(1-)	ug/L	3.2	<0.071	0.071	7829300
Polyaromatic Hydrocarbons					
Acenaphthene	ug/L	4.1	<0.050	0.050	7834883
Acenaphthylene	ug/L	1	<0.050	0.050	7834883
Anthracene	ug/L	2.4	<0.050	0.050	7834883
Benzo(a)anthracene	ug/L	1.0	<0.050	0.050	7834883
Benzo(a)pyrene	ug/L	0.01	<0.0090	0.0090	7834883
Benzo(b/j)fluoranthene	ug/L	0.1	<0.050	0.050	7834883
Benzo(g,h,i)perylene	ug/L	0.2	<0.050	0.050	7834883
Benzo(k)fluoranthene	ug/L	0.1	<0.050	0.050	7834883
Chrysene	ug/L	0.1	<0.050	0.050	7834883
Dibenzo(a,h)anthracene	ug/L	0.2	<0.050	0.050	7834883
Fluoranthene	ug/L	0.41	<0.050	0.050	7834883
Fluorene	ug/L	120	<0.050	0.050	7834883
Indeno(1,2,3-cd)pyrene	ug/L	0.2	<0.050	0.050	7834883
1-Methylnaphthalene	ug/L	3.2	<0.050	0.050	7834883
2-Methylnaphthalene	ug/L	3.2	<0.050	0.050	7834883
Naphthalene	ug/L	11	<0.050	0.050	7834883
Phenanthrene	ug/L	1	<0.030	0.030	7834883
Pyrene	ug/L	4.1	<0.050	0.050	7834883
Surrogate Recovery (%)					
D10-Anthracene	%	-	108		7834883
D14-Terphenyl (FS)	%	-	94		7834883
D8-Acenaphthylene	%	-	94		7834883

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water

Condition

Potable Ground Water- All Types of Property Uses - Coarse Textured Soil

Site Location: PEEL REGION - WEST BRAMPTON RESERVOIR &

PLUMPING STATION

Sampler Initials: DP

O.REG 153 PCBS (WATER)

		RVK190		
		2022/02/11 10:30		
		865657-01-01		
UNITS	Criteria	BH-3-4	RDL	QC Batch
ug/L	-	<0.05	0.05	7832907
ug/L	-	<0.05	0.05	7832907
ug/L	-	<0.05	0.05	7832907
ug/L	-	<0.05	0.05	7832907
ug/L	3.0	<0.05	0.05	7832907
%	-	79		7832907
	ug/L ug/L ug/L ug/L	ug/L - ug/L - ug/L - ug/L - ug/L - ug/L -	2022/02/11 10:30 865657-01-01 UNITS Criteria BH-3-4 ug/L - <0.05 ug/L 3.0 <0.05	2022/02/11 10:30 865657-01-01

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground

Water Condition

Potable Ground Water- All Types of Property Uses - Coarse Textured Soil

Site Location: PEEL REGION - WEST BRAMPTON RESERVOIR &

PLUMPING STATION

Sampler Initials: DP

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Calculated Parameters 1,3-Dichloropropene (cis+trans) Volatile Organics Acetone (2-Propanone) Benzene Bromodichloromethane Bromoform Bromomethane Carbon Tetrachloride Chlorobenzene Chloroform Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane (FREON 12)	JNITS		2022/02/11 10:30		
COC Number U Calculated Parameters 1,3-Dichloropropene (cis+trans) Volatile Organics Acetone (2-Propanone) Benzene Bromodichloromethane Bromoform Bromomethane Carbon Tetrachloride Chlorobenzene Chloroform Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane (FREON 12)	JNITS				
Calculated Parameters 1,3-Dichloropropene (cis+trans) Volatile Organics Acetone (2-Propanone) Benzene Bromodichloromethane Bromoform Bromomethane Carbon Tetrachloride Chlorobenzene Chloroform Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane (FREON 12)	JNITS			-	
Calculated Parameters 1,3-Dichloropropene (cis+trans) Volatile Organics Acetone (2-Propanone) Benzene Bromodichloromethane Bromoform Bromomethane Carbon Tetrachloride Chlorobenzene Chloroform Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane (FREON 12)	JNITS		865657-01-01		
1,3-Dichloropropene (cis+trans) Volatile Organics Acetone (2-Propanone) Benzene Bromodichloromethane Bromoform Bromomethane Carbon Tetrachloride Chlorobenzene Chloroform Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane (FREON 12)		Criteria	BH-3-4	RDL	QC Batch
Volatile Organics Acetone (2-Propanone) Benzene Bromodichloromethane Bromoform Bromomethane Carbon Tetrachloride Chlorobenzene Chloroform Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane (FREON 12)					
Acetone (2-Propanone) Benzene Bromodichloromethane Bromomethane Carbon Tetrachloride Chlorobenzene Chloroform Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane (FREON 12)	ug/L	0.5	<0.50	0.50	7829899
Benzene Bromodichloromethane Bromoform Bromomethane Carbon Tetrachloride Chlorobenzene Chloroform Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane (FREON 12)					
Bromodichloromethane Bromoform Bromomethane Carbon Tetrachloride Chlorobenzene Chloroform Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,chlorodifluoromethane 1,chlorodifluoromethane 1,chlorodifluoromethane Luccompanies L	ug/L	2700	<10	10	7829610
Bromoform Bromomethane Carbon Tetrachloride Chlorobenzene Chloroform Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane (FREON 12)	ug/L	5.0	<0.17	0.17	7829610
Bromomethane Carbon Tetrachloride Chlorobenzene Chloroform Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane (FREON 12)	ug/L	16.0	<0.50	0.50	7829610
Carbon Tetrachloride Chlorobenzene Chloroform Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane (FREON 12)	ug/L	25.0	<1.0	1.0	7829610
Chlorobenzene Chloroform Unitroduction Chloroform Unitroduction Chloroform Unitroduction Unitroducti	ug/L	0.89	<0.50	0.50	7829610
Chloroform Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane (FREON 12)	ug/L	0.79	<0.20	0.20	7829610
Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane (FREON 12)	ug/L	30	<0.20	0.20	7829610
1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane (FREON 12)	ug/L	2.4	<0.20	0.20	7829610
1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane (FREON 12)	ug/L	25.0	<0.50	0.50	7829610
1,4-Dichlorobenzene Unichlorodifluoromethane (FREON 12)	ug/L	3.0	<0.50	0.50	7829610
Dichlorodifluoromethane (FREON 12)	ug/L	59	<0.50	0.50	7829610
·	ug/L	1.0	<0.50	0.50	7829610
	ug/L	590	<1.0	1.0	7829610
1,1-Dichloroethane ເ	ug/L	5	<0.20	0.20	7829610
1,2-Dichloroethane	ug/L	1.6	<0.50	0.50	7829610
1,1-Dichloroethylene ເ	ug/L	1.6	<0.20	0.20	7829610
cis-1,2-Dichloroethylene ι	ug/L	1.6	<0.50	0.50	7829610
trans-1,2-Dichloroethylene u	ug/L	1.6	<0.50	0.50	7829610
1,2-Dichloropropane	ug/L	5.0	<0.20	0.20	7829610
cis-1,3-Dichloropropene ι	ug/L	0.5	<0.30	0.30	7829610
trans-1,3-Dichloropropene u	ug/L	0.5	<0.40	0.40	7829610
Ethylbenzene u	ug/L	2.4	<0.20	0.20	7829610
Ethylene Dibromide u	ug/L	0.2	<0.20	0.20	7829610
Hexane u	ug/L	51	<1.0	1.0	7829610
Methylene Chloride(Dichloromethane) ເ	ug/L	50	<2.0	2.0	7829610
	ug/L	1800	<10	10	7829610
Methyl Isobutyl Ketone ເ	ug/L	640	<5.0	5.0	7829610

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Site Location: PEEL REGION - WEST BRAMPTON RESERVOIR &

PLUMPING STATION

Sampler Initials: DP

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Bureau Veritas ID			RVK190		
Sampling Data			2022/02/11		
Sampling Date			10:30		
COC Number			865657-01-01		
	UNITS	Criteria	BH-3-4	RDL	QC Batch
Methyl t-butyl ether (MTBE)	ug/L	15	<0.50	0.50	7829610
Styrene	ug/L	5.4	<0.50	0.50	7829610
1,1,1,2-Tetrachloroethane	ug/L	1.1	<0.50	0.50	7829610
1,1,2,2-Tetrachloroethane	ug/L	1.0	<0.50	0.50	7829610
Tetrachloroethylene	ug/L	1.6	<0.20	0.20	7829610
Toluene	ug/L	24	<0.20	0.20	7829610
1,1,1-Trichloroethane	ug/L	200	<0.20	0.20	7829610
1,1,2-Trichloroethane	ug/L	4.7	<0.50	0.50	7829610
Trichloroethylene	ug/L	1.6	<0.20	0.20	7829610
Trichlorofluoromethane (FREON 11)	ug/L	150	<0.50	0.50	7829610
Vinyl Chloride	ug/L	0.5	<0.20	0.20	7829610
p+m-Xylene	ug/L	-	<0.20	0.20	7829610
o-Xylene	ug/L	-	<0.20	0.20	7829610
Total Xylenes	ug/L	300	<0.20	0.20	7829610
F1 (C6-C10)	ug/L	750	<25	25	7829610
F1 (C6-C10) - BTEX	ug/L	750	<25	25	7829610
F2-F4 Hydrocarbons					
F2 (C10-C16 Hydrocarbons)	ug/L	150	<100	100	7834908
F3 (C16-C34 Hydrocarbons)	ug/L	500	<200	200	7834908
F4 (C34-C50 Hydrocarbons)	ug/L	500	<200	200	7834908
Reached Baseline at C50	ug/L	-	Yes		7834908
Surrogate Recovery (%)					
o-Terphenyl	%	-	87		7834908
4-Bromofluorobenzene	%	-	90		7829610
D4-1,2-Dichloroethane	%	-	113		7829610
D8-Toluene	%	-	94		7829610

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Report Date: 2022/03/23

Matrix: Water

AECOM Canada Ltd Client Project #: 60646784

Site Location: PEEL REGION - WEST BRAMPTON RESERVOIR &

PLUMPING STATION

Sampler Initials: DP

TEST SUMMARY

Bureau Veritas ID: RVK190 **Collected:** 2022/02/11 Sample ID: BH-3-4

Shipped:

Received: 2022/02/11

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	7829300	N/A	2022/02/17	Automated Statchk
Dissolved Aluminum (0.2 u, clay free)	ICP/MS	7831086	N/A	2022/02/14	Nan Raykha
Biochemical Oxygen Demand (BOD)	DO	7830878	2022/02/12	2022/02/17	Surleen Kaur Romana
1,3-Dichloropropene Sum	CALC	7829899	N/A	2022/02/15	Automated Statchk
Chloride by Automated Colourimetry	KONE	7831168	N/A	2022/02/14	Alina Dobreanu
Chromium (VI) in Water	IC	7831933	N/A	2022/02/15	Theodora LI
Free (WAD) Cyanide	SKAL/CN	7836938	N/A	2022/02/16	Nimarta Singh
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	7834908	2022/02/15	2022/02/16	Dennis Ngondu
Mercury	CV/AA	7834018	2022/02/15	2022/02/15	Prempal Bhatti
Dissolved Metals by ICPMS	ICP/MS	7831166	N/A	2022/02/14	Nan Raykha
PAH Compounds in Water by GC/MS (SIM)	GC/MS	7834883	2022/02/15	2022/02/16	Jonghan Yoon
Polychlorinated Biphenyl in Water	GC/ECD	7832907	2022/02/14	2022/02/15	Farag Mansour
Total Suspended Solids	BAL	7831000	2022/02/12	2022/02/14	Shaneil Hall
Volatile Organic Compounds and F1 PHCs	GC/MSFD	7829610	N/A	2022/02/14	Juan Pangilinan

Results relate only to the items tested.

AECOM Canada Ltd Client Project #: 60646784

Site Location: PEEL REGION - WEST BRAMPTON RESERVOIR &

PLUMPING STATION

Sampler Initials: DP

GENERAL COMMENTS

Each te	emperature is the a	verage of up to the	ree cooler temperatures taken at receipt
	Package 1	4.7°C	
Revised	Report (2022/03/	23) : Results have t	been split onto separate reports per client request.
Revised	Report (2022/02/	28) : Reg 153 criter	ria and PWQO guidelines aadded per client request.

QUALITY ASSURANCE REPORT

AECOM Canada Ltd Client Project #: 60646784

PEEL REGION - WEST BRAMPTON RESERVOIR & Site Location: PLUMPING STATION

Sampler Initials: DP

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7829610	4-Bromofluorobenzene	2022/02/14	109	70 - 130	114	70 - 130	99	%				
7829610	D4-1,2-Dichloroethane	2022/02/14	103	70 - 130	98	70 - 130	97	%				
7829610	D8-Toluene	2022/02/14	103	70 - 130	101	70 - 130	93	%				
7832907	Decachlorobiphenyl	2022/02/14	100	60 - 130	72	60 - 130	59 (2)	%				
7834883	D10-Anthracene	2022/02/16	99	50 - 130	109	50 - 130	112	%				
7834883	D14-Terphenyl (FS)	2022/02/16	104	50 - 130	114	50 - 130	114	%				
7834883	D8-Acenaphthylene	2022/02/16	89	50 - 130	98	50 - 130	97	%				
7834908	o-Terphenyl	2022/02/15	96	60 - 130	97	60 - 130	99	%				
7829610	1,1,1,2-Tetrachloroethane	2022/02/14	96	70 - 130	98	70 - 130	<0.50	ug/L	NC (1)	30		
7829610	1,1,1-Trichloroethane	2022/02/14	103	70 - 130	105	70 - 130	<0.20	ug/L	NC (1)	30		
7829610	1,1,2,2-Tetrachloroethane	2022/02/14	84	70 - 130	85	70 - 130	<0.50	ug/L	NC (1)	30		
7829610	1,1,2-Trichloroethane	2022/02/14	84	70 - 130	86	70 - 130	<0.50	ug/L	NC (1)	30		
7829610	1,1-Dichloroethane	2022/02/14	84	70 - 130	88	70 - 130	<0.20	ug/L	NC (1)	30		
7829610	1,1-Dichloroethylene	2022/02/14	97	70 - 130	92	70 - 130	<0.20	ug/L	NC (1)	30		
7829610	1,2-Dichlorobenzene	2022/02/14	94	70 - 130	94	70 - 130	<0.50	ug/L	NC (1)	30		
7829610	1,2-Dichloroethane	2022/02/14	92	70 - 130	92	70 - 130	<0.50	ug/L	NC (1)	30		
7829610	1,2-Dichloropropane	2022/02/14	85	70 - 130	88	70 - 130	<0.20	ug/L	NC (1)	30		
7829610	1,3-Dichlorobenzene	2022/02/14	94	70 - 130	96	70 - 130	<0.50	ug/L	NC (1)	30		
7829610	1,4-Dichlorobenzene	2022/02/14	109	70 - 130	111	70 - 130	<0.50	ug/L	NC (1)	30		
7829610	Acetone (2-Propanone)	2022/02/14	101	60 - 140	91	60 - 140	<10	ug/L	NC (1)	30		
7829610	Benzene	2022/02/14	87	70 - 130	89	70 - 130	<0.17	ug/L	NC (1)	30		
7829610	Bromodichloromethane	2022/02/14	99	70 - 130	98	70 - 130	<0.50	ug/L	NC (1)	30		
7829610	Bromoform	2022/02/14	100	70 - 130	100	70 - 130	<1.0	ug/L	NC (1)	30		
7829610	Bromomethane	2022/02/14	115	60 - 140	94	60 - 140	<0.50	ug/L	NC (1)	30		
7829610	Carbon Tetrachloride	2022/02/14	109	70 - 130	105	70 - 130	<0.20	ug/L	NC (1)	30		
7829610	Chlorobenzene	2022/02/14	94	70 - 130	96	70 - 130	<0.20	ug/L	NC (1)	30		
7829610	Chloroform	2022/02/14	91	70 - 130	94	70 - 130	<0.20	ug/L	NC (1)	30		
7829610	cis-1,2-Dichloroethylene	2022/02/14	103	70 - 130	102	70 - 130	<0.50	ug/L	NC (1)	30		
7829610	cis-1,3-Dichloropropene	2022/02/14	99	70 - 130	89	70 - 130	<0.30	ug/L	NC (1)	30		
7829610	Dibromochloromethane	2022/02/14	90	70 - 130	93	70 - 130	<0.50	ug/L	NC (1)	30		

Page 12 of 19

AECOM Canada Ltd Client Project #: 60646784

PEEL REGION - WEST BRAMPTON RESERVOIR & Site Location: PLUMPING STATION

Sampler Initials: DP

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RP	D	QC Sta	ındard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7829610	Dichlorodifluoromethane (FREON 12)	2022/02/14	92	60 - 140	98	60 - 140	<1.0	ug/L	NC (1)	30		
7829610	Ethylbenzene	2022/02/14	86	70 - 130	92	70 - 130	<0.20	ug/L	NC (1)	30		
7829610	Ethylene Dibromide	2022/02/14	87	70 - 130	89	70 - 130	<0.20	ug/L	NC (1)	30		
7829610	F1 (C6-C10) - BTEX	2022/02/14					<25	ug/L	NC (1)	30		
7829610	F1 (C6-C10)	2022/02/14	84	60 - 140	93	60 - 140	<25	ug/L	NC (1)	30		
7829610	Hexane	2022/02/14	96	70 - 130	95	70 - 130	<1.0	ug/L	NC (1)	30		
7829610	Methyl Ethyl Ketone (2-Butanone)	2022/02/14	89	60 - 140	88	60 - 140	<10	ug/L	NC (1)	30		
7829610	Methyl Isobutyl Ketone	2022/02/14	107	70 - 130	95	70 - 130	<5.0	ug/L	NC (1)	30		
7829610	Methyl t-butyl ether (MTBE)	2022/02/14	92	70 - 130	93	70 - 130	<0.50	ug/L	NC (1)	30		
7829610	Methylene Chloride(Dichloromethane)	2022/02/14	112	70 - 130	109	70 - 130	<2.0	ug/L	NC (1)	30		
7829610	o-Xylene	2022/02/14	89	70 - 130	94	70 - 130	<0.20	ug/L	NC (1)	30		
7829610	p+m-Xylene	2022/02/14	93	70 - 130	99	70 - 130	<0.20	ug/L	NC (1)	30		
7829610	Styrene	2022/02/14	104	70 - 130	110	70 - 130	<0.50	ug/L	NC (1)	30		
7829610	Tetrachloroethylene	2022/02/14	89	70 - 130	96	70 - 130	<0.20	ug/L	NC (1)	30		
7829610	Toluene	2022/02/14	97	70 - 130	95	70 - 130	<0.20	ug/L	NC (1)	30		
7829610	Total Xylenes	2022/02/14					<0.20	ug/L	NC (1)	30		
7829610	trans-1,2-Dichloroethylene	2022/02/14	97	70 - 130	97	70 - 130	<0.50	ug/L	NC (1)	30		
7829610	trans-1,3-Dichloropropene	2022/02/14	108	70 - 130	85	70 - 130	<0.40	ug/L	NC (1)	30		
7829610	Trichloroethylene	2022/02/14	107	70 - 130	112	70 - 130	<0.20	ug/L	NC (1)	30		
7829610	Trichlorofluoromethane (FREON 11)	2022/02/14	110	70 - 130	105	70 - 130	<0.50	ug/L	NC (1)	30		
7829610	Vinyl Chloride	2022/02/14	88	70 - 130	90	70 - 130	<0.20	ug/L	NC (1)	30		
7830878	Total BOD	2022/02/17					<2	mg/L	11 (1)	30	97	80 - 120
7831000	Total Suspended Solids	2022/02/14					<10	mg/L	0.95 (1)	25	95	85 - 115
7831086	Dissolved (0.2u) Aluminum (Al)	2022/02/14	97	75 - 125	96	90 - 110	<5	ug/L	NC (1)	20		
7831166	Dissolved Antimony (Sb)	2022/02/14	103	80 - 120	102	80 - 120	<0.50	ug/L	NC (1)	20		
7831166	Dissolved Arsenic (As)	2022/02/14	96	80 - 120	98	80 - 120	<1.0	ug/L	NC (1)	20		
7831166	Dissolved Barium (Ba)	2022/02/14	99	80 - 120	100	80 - 120	<2.0	ug/L	NC (1)	20		
7831166	Dissolved Beryllium (Be)	2022/02/14	95	80 - 120	97	80 - 120	<0.40	ug/L	NC (1)	20		
7831166	Dissolved Boron (B)	2022/02/14	90	80 - 120	94	80 - 120	<10	ug/L	3.1 (1)	20		
7831166	Dissolved Cadmium (Cd)	2022/02/14	98	80 - 120	99	80 - 120	<0.090	ug/L	NC (1)	20		

Page 13 of 19

AECOM Canada Ltd Client Project #: 60646784

PEEL REGION - WEST BRAMPTON RESERVOIR & Site Location: PLUMPING STATION

Sampler Initials: DP

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RPI	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7831166	Dissolved Chromium (Cr)	2022/02/14	94	80 - 120	95	80 - 120	<5.0	ug/L	NC (1)	20		
7831166	Dissolved Cobalt (Co)	2022/02/14	96	80 - 120	98	80 - 120	<0.50	ug/L	NC (1)	20		
7831166	Dissolved Copper (Cu)	2022/02/14	98	80 - 120	98	80 - 120	<0.90	ug/L	0.30 (1)	20		
7831166	Dissolved Lead (Pb)	2022/02/14	91	80 - 120	97	80 - 120	<0.50	ug/L	NC (1)	20		
7831166	Dissolved Molybdenum (Mo)	2022/02/14	102	80 - 120	101	80 - 120	<0.50	ug/L	NC (1)	20		
7831166	Dissolved Nickel (Ni)	2022/02/14	91	80 - 120	94	80 - 120	<1.0	ug/L	NC (1)	20		
7831166	Dissolved Selenium (Se)	2022/02/14	97	80 - 120	99	80 - 120	<2.0	ug/L	NC (1)	20		
7831166	Dissolved Silver (Ag)	2022/02/14	93	80 - 120	101	80 - 120	<0.090	ug/L	NC (1)	20		
7831166	Dissolved Sodium (Na)	2022/02/14	NC	80 - 120	95	80 - 120	<100	ug/L	1.1 (1)	20		
7831166	Dissolved Thallium (TI)	2022/02/14	90	80 - 120	99	80 - 120	<0.050	ug/L	NC (1)	20		
7831166	Dissolved Uranium (U)	2022/02/14	91	80 - 120	96	80 - 120	<0.10	ug/L	2.5 (1)	20		
7831166	Dissolved Vanadium (V)	2022/02/14	97	80 - 120	97	80 - 120	<0.50	ug/L	NC (1)	20		
7831166	Dissolved Zinc (Zn)	2022/02/14	95	80 - 120	97	80 - 120	<5.0	ug/L	0.037 (1)	20		
7831168	Dissolved Chloride (Cl-)	2022/02/14	NC	80 - 120	104	80 - 120	<1.0	mg/L	1.5 (1)	20		
7831933	Chromium (VI)	2022/02/15	99	80 - 120	102	80 - 120	<0.50	ug/L	NC (1)	20		
7832907	Aroclor 1242	2022/02/15					<0.05	ug/L	NC (1)	30		
7832907	Aroclor 1248	2022/02/15					<0.05	ug/L	8.7 (1)	30		
7832907	Aroclor 1254	2022/02/15					<0.05	ug/L	NC (1)	30		
7832907	Aroclor 1260	2022/02/15	103	60 - 130	69	60 - 130	<0.05	ug/L	NC (1)	30		
7832907	Total PCB	2022/02/15	103	60 - 130	69	60 - 130	<0.05	ug/L	8.7 (1)	40		
7834018	Mercury (Hg)	2022/02/15	82	75 - 125	92	80 - 120	<0.10	ug/L	NC (1)	20		
7834883	1-Methylnaphthalene	2022/02/16	109	50 - 130	103	50 - 130	<0.050	ug/L	NC (1)	30		
7834883	2-Methylnaphthalene	2022/02/16	108	50 - 130	102	50 - 130	<0.050	ug/L	NC (1)	30		
7834883	Acenaphthene	2022/02/16	97	50 - 130	91	50 - 130	<0.050	ug/L	NC (1)	30		
7834883	Acenaphthylene	2022/02/16	93	50 - 130	88	50 - 130	<0.050	ug/L	NC (1)	30		
7834883	Anthracene	2022/02/16	99	50 - 130	96	50 - 130	<0.050	ug/L	NC (1)	30		
7834883	Benzo(a)anthracene	2022/02/16	86	50 - 130	86	50 - 130	<0.050	ug/L	NC (1)	30		
7834883	Benzo(a)pyrene	2022/02/16	84	50 - 130	85	50 - 130	<0.0090	ug/L	NC (1)	30		
7834883	Benzo(b/j)fluoranthene	2022/02/16	88	50 - 130	88	50 - 130	<0.050	ug/L	NC (1)	30		
7834883	Benzo(g,h,i)perylene	2022/02/16	83	50 - 130	83	50 - 130	<0.050	ug/L	NC (1)	30		

Page 14 of 19

AECOM Canada Ltd Client Project #: 60646784

PEEL REGION - WEST BRAMPTON RESERVOIR &

Site Location: PLUMPING STATION

Sampler Initials: DP

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D	QC Sta	ındard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7834883	Benzo(k)fluoranthene	2022/02/16	85	50 - 130	84	50 - 130	<0.050	ug/L	NC (1)	30		
7834883	Chrysene	2022/02/16	92	50 - 130	91	50 - 130	<0.050	ug/L	NC (1)	30		
7834883	Dibenzo(a,h)anthracene	2022/02/16	76	50 - 130	78	50 - 130	<0.050	ug/L	NC (1)	30		
7834883	Fluoranthene	2022/02/16	111	50 - 130	109	50 - 130	<0.050	ug/L	NC (1)	30		
7834883	Fluorene	2022/02/16	102	50 - 130	99	50 - 130	<0.050	ug/L	NC (1)	30		
7834883	Indeno(1,2,3-cd)pyrene	2022/02/16	88	50 - 130	89	50 - 130	<0.050	ug/L	NC (1)	30		
7834883	Naphthalene	2022/02/16	95	50 - 130	90	50 - 130	<0.050	ug/L	NC (1)	30		
7834883	Phenanthrene	2022/02/16	100	50 - 130	97	50 - 130	<0.030	ug/L	NC (1)	30		
7834883	Pyrene	2022/02/16	108	50 - 130	106	50 - 130	<0.050	ug/L	NC (1)	30		
7834908	F2 (C10-C16 Hydrocarbons)	2022/02/15	89	60 - 130	91	60 - 130	<100	ug/L	NC (1)	30		
7834908	F3 (C16-C34 Hydrocarbons)	2022/02/15	87	60 - 130	89	60 - 130	<200	ug/L	NC (1)	30		
7834908	F4 (C34-C50 Hydrocarbons)	2022/02/15	87	60 - 130	88	60 - 130	<200	ug/L	NC (1)	30		
7836938	WAD Cyanide (Free)	2022/02/16	97	80 - 120	94	80 - 120	<1	ug/L	NC (1)	20		

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

- (1) Duplicate Parent ID
- (2) Surrogate recovery is below the control limit stipulated by Ont Reg 153, however, this recovery is still within Bureau Veritas performance based limits. Results reported with recoveries within this range are still valid but may have a low bias.

Site Location: PEEL REGION - WEST BRAMPTON RESERVOIR &

PLUMPING STATION

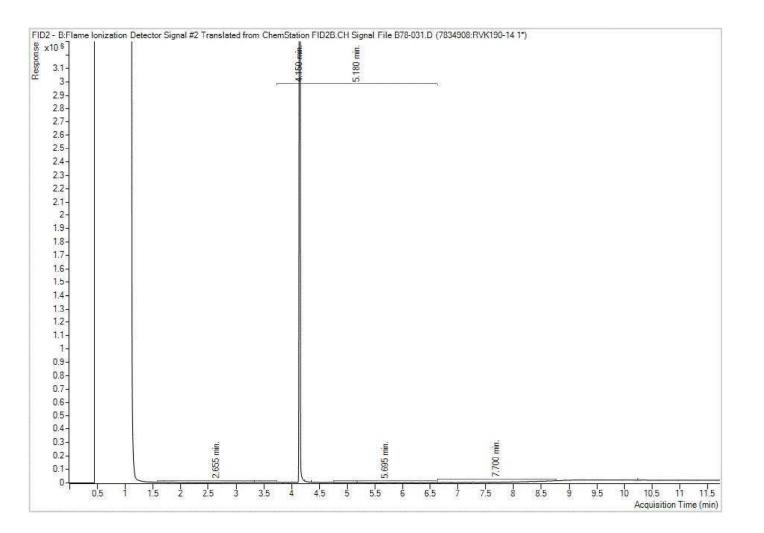
Sampler Initials: DP

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Brad Newman, B.Sc., C.Chem., Scientific Service Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IFC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.


CADE REGULA Regulation 15 1 Res. 2 Indu.	23482 AECOM (counts Payable Sportsworld Crot tchener ON N2P 19) 650-5313 ANSSC E-billing(ATED DRINKING BMITTED ON THE	ssing Rd Suite : 0A4 Fax;		Compani Attention Address	Name: AE(c Brian F		ida Ltd-			_								Laboratory Use O	
Kit (51 CA) DE REGULA SUE Regulation 15 1 Res. 2 Indu/	Sportsworld Cro tchener ON N2P 19) 650-5313 ANSSC E-billing@ ATED DRINKING BMITTED ON THE	OA4 Fax:		3/2015	Brian I	Inldo-					Quotation #		C2037	75				Bureau Veritas Job #:	Bottle Order #
EREGULA SUF	tchener ON N2P 19) 650-5313 ANSSC E-billing@ ATED DRINKING NETTED ON THE	OA4 Fax:		Artdonen							P.O. #.								1 11113 1111 111 111
CA DE REGULA SUE Regulation 15 1 Resi 2 Indivi	19) 650-5313 ANSSC E-billing@ ATED DRINKING I BMITTED ON THE	Fax; _		Audess		portswon			Suite	290	Project:	_	60646				- 0		865657
Regulation 15	ATED DRINKING I BMITTED ON THE	gaecom.com	(519) 650-3422	2.4		340-1617		A4			Project Nar	me: Co			tot Brev	Hon Receiver		Piny Stanson	Project Manag
Regulation 15	DIVITIED ON THE	NICK IN THE PARTY OF THE PARTY	(010) 000-0422	Z 4 Tel: Email:		iolderi@aecor	m.com · J /u	(Janisla	Penunt	OL TUT	Site #: Sampled B		Site	mish	Pariter		1111111	C#865657-01-01	Marijane Cruz
Regulation 15	DIVITIED ON THE	WATER OR WAT	ER INTENDED	FOR HUMAN C	ONGLIMOTION	MUCTOF	1		11			UESTED (-					Turnaround Time (TAT) Re	quired:
1 Resi		BUREAU VERI	TAS DRINKING	WATER CHAIN	OF CUSTODY							_	T				国际	Please provide advance notice for	rush projects
2 Ind/			Other Regulation	ns	Special Ir	nstructions	circle):	2			Pkg	nd (BOD)		y free				Standard) TAT: ied if Rush TAT is not specified):	
	/Park Medium/F		Sanitary Sewe			The state of	Se S	HS & F1-F4			ganica	land		u, clay		-	Standard TA	T = 5-7 Working days for most tests	
	Other For RSC	Reg 558.	Storm Sewer E Municipality	Bylaw			Field Filtered (please of	HS		Vater)	Inorg	Dem	spig	(0.2	aive		Please note:	Standard TAT for certain tests such as BC ct your Project Manager for details.	D and Dioxins/Furans
_		PWQO	Reg 406 Tab	ile			Per H	VOCs by I	20	153 PCBs (Wat	als &	xygen	og pe	En L	per l			fic Rush TAT (if applies to entire submi	ssion)
		Other					Filte etak	9 0	Reg 153 PAHs	3 PCI	3 Met	ô	puec	Alum	Jupie		Date Require		Required:
	Include Criteria o	Certificate of A	nalysis (Y/N)? _				₽ €	Reg 153	9 15	150	9 153	оше	Susp	pevic	9		Rush Confirm	maton Number(ca	il lab for #)
Sample Baro	code Label	Sample (Location)	Identification	Date Sampled	Time Sampled	Matrix	_ "	O.Re	O.Re	O.Reg	O.Reg (W/tr)	Bioch	Total	Disse	RCAp		# of Bottles	Comme	nts
		Bh-3-	4 1	-1 012	14.2	14.7	+	×	×	×	×	X	*		~/		18		
		011-3	P 1	26 11,2022	16:30	GW	10				<i>r</i>	/\	^	×	X		10		
							TO THE U												
												-	_				_		
							1 10												
	To the																	J	
	1						Standard Co.											11-Feb-22	12.57
											-		_						13.37
							1.50											Marijane Cruz	
								-			-	-	-			_	_		1 111
							1											C237378	
													\neg					RJM ENV-17	87
	_												_						
							100												
	QUISHED BY: (Signat	ure/Print)	Date: (YY/N	MM/DD) Tie	me	RECEIVED	BY: (Signature/P	rint)		Date: (YY/M	M/DD)			T # ince	used and		Labora	atory Use Only	
RELING	I WILL JA			111		ED	My					Tim			ubmitted				

Bureau Veritas Job #: C237378 Report Date: 2022/03/23 Bureau Veritas Sample: RVK190 AECOM Canada Ltd Client Project #: 60646784

Project name: PEEL REGION - WEST BRAMPTON RESERVOIR & PLUMPING STATION

Client ID: BH-3-4

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Site Location: PEEL REGION - WEST BRAMPTON RESERVOIR &

PLUMPING STATION

Sampler Initials: DP

Exceedance Summary Table – Reg153/04 T2-GW-C Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
No Exceedances						
The exceedance summ	ary table is for information purp	oses only and shoul	d not be considered a com	prehensive listing or	statement of	conformance to
applicable regulatory g	uidelines.					

Your Project #: 60646784 Site#: SITE 6 & SITE 9

Site Location: REGION OF PEEL SNOW STORAGE

Your C.O.C. #: 868053-01-01

Attention: Brian Holden

AECOM Canada Ltd 50 Sportsworld Crossing Rd Suite 290 Kitchener, ON Canada N2P 0A4

Report Date: 2022/03/23

Report #: R7055687 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C260765 Received: 2022/03/08, 12:43

Sample Matrix: Water # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Methylnaphthalene Sum	2	N/A	2022/03/14	CAM SOP-00301	EPA 8270D m
Dissolved Aluminum (0.2 u, clay free)	2	N/A	2022/03/11	CAM SOP-00447	EPA 6020B m
iochemical Oxygen Demand (BOD)	2	2022/03/10	2022/03/15	CAM SOP-00427	SM 23 5210B m
,3-Dichloropropene Sum	2	N/A	2022/03/11		EPA 8260C m
hloride by Automated Colourimetry	2	N/A	2022/03/14	CAM SOP-00463	SM 23 4500-Cl E m
hromium (VI) in Water	2	N/A	2022/03/11	CAM SOP-00436	FPA 7199 m
ree (WAD) Cyanide	2	N/A	2022/03/10	CAM SOP-00457	OMOE E3015 m
etroleum Hydrocarbons F2-F4 in Water (1)	2	2022/03/10	2022/03/10	CAM SOP-00316	CCME PHC-CWS m
1ercury	2	2022/03/10	2022/03/10	CAM SOP-00453	EPA 7470A m
issolved Metals by ICPMS	2	N/A	2022/03/10	CAM SOP-00447	EPA 6020B m
AH Compounds in Water by GC/MS (SIM)	2	2022/03/10	2022/03/11	CAM SOP-00318	EPA 8270D m
olychlorinated Biphenyl in Water	2	2022/03/10	2022/03/11	CAM SOP-00309	EPA 8082A m
otal Suspended Solids	2	2022/03/10	2022/03/11	CAM SOP-00428	SM 23 2540D m
/olatile Organic Compounds and F1 PHCs	2	N/A	2022/03/10	CAM SOP-00230	EPA 8260C m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA. Where applicable, the analytical testing herein was performed in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. All methodologies comply with this document and are validated for use in the laboratory. The methods and techniques employed in this analysis conform to the performance criteria (detection limits, accuracy and precision) as outlined in the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. Bureau Veritas is accredited by SCC (Lab ID 97) for all specific parameters as required by Ontario Regulation 153/04.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report.

Your Project #: 60646784 Site#: SITE 6 & SITE 9

Site Location: REGION OF PEEL SNOW STORAGE

Your C.O.C. #: 868053-01-01

Attention: Brian Holden

AECOM Canada Ltd 50 Sportsworld Crossing Rd Suite 290 Kitchener, ON Canada N2P 0A4

Report Date: 2022/03/23

Report #: R7055687 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C260765

Received: 2022/03/08, 12:43

Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Marijane Cruz Senior Project Manager

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

The en

Marijane Cruz, Senior Project Manager Email: Marijane.Cruz@bureauveritas.com

Phone# (905)817-5756

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Site Location: REGION OF PEEL SNOW STORAGE

Sampler Initials: DP

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		SAN903	SAN904		
Sampling Date		2022/03/07 10:00	2022/03/08 10:30		
COC Number		868053-01-01	868053-01-01		
	UNITS	BH6-1/MW	BH9-3/MW	RDL	QC Batch
Inguagaica					
Inorganics					
Total BOD	mg/L	<2	<2	2	7874502
	mg/L	<2 120	<2 110	2	7874502 7875462

Site Location: REGION OF PEEL SNOW STORAGE

Sampler Initials: DP

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		SAN903	SAN904	SAN904					
Sampling Date		2022/03/07 10:00	2022/03/08 10:30	2022/03/08 10:30					
COC Number		868053-01-01	868053-01-01	868053-01-01					
	UNITS	BH6-1/MW	BH9-3/MW		RDL	QC Batch			
Metals									
livierais									
Dissolved (0.2u) Aluminum (Al)	ug/L	6	36	35	5	7875256			

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Site Location: REGION OF PEEL SNOW STORAGE

Sampler Initials: DP

O.REG 153 METALS & INORGANICS PKG (WTR)

Bureau Veritas ID			SAN903		SAN904		
Sampling Date			2022/03/07 10:00		2022/03/08 10:30		
COC Number			868053-01-01		868053-01-01		
	UNITS	Criteria	BH6-1/MW	RDL	BH9-3/MW	RDL	QC Batch
Inorganics							
WAD Cyanide (Free)	ug/L	66	<1	1	<1	1	7875039
Dissolved Chloride (Cl-)	mg/L	790	150	2.0	48	1.0	7873885
Metals							
Chromium (VI)	ug/L	25	0.65	0.50	<0.50	0.50	7874547
Mercury (Hg)	ug/L	0.29	<0.10	0.10	<0.10	0.10	7874921
Dissolved Aluminum (AI)	ug/L	-	<4.9	4.9	6.0	4.9	7874515
Dissolved Antimony (Sb)	ug/L	6.0	<0.50	0.50	<0.50	0.50	7874515
Dissolved Arsenic (As)	ug/L	25	<1.0	1.0	<1.0	1.0	7874515
Dissolved Barium (Ba)	ug/L	1000	110	2.0	120	2.0	7874515
Dissolved Beryllium (Be)	ug/L	4.0	<0.40	0.40	<0.40	0.40	7874515
Dissolved Bismuth (Bi)	ug/L	-	<1.0	1.0	<1.0	1.0	7874515
Dissolved Boron (B)	ug/L	5000	57	10	52	10	7874515
Dissolved Cadmium (Cd)	ug/L	2.7	<0.090	0.090	<0.090	0.090	7874515
Dissolved Calcium (Ca)	ug/L	-	170000	200	230000	200	7874515
Dissolved Cesium (Cs)	ug/L	-	<0.20	0.20	<0.20	0.20	7874515
Dissolved Chromium (Cr)	ug/L	50	<5.0	5.0	<5.0	5.0	7874515
Dissolved Cobalt (Co)	ug/L	3.8	<0.50	0.50	0.57	0.50	7874515
Dissolved Copper (Cu)	ug/L	87	1.2	0.90	2.4	0.90	7874515
Dissolved Iron (Fe)	ug/L	-	<100	100	<100	100	7874515
Dissolved Lead (Pb)	ug/L	10	<0.50	0.50	<0.50	0.50	7874515
Dissolved Lithium (Li)	ug/L	-	25	5.0	15	5.0	7874515
Dissolved Magnesium (Mg)	ug/L	-	66000	50	61000	50	7874515
Dissolved Manganese (Mn)	ug/L	-	40	2.0	1000	2.0	7874515
Dissolved Molybdenum (Mo)	ug/L	70	2.8	0.50	3.6	0.50	7874515
Dissolved Nickel (Ni)	ug/L	100	1.2	1.0	6.5	1.0	7874515
Dissolved Phosphorus (P)	ug/L	-	<100	100	<100	100	7874515
Dissolved Potassium (K)	ug/L	-	4700	200	7600	200	7874515
Dissolved Rubidium (Rb)	ug/L	-	1.2	0.20	1.5	0.20	7874515
Dissolved Selenium (Se)	ug/L	10	<2.0	2.0	<2.0	2.0	7874515
Dissolved Silicon (Si)	ug/L	-	6600	50	8400	50	7874515
Dissolved Silicon (Si)		-	6600	50	8400	50	78

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Site Location: REGION OF PEEL SNOW STORAGE

Sampler Initials: DP

O.REG 153 METALS & INORGANICS PKG (WTR)

Bureau Veritas ID			SAN903		SAN904		
Sampling Date			2022/03/07 10:00		2022/03/08 10:30		
COC Number			868053-01-01		868053-01-01		
	UNITS	Criteria	BH6-1/MW	RDL	BH9-3/MW	RDL	QC Batch
Dissolved Silver (Ag)	ug/l	1.5	<0.090	0.090	<0.090	0.090	7874515
Dissolved Sodium (Na)	ug/L	490000	61000	100	21000	100	7874515
Dissolved Strontium (Sr)	ug/L	-	1400	1.0	630	1.0	7874515
Dissolved Tellurium (Te)	ug/L	-	<1.0	1.0	<1.0	1.0	7874515
Dissolved Thallium (TI)	ug/L	2.0	<0.050	0.050	<0.050	0.050	7874515
Dissolved Thorium (Th)	ug/L	-	<2.0	2.0	<2.0	2.0	7874515
Dissolved Tin (Sn)	ug/L	-	1.1	1.0	<1.0	1.0	7874515
Dissolved Titanium (Ti)	ug/L	-	<5.0	5.0	<5.0	5.0	7874515
Dissolved Tungsten (W)	ug/L	-	<1.0	1.0	<1.0	1.0	7874515
Dissolved Uranium (U)	ug/L	20	5.6	0.10	5.4	0.10	7874515
Dissolved Vanadium (V)	ug/L	6.2	<0.50	0.50	0.77	0.50	7874515
Dissolved Zinc (Zn)	ug/L	1100	<5.0	5.0	<5.0	5.0	7874515
Dissolved Zirconium (Zr)	ug/L	-	<1.0	1.0	<1.0	1.0	7874515

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Site Location: REGION OF PEEL SNOW STORAGE

Sampler Initials: DP

O.REG 153 PAHS (WATER)

Bureau Veritas ID			SAN903	SAN904			SAN904		
Sampling Date			2022/03/07	2022/03/08			2022/03/08		
Jamping Date			10:00	10:30			10:30		
COC Number			868053-01-01	868053-01-01			868053-01-01		
	UNITS	Criteria	BH6-1/MW	BH9-3/MW	RDL	QC Batch	BH9-3/MW Lab-Dup	RDL	QC Batch
Calculated Parameters									
Methylnaphthalene, 2-(1-)	ug/L	3.2	<0.071	<0.071	0.071	7869690			
Polyaromatic Hydrocarbons									
Acenaphthene	ug/L	4.1	<0.050	<0.050	0.050	7874508	<0.050	0.050	7874508
Acenaphthylene	ug/L	1	<0.050	<0.050	0.050	7874508	<0.050	0.050	7874508
Anthracene	ug/L	2.4	<0.050	<0.050	0.050	7874508	<0.050	0.050	7874508
Benzo(a)anthracene	ug/L	1.0	<0.050	<0.050	0.050	7874508	<0.050	0.050	7874508
Benzo(a)pyrene	ug/L	0.01	<0.0090	<0.0090	0.0090	7874508	<0.0090	0.0090	7874508
Benzo(b/j)fluoranthene	ug/L	0.1	<0.050	<0.050	0.050	7874508	<0.050	0.050	7874508
Benzo(g,h,i)perylene	ug/L	0.2	<0.050	<0.050	0.050	7874508	<0.050	0.050	7874508
Benzo(k)fluoranthene	ug/L	0.1	<0.050	<0.050	0.050	7874508	<0.050	0.050	7874508
Chrysene	ug/L	0.1	<0.050	<0.050	0.050	7874508	<0.050	0.050	7874508
Dibenzo(a,h)anthracene	ug/L	0.2	<0.050	<0.050	0.050	7874508	<0.050	0.050	7874508
Fluoranthene	ug/L	0.41	<0.050	<0.050	0.050	7874508	<0.050	0.050	7874508
Fluorene	ug/L	120	<0.050	<0.050	0.050	7874508	<0.050	0.050	7874508
Indeno(1,2,3-cd)pyrene	ug/L	0.2	<0.050	<0.050	0.050	7874508	<0.050	0.050	7874508
1-Methylnaphthalene	ug/L	3.2	<0.050	<0.050	0.050	7874508	<0.050	0.050	7874508
2-Methylnaphthalene	ug/L	3.2	<0.050	<0.050	0.050	7874508	<0.050	0.050	7874508
Naphthalene	ug/L	11	<0.050	<0.050	0.050	7874508	<0.050	0.050	7874508
Phenanthrene	ug/L	1	<0.030	<0.030	0.030	7874508	<0.030	0.030	7874508
Pyrene	ug/L	4.1	<0.050	<0.050	0.050	7874508	<0.050	0.050	7874508
Surrogate Recovery (%)									
D10-Anthracene	%	-	109	114		7874508	110		7874508
D14-Terphenyl (FS)	%	-	85	86		7874508	90		7874508
D8-Acenaphthylene	%	-	97	103		7874508	99		7874508

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Site Location: REGION OF PEEL SNOW STORAGE

Sampler Initials: DP

O.REG 153 PCBS (WATER)

				1		
Bureau Veritas ID			SAN903	SAN904		
Compline Date			2022/03/07	2022/03/08		
Sampling Date			10:00	10:30		
COC Number			868053-01-01	868053-01-01		
	UNITS	Criteria	BH6-1/MW	BH9-3/MW	RDL	QC Batch
PCBs						
Aroclor 1242	ug/L	-	<0.05	<0.05	0.05	7875734
Aroclor 1248	ug/L	-	<0.05	<0.05	0.05	7875734
Aroclor 1254	ug/L	-	<0.05	<0.05	0.05	7875734
Aroclor 1260	ug/L	-	<0.05	<0.05	0.05	7875734
Total PCB	ug/L	3.0	<0.05	<0.05	0.05	7875734
Surrogate Recovery (%)	•					
Decachlorobiphenyl	%	-	85	70		7875734
	•			•		

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Site Location: REGION OF PEEL SNOW STORAGE

Sampler Initials: DP

O.REG 153 VOCS BY HS & F1-F4 (WATER)

								_	
Bureau Veritas ID			SAN903	SAN904			SAN904		
Sampling Date			2022/03/07	2022/03/08			2022/03/08		
			10:00	10:30			10:30		
COC Number			868053-01-01	868053-01-01			868053-01-01		
	UNITS	Criteria	BH6-1/MW	BH9-3/MW	RDL	QC Batch	BH9-3/MW Lab-Dup	RDL	QC Batch
Calculated Parameters								<u> </u>	
1,3-Dichloropropene (cis+trans)	ug/L	0.5	<0.50	<0.50	0.50	7871624			
Volatile Organics									I.
Acetone (2-Propanone)	ug/L	2700	<10	<10	10	7872138			
Benzene	ug/L	5.0	<0.17	<0.17	0.17	7872138			
Bromodichloromethane	ug/L	16.0	<0.50	<0.50	0.50	7872138			
Bromoform	ug/L	25.0	<1.0	<1.0	1.0	7872138			
Bromomethane	ug/L	0.89	<0.50	<0.50	0.50	7872138			
Carbon Tetrachloride	ug/L	0.79	<0.20	<0.20	0.20	7872138			
Chlorobenzene	ug/L	30	<0.20	<0.20	0.20	7872138			
Chloroform	ug/L	2.4	<0.20	<0.20	0.20	7872138			
Dibromochloromethane	ug/L	25.0	<0.50	<0.50	0.50	7872138			
1,2-Dichlorobenzene	ug/L	3.0	<0.50	<0.50	0.50	7872138			
1,3-Dichlorobenzene	ug/L	59	<0.50	<0.50	0.50	7872138			
1,4-Dichlorobenzene	ug/L	1.0	<0.50	<0.50	0.50	7872138			
Dichlorodifluoromethane (FREON 12)	ug/L	590	<1.0	<1.0	1.0	7872138			
1,1-Dichloroethane	ug/L	5	<0.20	<0.20	0.20	7872138			
1,2-Dichloroethane	ug/L	1.6	<0.50	<0.50	0.50	7872138			
1,1-Dichloroethylene	ug/L	1.6	<0.20	<0.20	0.20	7872138			
cis-1,2-Dichloroethylene	ug/L	1.6	<0.50	<0.50	0.50	7872138			
trans-1,2-Dichloroethylene	ug/L	1.6	<0.50	<0.50	0.50	7872138			
1,2-Dichloropropane	ug/L	5.0	<0.20	<0.20	0.20	7872138			
cis-1,3-Dichloropropene	ug/L	0.5	<0.30	<0.30	0.30	7872138			
trans-1,3-Dichloropropene	ug/L	0.5	<0.40	<0.40	0.40	7872138			
Ethylbenzene	ug/L	2.4	<0.20	<0.20	0.20	7872138			
Ethylene Dibromide	ug/L	0.2	<0.20	<0.20	0.20	7872138			
Hexane	ug/L	51	<1.0	<1.0	1.0	7872138			
Methylene Chloride(Dichloromethane)	ug/L	50	<2.0	<2.0	2.0	7872138			
Methyl Ethyl Ketone (2-Butanone)	ug/L	1800	<10	<10	10	7872138			
Methyl Isobutyl Ketone	ug/L	640	<5.0	<5.0	5.0	7872138			
Methyl t-butyl ether (MTBE)	ug/L	15	<0.50	<0.50	0.50	7872138			

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Site Location: REGION OF PEEL SNOW STORAGE

Sampler Initials: DP

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Bureau Veritas ID			SAN903	SAN904			SAN904		
Sampling Date			2022/03/07	2022/03/08			2022/03/08		
Sampling Date			10:00	10:30			10:30		
COC Number			868053-01-01	868053-01-01			868053-01-01		
	UNITS	Criteria	BH6-1/MW	BH9-3/MW	RDL	QC Batch	BH9-3/MW Lab-Dup	RDL	QC Batch
Styrene	ug/L	5.4	<0.50	<0.50	0.50	7872138			
1,1,1,2-Tetrachloroethane	ug/L	1.1	<0.50	<0.50	0.50	7872138			
1,1,2,2-Tetrachloroethane	ug/L	1.0	<0.50	<0.50	0.50	7872138			
Tetrachloroethylene	ug/L	1.6	<0.20	<0.20	0.20	7872138			
Toluene	ug/L	24	<0.20	<0.20	0.20	7872138			
1,1,1-Trichloroethane	ug/L	200	<0.20	<0.20	0.20	7872138			
1,1,2-Trichloroethane	ug/L	4.7	<0.50	<0.50	0.50	7872138			
Trichloroethylene	ug/L	1.6	<0.20	<0.20	0.20	7872138			
Trichlorofluoromethane (FREON 11)	ug/L	150	<0.50	<0.50	0.50	7872138			
Vinyl Chloride	ug/L	0.5	<0.20	<0.20	0.20	7872138			
p+m-Xylene	ug/L	-	<0.20	<0.20	0.20	7872138			
o-Xylene	ug/L	-	<0.20	<0.20	0.20	7872138			
Total Xylenes	ug/L	300	<0.20	<0.20	0.20	7872138			
F1 (C6-C10)	ug/L	750	<25	<25	25	7872138			
F1 (C6-C10) - BTEX	ug/L	750	<25	<25	25	7872138			
F2-F4 Hydrocarbons									
F2 (C10-C16 Hydrocarbons)	ug/L	150	<100	<100	100	7874536	<100	100	7874536
F3 (C16-C34 Hydrocarbons)	ug/L	500	<200	<200	200	7874536	<200	200	7874536
F4 (C34-C50 Hydrocarbons)	ug/L	500	<200	<200	200	7874536	<200	200	7874536
Reached Baseline at C50	ug/L	-	Yes	Yes		7874536	Yes		7874536
Surrogate Recovery (%)									
o-Terphenyl	%	-	96	87		7874536	95		7874536
4-Bromofluorobenzene	%	-	95	95		7872138	_		
D4-1,2-Dichloroethane	%	-	101	101		7872138			
D8-Toluene	%	-	96	97		7872138			

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Report Date: 2022/03/23

Matrix: Water

AECOM Canada Ltd Client Project #: 60646784

Site Location: REGION OF PEEL SNOW STORAGE

Sampler Initials: DP

TEST SUMMARY

Bureau Veritas ID: SAN903 Collected: 2022/03/07 Sample ID: BH6-1/MW

Shipped:

Received: 2022/03/08

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	7869690	N/A	2022/03/14	Automated Statchk
Dissolved Aluminum (0.2 u, clay free)	ICP/MS	7875256	N/A	2022/03/11	Arefa Dabhad
Biochemical Oxygen Demand (BOD)	DO	7874502	2022/03/10	2022/03/15	Surleen Kaur Romana
1,3-Dichloropropene Sum	CALC	7871624	N/A	2022/03/11	Automated Statchk
Chloride by Automated Colourimetry	KONE	7873885	N/A	2022/03/14	Avneet Kour Sudan
Chromium (VI) in Water	IC	7874547	N/A	2022/03/11	Theodora LI
Free (WAD) Cyanide	SKAL/CN	7875039	N/A	2022/03/10	Aditiben Patel
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	7874536	2022/03/10	2022/03/10	Agnieszka Brzuzy-Snopko
Mercury	CV/AA	7874921	2022/03/10	2022/03/10	Indira HarryPaul
Dissolved Metals by ICPMS	ICP/MS	7874515	N/A	2022/03/10	Nan Raykha
PAH Compounds in Water by GC/MS (SIM)	GC/MS	7874508	2022/03/10	2022/03/11	Mitesh Raj
Polychlorinated Biphenyl in Water	GC/ECD	7875734	2022/03/10	2022/03/11	Farag Mansour
Total Suspended Solids	BAL	7875462	2022/03/10	2022/03/11	Shaneil Hall
Volatile Organic Compounds and F1 PHCs	GC/MSFD	7872138	N/A	2022/03/10	Juan Pangilinan

Bureau Veritas ID: SAN904 Collected: 2022/03/08

Shipped:

Received: 2022/03/08

Sample ID: BH9-3/MW Matrix: Water

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	7869690	N/A	2022/03/14	Automated Statchk
Dissolved Aluminum (0.2 u, clay free)	ICP/MS	7875256	N/A	2022/03/11	Arefa Dabhad
Biochemical Oxygen Demand (BOD)	DO	7874502	2022/03/10	2022/03/15	Surleen Kaur Romana
1,3-Dichloropropene Sum	CALC	7871624	N/A	2022/03/11	Automated Statchk
Chloride by Automated Colourimetry	KONE	7873885	N/A	2022/03/14	Avneet Kour Sudan
Chromium (VI) in Water	IC	7874547	N/A	2022/03/11	Theodora LI
Free (WAD) Cyanide	SKAL/CN	7875039	N/A	2022/03/10	Aditiben Patel
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	7874536	2022/03/10	2022/03/10	Agnieszka Brzuzy-Snopko
Mercury	CV/AA	7874921	2022/03/10	2022/03/10	Indira HarryPaul
Dissolved Metals by ICPMS	ICP/MS	7874515	N/A	2022/03/10	Nan Raykha
PAH Compounds in Water by GC/MS (SIM)	GC/MS	7874508	2022/03/10	2022/03/11	Mitesh Raj
Polychlorinated Biphenyl in Water	GC/ECD	7875734	2022/03/10	2022/03/11	Farag Mansour
Total Suspended Solids	BAL	7875462	2022/03/10	2022/03/11	Shaneil Hall
Volatile Organic Compounds and F1 PHCs	GC/MSFD	7872138	N/A	2022/03/10	Juan Pangilinan

Bureau Veritas ID: SAN904 Dup **Collected:** 2022/03/08 Shipped:

Sample ID: BH9-3/MW Matrix: Water

Received: 2022/03/08

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Dissolved Aluminum (0.2 u, clay free)	ICP/MS	7875256	N/A	2022/03/11	Arefa Dabhad
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	7874536	2022/03/10	2022/03/10	Agnieszka Brzuzy-Snopko
PAH Compounds in Water by GC/MS (SIM)	GC/MS	7874508	2022/03/10	2022/03/11	Mitesh Raj

Site Location: REGION OF PEEL SNOW STORAGE

Sampler Initials: DP

GENERAL COMMENTS

Each te	emperature is the ave	rage of up to thr	ree cooler temperatures taken at receipt
	Package 1	4.7°C	
Revised	Report (2022/03/23)) : Results have b	been split onto separate reports per client request.
Results	relate only to the ite	ems tested.	

Bureau Verltas Job #: C260765 Report Date: 2022/03/23

QUALITY ASSURANCE REPORT

AECOM Canada Ltd Client Project #: 60646784

Site Location: REGION OF PEEL SNOW STORAGE Sampler Initials: DP

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RP		QC Sta	ndard
QC Batch	Parameter	Date	% Recovery		% Recovery	QC Limits	Value	UNITS	Value (%)		% Recovery	
7872138	4-Bromofluorobenzene	2022/03/10	101	70 - 130	100	70 - 130	96	%				
7872138	D4-1,2-Dichloroethane	2022/03/10	99	70 - 130	99	70 - 130	99	%				
7872138	D8-Toluene	2022/03/10	100	70 - 130	100	70 - 130	98	%				
7874508	D10-Anthracene	2022/03/11	92	50 - 130	106	50 - 130	98	%				
7874508	D14-Terphenyl (FS)	2022/03/11	81	50 - 130	95	50 - 130	88	%				
7874508	D8-Acenaphthylene	2022/03/11	84	50 - 130	99	50 - 130	84	%				
7874536	o-Terphenyl	2022/03/10	86	60 - 130	86	60 - 130	82	%				
7875734	Decachlorobiphenyl	2022/03/11	88	60 - 130	69	60 - 130	87	%				
7872138	1,1,1,2-Tetrachloroethane	2022/03/10	95	70 - 130	94	70 - 130	<0.50	ug/L	NC (1)	30		
7872138	1,1,1-Trichloroethane	2022/03/10	99	70 - 130	97	70 - 130	<0.20	ug/L	NC (1)	30		
7872138	1,1,2,2-Tetrachloroethane	2022/03/10	92	70 - 130	87	70 - 130	<0.50	ug/L	NC (1)	30		
7872138	1,1,2-Trichloroethane	2022/03/10	98	70 - 130	94	70 - 130	<0.50	ug/L	NC (1)	30		
7872138	1,1-Dichloroethane	2022/03/10	93	70 - 130	91	70 - 130	<0.20	ug/L	NC (1)	30		
7872138	1,1-Dichloroethylene	2022/03/10	99	70 - 130	96	70 - 130	<0.20	ug/L	NC (1)	30		
7872138	1,2-Dichlorobenzene	2022/03/10	94	70 - 130	91	70 - 130	<0.50	ug/L	NC (1)	30		
7872138	1,2-Dichloroethane	2022/03/10	93	70 - 130	90	70 - 130	<0.50	ug/L	NC (1)	30		
7872138	1,2-Dichloropropane	2022/03/10	92	70 - 130	89	70 - 130	<0.20	ug/L	NC (1)	30		
7872138	1,3-Dichlorobenzene	2022/03/10	95	70 - 130	93	70 - 130	<0.50	ug/L	NC (1)	30		
7872138	1,4-Dichlorobenzene	2022/03/10	111	70 - 130	109	70 - 130	<0.50	ug/L	NC (1)	30		
7872138	Acetone (2-Propanone)	2022/03/10	92	60 - 140	81	60 - 140	<10	ug/L	NC (1)	30		
7872138	Benzene	2022/03/10	91	70 - 130	89	70 - 130	<0.17	ug/L	NC (1)	30		
7872138	Bromodichloromethane	2022/03/10	98	70 - 130	95	70 - 130	<0.50	ug/L	NC (1)	30		
7872138	Bromoform	2022/03/10	92	70 - 130	88	70 - 130	<1.0	ug/L	NC (1)	30		
7872138	Bromomethane	2022/03/10	106	60 - 140	99	60 - 140	<0.50	ug/L	NC (1)	30		
7872138	Carbon Tetrachloride	2022/03/10	98	70 - 130	97	70 - 130	<0.20	ug/L	NC (1)	30		
7872138	Chlorobenzene	2022/03/10	95	70 - 130	93	70 - 130	<0.20	ug/L	NC (1)	30		
7872138	Chloroform	2022/03/10	99	70 - 130	96	70 - 130	<0.20	ug/L	NC (1)	30		
7872138	cis-1,2-Dichloroethylene	2022/03/10	99	70 - 130	96	70 - 130	<0.50	ug/L	NC (1)	30		
7872138	cis-1,3-Dichloropropene	2022/03/10	92	70 - 130	86	70 - 130	<0.30	ug/L	NC (1)	30		
7872138	Dibromochloromethane	2022/03/10	93	70 - 130	90	70 - 130	<0.50	ug/L	NC (1)	30		
7872138	Dichlorodifluoromethane (FREON 12)	2022/03/10	85	60 - 140	73	60 - 140	<1.0	ug/L	NC (1)	30		

Page 13 of 23

AECOM Canada Ltd Client Project #: 60646784

Site Location: REGION OF PEEL SNOW STORAGE

Sampler Initials: DP

								inpici iiiiti				
			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RPI	D	QC Sta	ındard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7872138	Ethylbenzene	2022/03/10	88	70 - 130	87	70 - 130	<0.20	ug/L	NC (1)	30		
7872138	Ethylene Dibromide	2022/03/10	90	70 - 130	86	70 - 130	<0.20	ug/L	NC (1)	30		
7872138	F1 (C6-C10) - BTEX	2022/03/10					<25	ug/L	NC (1)	30		
7872138	F1 (C6-C10)	2022/03/10	87	60 - 140	92	60 - 140	<25	ug/L	NC (1)	30		
7872138	Hexane	2022/03/10	97	70 - 130	94	70 - 130	<1.0	ug/L	NC (1)	30		
7872138	Methyl Ethyl Ketone (2-Butanone)	2022/03/10	89	60 - 140	80	60 - 140	<10	ug/L	NC (1)	30		
7872138	Methyl Isobutyl Ketone	2022/03/10	83	70 - 130	78	70 - 130	<5.0	ug/L	NC (1)	30		
7872138	Methyl t-butyl ether (MTBE)	2022/03/10	85	70 - 130	83	70 - 130	<0.50	ug/L	NC (1)	30		
7872138	Methylene Chloride(Dichloromethane)	2022/03/10	108	70 - 130	105	70 - 130	<2.0	ug/L	NC (1)	30		
7872138	o-Xylene	2022/03/10	87	70 - 130	85	70 - 130	<0.20	ug/L	NC (1)	30		
7872138	p+m-Xylene	2022/03/10	90	70 - 130	88	70 - 130	<0.20	ug/L	NC (1)	30		
7872138	Styrene	2022/03/10	95	70 - 130	93	70 - 130	<0.50	ug/L	NC (1)	30		
7872138	Tetrachloroethylene	2022/03/10	95	70 - 130	93	70 - 130	<0.20	ug/L	NC (1)	30		
7872138	Toluene	2022/03/10	90	70 - 130	88	70 - 130	<0.20	ug/L	NC (1)	30		
7872138	Total Xylenes	2022/03/10					<0.20	ug/L	NC (1)	30		
7872138	trans-1,2-Dichloroethylene	2022/03/10	103	70 - 130	101	70 - 130	<0.50	ug/L	NC (1)	30		
7872138	trans-1,3-Dichloropropene	2022/03/10	95	70 - 130	87	70 - 130	<0.40	ug/L	NC (1)	30		
7872138	Trichloroethylene	2022/03/10	104	70 - 130	103	70 - 130	<0.20	ug/L	0.077 (1)	30		
7872138	Trichlorofluoromethane (FREON 11)	2022/03/10	108	70 - 130	104	70 - 130	<0.50	ug/L	NC (1)	30		
7872138	Vinyl Chloride	2022/03/10	97	70 - 130	93	70 - 130	<0.20	ug/L	NC (1)	30		
7873885	Dissolved Chloride (CI-)	2022/03/14	106	80 - 120	106	80 - 120	<1.0	mg/L	0.43 (1)	20		
7874502	Total BOD	2022/03/15					<2	mg/L	2.8 (1)	30	97	80 - 120
7874508	1-Methylnaphthalene	2022/03/11	80	50 - 130	75	50 - 130	<0.050	ug/L	NC (2)	30		
7874508	2-Methylnaphthalene	2022/03/11	78	50 - 130	73	50 - 130	<0.050	ug/L	NC (2)	30		
7874508	Acenaphthene	2022/03/11	86	50 - 130	82	50 - 130	<0.050	ug/L	NC (2)	30		
7874508	Acenaphthylene	2022/03/11	87	50 - 130	81	50 - 130	<0.050	ug/L	NC (2)	30		
7874508	Anthracene	2022/03/11	94	50 - 130	91	50 - 130	<0.050	ug/L	NC (2)	30		
7874508	Benzo(a)anthracene	2022/03/11	94	50 - 130	90	50 - 130	<0.050	ug/L	NC (2)	30		
7874508	Benzo(a)pyrene	2022/03/11	95	50 - 130	91	50 - 130	<0.0090	ug/L	NC (2)	30		
7874508	Benzo(b/j)fluoranthene	2022/03/11	93	50 - 130	86	50 - 130	<0.050	ug/L	NC (2)	30		
7874508	Benzo(g,h,i)perylene	2022/03/11	98	50 - 130	93	50 - 130	<0.050	ug/L	NC (2)	30		

Page 14 of 23

Bureau Veritas Job #: C260765 Report Date: 2022/03/23

QUALITY ASSURANCE REPORT(CONT'D)

AECOM Canada Ltd Client Project #: 60646784

Site Location: REGION OF PEEL SNOW STORAGE

Sampler Initials: DP

			Matrix Spike SPIKED			DLANK	Method I	Dlaule	RP		QC Standard	
QC Batch	Parameter	Date	% Recovery		% Recovery	QC Limits	Value	UNITS	Value (%)		% Recovery	
					% Recovery						% Recovery	QC LIMITS
7874508	Benzo(k)fluoranthene	2022/03/11	93	50 - 130		50 - 130	<0.050	ug/L	NC (2)	30		
7874508	Chrysene	2022/03/11	97	50 - 130	92	50 - 130	<0.050	ug/L	NC (2)	30		
7874508	Dibenzo(a,h)anthracene	2022/03/11	94	50 - 130	94	50 - 130	<0.050	ug/L	NC (2)	30		
7874508	Fluoranthene	2022/03/11	90	50 - 130	88	50 - 130	<0.050	ug/L	NC (2)	30		
7874508	Fluorene	2022/03/11	96	50 - 130	91	50 - 130	<0.050	ug/L	NC (2)	30		
7874508	Indeno(1,2,3-cd)pyrene	2022/03/11	103	50 - 130	99	50 - 130	<0.050	ug/L	NC (2)	30		
7874508	Naphthalene	2022/03/11	74	50 - 130	70	50 - 130	<0.050	ug/L	NC (2)	30		
7874508	Phenanthrene	2022/03/11	95	50 - 130	88	50 - 130	<0.030	ug/L	NC (2)	30		
7874508	Pyrene	2022/03/11	90	50 - 130	90	50 - 130	<0.050	ug/L	NC (2)	30		
7874515	Dissolved Aluminum (Al)	2022/03/10	122 (3)	80 - 120	102	80 - 120	<4.9	ug/L				
7874515	Dissolved Antimony (Sb)	2022/03/10	100	80 - 120	102	80 - 120	<0.50	ug/L	4.6 (1)	20		
7874515	Dissolved Arsenic (As)	2022/03/10	99	80 - 120	100	80 - 120	<1.0	ug/L	NC (1)	20		
7874515	Dissolved Barium (Ba)	2022/03/10	106	80 - 120	105	80 - 120	<2.0	ug/L	4.0 (1)	20		
7874515	Dissolved Beryllium (Be)	2022/03/10	94	80 - 120	105	80 - 120	<0.40	ug/L	NC (1)	20		
7874515	Dissolved Bismuth (Bi)	2022/03/10	86	80 - 120	99	80 - 120	<1.0	ug/L				
7874515	Dissolved Boron (B)	2022/03/10	NC	80 - 120	100	80 - 120	<10	ug/L	3.2 (1)	20		
7874515	Dissolved Cadmium (Cd)	2022/03/10	95	80 - 120	99	80 - 120	<0.090	ug/L	NC (1)	20		
7874515	Dissolved Calcium (Ca)	2022/03/10	NC	80 - 120	103	80 - 120	<200	ug/L				
7874515	Dissolved Cesium (Cs)	2022/03/10	107	80 - 120	104	80 - 120	<0.20	ug/L				
7874515	Dissolved Chromium (Cr)	2022/03/10	103	80 - 120	96	80 - 120	<5.0	ug/L	NC (1)	20		
7874515	Dissolved Cobalt (Co)	2022/03/10	98	80 - 120	98	80 - 120	<0.50	ug/L	4.5 (1)	20		
7874515	Dissolved Copper (Cu)	2022/03/10	109	80 - 120	101	80 - 120	<0.90	ug/L	11 (1)	20		
7874515	Dissolved Iron (Fe)	2022/03/10	100	80 - 120	98	80 - 120	<100	ug/L				
7874515	Dissolved Lead (Pb)	2022/03/10	92	80 - 120	99	80 - 120	<0.50	ug/L	NC (1)	20		
7874515	Dissolved Lithium (Li)	2022/03/10	96	80 - 120	107	80 - 120	<5.0	ug/L				
7874515	Dissolved Magnesium (Mg)	2022/03/10	NC	80 - 120	97	80 - 120	<50	ug/L				
7874515	Dissolved Manganese (Mn)	2022/03/10	NC	80 - 120	99	80 - 120	<2.0	ug/L				
7874515	Dissolved Molybdenum (Mo)	2022/03/10	116	80 - 120	104	80 - 120	<0.50	ug/L	4.3 (1)	20		
7874515	Dissolved Nickel (Ni)	2022/03/10	94	80 - 120	95	80 - 120	<1.0	ug/L	6.4 (1)	20		
7874515	Dissolved Phosphorus (P)	2022/03/10	121 (3)	80 - 120	111	80 - 120	<100	ug/L	,			
7874515	Dissolved Potassium (K)	2022/03/10	116	80 - 120	104	80 - 120	<200	ug/L				

Page 15 of 23

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Microbiology testing is conducted at 6660 Campobello Rd. Chemistry testing is conducted at 6740 Campobello Rd.

Report Date: 2022/03/23

QUALITY ASSURANCE REPORT(CONT'D)

AECOM Canada Ltd Client Project #: 60646784

Site Location: REGION OF PEEL SNOW STORAGE Sampler Initials: DP

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7874515	Dissolved Rubidium (Rb)	2022/03/10	95	80 - 120	99	80 - 120	<0.20	ug/L				
7874515	Dissolved Selenium (Se)	2022/03/10	101	80 - 120	98	80 - 120	<2.0	ug/L	NC (1)	20		
7874515	Dissolved Silicon (Si)	2022/03/10	NC	80 - 120	99	80 - 120	<50	ug/L				
7874515	Dissolved Silver (Ag)	2022/03/10	80	80 - 120	101	80 - 120	<0.090	ug/L	NC (1)	20		
7874515	Dissolved Sodium (Na)	2022/03/10	NC	80 - 120	97	80 - 120	<100	ug/L				
7874515	Dissolved Strontium (Sr)	2022/03/10	NC	80 - 120	98	80 - 120	<1.0	ug/L				
7874515	Dissolved Tellurium (Te)	2022/03/10	90	80 - 120	101	80 - 120	<1.0	ug/L				
7874515	Dissolved Thallium (TI)	2022/03/10	92	80 - 120	101	80 - 120	<0.050	ug/L	8.4 (1)	20		
7874515	Dissolved Thorium (Th)	2022/03/10	84	80 - 120	95	80 - 120	<2.0	ug/L				
7874515	Dissolved Tin (Sn)	2022/03/10	100	80 - 120	102	80 - 120	<1.0	ug/L				
7874515	Dissolved Titanium (Ti)	2022/03/10	105	80 - 120	99	80 - 120	<5.0	ug/L				
7874515	Dissolved Tungsten (W)	2022/03/10	104	80 - 120	103	80 - 120	<1.0	ug/L				
7874515	Dissolved Uranium (U)	2022/03/10	82	80 - 120	97	80 - 120	<0.10	ug/L	8.3 (1)	20		
7874515	Dissolved Vanadium (V)	2022/03/10	108	80 - 120	99	80 - 120	<0.50	ug/L	14 (1)	20		
7874515	Dissolved Zinc (Zn)	2022/03/10	91	80 - 120	97	80 - 120	<5.0	ug/L	3.7 (1)	20		
7874515	Dissolved Zirconium (Zr)	2022/03/10	116	80 - 120	104	80 - 120	<1.0	ug/L				
7874536	F2 (C10-C16 Hydrocarbons)	2022/03/10	90	60 - 130	90	60 - 130	<100	ug/L	NC (2)	30		
7874536	F3 (C16-C34 Hydrocarbons)	2022/03/10	91	60 - 130	92	60 - 130	<200	ug/L	NC (2)	30		
7874536	F4 (C34-C50 Hydrocarbons)	2022/03/10	92	60 - 130	93	60 - 130	<200	ug/L	NC (2)	30		
7874547	Chromium (VI)	2022/03/11	100	80 - 120	102	80 - 120	<0.50	ug/L	NC (1)	20		
7874921	Mercury (Hg)	2022/03/10	91	75 - 12 5	92	80 - 120	<0.10	ug/L	NC (1)	20		
7875039	WAD Cyanide (Free)	2022/03/10	90	80 - 120	96	80 - 120	<1	ug/L	NC (1)	20		
7875256	Dissolved (0.2u) Aluminum (Al)	2022/03/11	101 (4)	80 - 120	100	80 - 120	<5	ug/L	1.9 (5)	20		
7875462	Total Suspended Solids	2022/03/11					<10	mg/L	5.4 (1)	25	96	85 - 115
7875734	Aroclor 1242	2022/03/11					<0.05	ug/L				
7875734	Aroclor 1248	2022/03/11					<0.05	ug/L				
7875734	Aroclor 1254	2022/03/11					<0.05	ug/L				
7875734	Aroclor 1260	2022/03/11	93	60 - 130	92	60 - 130	<0.05	ug/L				

AECOM Canada Ltd Client Project #: 60646784

Site Location: REGION OF PEEL SNOW STORAGE

Sampler Initials: DP

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPI	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7875734	Total PCB	2022/03/11	93	60 - 130	92	60 - 130	<0.05	ug/L	NC (1)	40		

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

- (1) Duplicate Parent ID
- (2) Duplicate Parent ID [SAN904-09]
- (3) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.
- (4) Matrix Spike Parent ID [SAN904-02]
- (5) Duplicate Parent ID [SAN904-02]

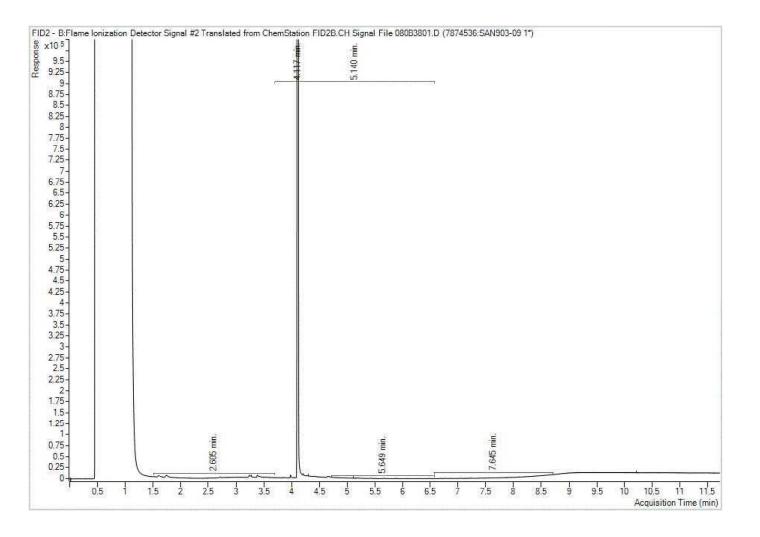
Site Location: REGION OF PEEL SNOW STORAGE

Sampler Initials: DP

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

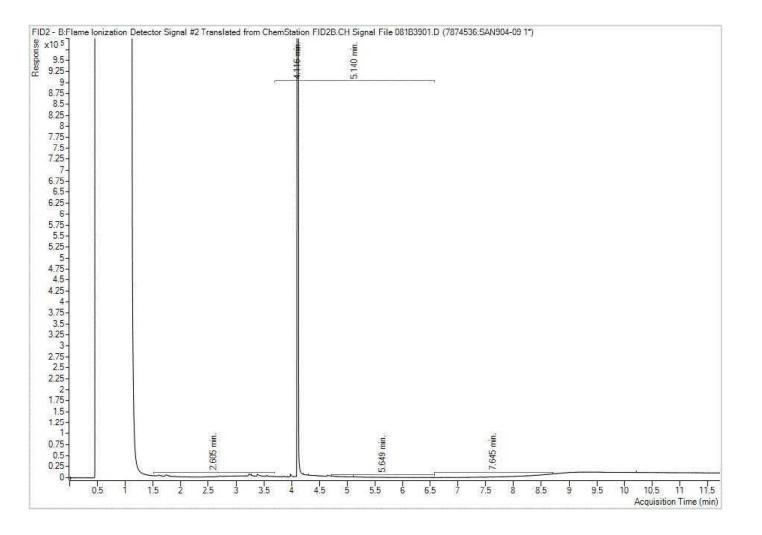

VERTIAS		Bureau Veritas 6740 Campobello Road, N	Mississauga, Ontar	io Canada L5N 2	L8 Tel:(905) 817-5			905) 817-57	777 www.t	ovna com						CHAI		Page of 08-Mar-22 12:43
		OICE TO:		_	1	-	RT TO:						0.1000000	TINFOR	MATION:		Mar	rijane Cruz
npany Name:	#23482 AECOM			Compan			of the	0 1	,		Quotation	#	C203	75				0rder#:
ntion.	Accounts Payable			Attention			hwonish				P.O. #:		60646	704				C260765
Iress:	Kitchener ON N2	rossing Rd Suite 290		Address		Unmerce y	tuly orvo	ties 9	WOW		Project:				PIN	now Storage		1053
	(519) 650-5313		9) 650-3422 4	-		340-1617		17	_		Project Na	ime:			Site 9	10W Yorage	KTN	
nil:	CANSSC.E-billing		3) 000-0422 4	Tel. Email:		olden@aecor	n.com : los	maix la F	an lung	Could t	Site #:	0.0	Dha		Per 10h		1 1000	Cwococo-o1-o1 Marijane Cruz
		WATER OR WATER	INTENDED E		THE RESERVE AND PERSONS ASSESSMENT	NI STATE OF THE PERSON NAMED IN COLUMN	1	1000					(PLEASE I				-	Turnaround Time (TAT) Required:
MIOL ILL	SUBMITTED ON TI	HE BUREAU VERITAS	DRINKING W	ATER CHAIN	OF CUSTODY							1-0		0			DE CASE	Please provide advance notice for rush projects
Regulat	ion 153 (2011)	0	ther Regulations		Special I	nstructions	circle):	77			Рка	and (BOD)		, free				Standard) TAT:
	Res/Park Medium	VFine CCME	Sanitary Sewer	Bylaw		15 III 1 I	3 3	7.			spice) pus		clay				lied if Rush TAT is not specified): AT = 5-7 Working days for most tests
	Ind/Comm Coarse		Storm Sewer By	law	80111		d Filtered (please of Metals / Hg / Cr.W	HS & F1-F4	1	ster.)	norgi	Dem	-8	(0.2 u	8			: Standard TAT for certain tests such as BOD and Dioxins/Furans an
Table 3	Agri/Other For RS		funicipality				D H	s by		8	95 90	Oxygen	Sol	Ę	ensi		days - conta	ict your Project Manager for details.
1 able			Reg 406 Table	_	1		ltere ltere	9	PAHS	PCB	Meta	0×ò	pepu	imi	pre			fic Rush TAT (if applies to entire submission)
		Other			100		Field Filtered (please,	53	Reg 153 PAHs	53	153	nical	Suspe	ed A	Con		Date Require Rush Confir	rmation Number;
1	Include Criteria	on Certificate of Anal Sample (Location) Ide			Time Sampled	Matrix	- E	O.Reg 153 VOCs by	Reg	O.Reg 153 PCBs (Wat	O.Reg (Wtr)	oche	otal	ssolv	d y		# of Bottles	(call lab for #)
Samp	le Barcode Label	Sample (Location) Ide	entification	Date Sampled	Time Sampled	Matrix		0	0	0	50	8	4	ā	ž.	-		Comments
		RH6-1/mw	M	rd 7.200	10.00	LW	y	1	V	V	1	V	1/	1/	1		18	Limited bromewater & filled out
		GUD LIMW	1-30	rus Tywiz	10.00	COVV	7							-	-	_		both set to minimal requerive as suggested by manigane me.
		Bh9-3/mw	NW	11h 8,2002	1030	GW	4	V	V	V	10	V	V	1	1		18	as magazz as would have this.
					- 10		Sil.			_							1 0	
			16															
							1200			_								
						1	70											
-									_	-			-					
							313											
				_	+	-	- 100	-	-	-					\vdash	_	-	
							1											
							400											
							Bro of											
										_								
	RELINQUISHED BY: (S	i	Date: (YY/II	AM/DD)	Time	BECEIVED	BY: (Signature/	Print\		Date: (YY/	MM/DD)		ime	# ipre	used and		1.4	
1	O	Signature/Print)	22 /os/			. 1	The second second second		_	022/0	1		2:43		used and submitted	Time Sensitive		ratory Use Only NPX 2021 Autora (VC) on Recoil Custody Seal Yes
hami	h verilen de	my	LL 1031	v 5 1	30	Cul (VJK)	AL PATE		12	2210	3108	13	45	-		oursalive		Present
LESS OTHE	RWISE AGREED TO IN W	RITING, WORK SUBMITTED	ON THIS CHAIN O	DE CUSTODY IS	UBJECT TO BURE	AU VERITAS'S STA	NDARD TERMS	AND CONDI	TIONS, SI	IGNING OF	THIS CHAIN	OF CUSTO	ODY DOCUM	MENTIS	- A		S	SISIY Intact
NOWLEDGE	MENT AND ACCEPTANCE	OF OUR TERMS WHICH AF	RE AVAILABLE FO	R VIEWING ATW	WW.BVNA.COM/TEI	RMS-AND-CONDITI	IONS.								SAMPLES	MUST BE KERT CO	01/6100	White: Bureau Veritas Yellow: FROM TIME OF SAMPLING
THE RES	ONSIBILITY OF THE REI	LINQUISHER TO ENSURE T	HE ACCURACY OF	THE CHAIN OF	CUSTODY RECORD	AN INCOMPLETE	CHAIN OF CUST	ODY MAY F	RESULT IN	ANALYTIC	AL TAT DE	LAYS.			AND DESCRIPTION OF THE PERSON	UNTIL DELIVE	RY TO BURE	ALLVERITAS

Bureau Veritas Job #: C260765 Report Date: 2022/03/23 Bureau Veritas Sample: SAN903 AECOM Canada Ltd Client Project #: 60646784

Project name: REGION OF PEEL SNOW STORAGE

Client ID: BH6-1/MW

Petroleum Hydrocarbons F2-F4 in Water Chromatogram



Bureau Veritas Job #: C260765 Report Date: 2022/03/23 Bureau Veritas Sample: SAN904 AECOM Canada Ltd Client Project #: 60646784

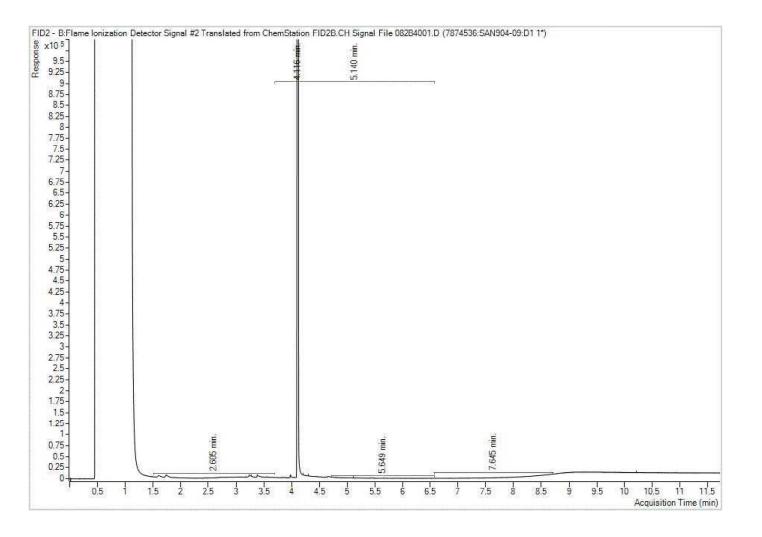
Project name: REGION OF PEEL SNOW STORAGE

Client ID: BH9-3/MW

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Bureau Veritas Job #: C260765 Report Date: 2022/03/23

Bureau Veritas Sample: SAN904 Lab-


Dup

AECOM Canada Ltd Client Project #: 60646784

Project name: REGION OF PEEL SNOW STORAGE

Client ID: BH9-3/MW

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

applicable regulatory guidelines.

AECOM Canada Ltd Client Project #: 60646784

Site Location: REGION OF PEEL SNOW STORAGE

Sampler Initials: DP

Exceedance Summary Table – Reg153/04 T2-GW-C Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
No Exceedances						
The exceedance summary table	is for information purp	oses only and should not	be considered a comprehe	nsive listing o	statement of c	onformance to

Your Project #: 60646784

Site#: SITE 5

Site Location: PEEL REGION SNOW STORGAE

Your C.O.C. #: 877485-01-01

Attention: Brian Holden

AECOM Canada Ltd 50 Sportsworld Crossing Rd Suite 290 Kitchener, ON Canada N2P 0A4

Report Date: 2022/05/16

Report #: R7127331 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C2C4120 Received: 2022/05/09, 13:32

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Methylnaphthalene Sum	1	N/A	2022/05/12	CAM SOP-00301	EPA 8270D m
1,3-Dichloropropene Sum	1	N/A	2022/05/12		EPA 8260C m
Chloride by Automated Colourimetry	1	N/A	2022/05/11	CAM SOP-00463	SM 23 4500-Cl E m
Chromium (VI) in Water	1	N/A	2022/05/12	CAM SOP-00436	EPA 7199 m
Free (WAD) Cyanide	1	N/A	2022/05/12	CAM SOP-00457	OMOE E3015 m
Petroleum Hydrocarbons F2-F4 in Water (1)	1	2022/05/11	2022/05/11	CAM SOP-00316	CCME PHC-CWS m
Mercury	1	2022/05/11	2022/05/11	CAM SOP-00453	EPA 7470A m
Dissolved Metals by ICPMS	1	N/A	2022/05/12	CAM SOP-00447	EPA 6020B m
PAH Compounds in Water by GC/MS (SIM)	1	2022/05/11	2022/05/12	CAM SOP-00318	EPA 8270D m
Polychlorinated Biphenyl in Water	1	2022/05/10	2022/05/11	CAM SOP-00309	EPA 8082A m
Volatile Organic Compounds and F1 PHCs	1	N/A	2022/05/11	CAM SOP-00230	EPA 8260C m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA. Where applicable, the analytical testing herein was performed in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. All methodologies comply with this document and are validated for use in the laboratory. The methods and techniques employed in this analysis conform to the performance criteria (detection limits, accuracy and precision) as outlined in the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. Bureau Veritas is accredited by SCC (Lab ID 97) for all specific parameters as required by Ontario Regulation 153/04.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts that result from the information provided by the customer or their agent.

Your Project #: 60646784

Site#: SITE 5

Site Location: PEEL REGION SNOW STORGAE

Your C.O.C. #: 877485-01-01

Attention: Brian Holden

AECOM Canada Ltd 50 Sportsworld Crossing Rd Suite 290 Kitchener, ON Canada N2P 0A4

Report Date: 2022/05/16

Report #: R7127331 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C2C4120 Received: 2022/05/09, 13:32

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

 ${\it Please direct all questions regarding this Certificate of Analysis to your Project Manager.}$

Marijane Cruz, Senior Project Manager Email: Marijane.Cruz@bureauveritas.com Phone# (905)817-5756

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Site Location: PEEL REGION SNOW STORGAE

Sampler Initials: DP

O.REG 153 METALS & INORGANICS PKG (WTR)

COC Number Inorganics WAD Cyanide (Free)	UNITS	Criteria	2022/05/09 10:00 877485-01-01			2022/05/09 10:00		
COC Number Inorganics WAD Cyanide (Free)		Criteria	877485-01-01					
Inorganics WAD Cyanide (Free)		Criteria						
WAD Cyanide (Free)		Criteria	DUE 2/8414/			877485-01-01		
WAD Cyanide (Free)			BH5-3/MW	RDL	QC Batch	BH5-3/MW Lab-Dup	RDL	QC Batch
	ug/L	66	<1	1	7991656	<1	1	7991656
Dissolved Chloride (Cl-)	mg/L	790	1.1	1.0	7987615			
Metals								
Chromium (VI)	ug/L	25	<0.50	0.50	7983524			
Mercury (Hg)	ug/L	0.29	<0.10	0.10	7988165			
Dissolved Antimony (Sb)	ug/L	6.0	<0.50	0.50	7989687			
Dissolved Arsenic (As)	ug/L	25	2.9	1.0	7989687			
Dissolved Barium (Ba)	ug/L	1000	57	2.0	7989687			
Dissolved Beryllium (Be)	ug/L	4.0	<0.40	0.40	7989687			
Dissolved Boron (B)	ug/L	5000	72	10	7989687			
Dissolved Cadmium (Cd)	ug/L	2.7	<0.090	0.090	7989687			
Dissolved Chromium (Cr)	ug/L	50	<5.0	5.0	7989687			
Dissolved Cobalt (Co)	ug/L	3.8	1.1	0.50	7989687			
Dissolved Copper (Cu)	ug/L	87	0.92	0.90	7989687			
Dissolved Lead (Pb)	ug/L	10	<0.50	0.50	7989687			
Dissolved Molybdenum (Mo)	ug/L	70	7.2	0.50	7989687			
Dissolved Nickel (Ni)	ug/L	100	2.0	1.0	7989687			
Dissolved Selenium (Se)	ug/L	10	<2.0	2.0	7989687			
Dissolved Silver (Ag)	ug/L	1.5	<0.090	0.090	7989687			
Dissolved Sodium (Na)	ug/L	490000	26000	100	7989687			
Dissolved Thallium (TI)	ug/L	2.0	<0.050	0.050	7989687			
Dissolved Uranium (U)	ug/L	20	0.70	0.10	7989687			
Dissolved Vanadium (V)	ug/L	6.2	1.4	0.50	7989687			
Dissolved Zinc (Zn)	ug/L	1100	<5.0	5.0	7989687			

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Site Location: PEEL REGION SNOW STORGAE

Sampler Initials: DP

O.REG 153 PAHS (WATER)

Bureau Veritas ID			SOL754		
Sampling Date			2022/05/09		
Sampling Date			10:00		
COC Number			877485-01-01		
	UNITS	Criteria	BH5-3/MW	RDL	QC Batch
Calculated Parameters					
Methylnaphthalene, 2-(1-)	ug/L	3.2	<0.071	0.071	7983964
Polyaromatic Hydrocarbons					
Acenaphthene	ug/L	4.1	<0.050	0.050	7989423
Acenaphthylene	ug/L	1	<0.050	0.050	7989423
Anthracene	ug/L	2.4	<0.050	0.050	7989423
Benzo(a)anthracene	ug/L	1.0	<0.050	0.050	7989423
Benzo(a)pyrene	ug/L	0.01	<0.0090	0.0090	7989423
Benzo(b/j)fluoranthene	ug/L	0.1	<0.050	0.050	7989423
Benzo(g,h,i)perylene	ug/L	0.2	<0.050	0.050	7989423
Benzo(k)fluoranthene	ug/L	0.1	<0.050	0.050	7989423
Chrysene	ug/L	0.1	<0.050	0.050	7989423
Dibenzo(a,h)anthracene	ug/L	0.2	<0.050	0.050	7989423
Fluoranthene	ug/L	0.41	<0.050	0.050	7989423
Fluorene	ug/L	120	<0.050	0.050	7989423
Indeno(1,2,3-cd)pyrene	ug/L	0.2	<0.050	0.050	7989423
1-Methylnaphthalene	ug/L	3.2	<0.050	0.050	7989423
2-Methylnaphthalene	ug/L	3.2	<0.050	0.050	7989423
Naphthalene	ug/L	11	<0.050	0.050	7989423
Phenanthrene	ug/L	1	<0.030	0.030	7989423
Pyrene	ug/L	4.1	<0.050	0.050	7989423
Surrogate Recovery (%)					
D10-Anthracene	%	-	95		7989423
D14-Terphenyl (FS)	%	-	84		7989423
D8-Acenaphthylene	%	-	89		7989423

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water

Condition

Site Location: PEEL REGION SNOW STORGAE

Sampler Initials: DP

O.REG 153 PCBS (WATER)

Bureau Veritas ID			SOL754		
Sampling Date			2022/05/09		
Sampling Date			10:00		
COC Number			877485-01-01		
	UNITS	Criteria	BH5-3/MW	RDL	QC Batch
PCBs					
Aroclor 1242	ug/L	-	<0.05	0.05	7986811
Aroclor 1248	ug/L	-	<0.05	0.05	7986811
Aroclor 1254	ug/L	-	<0.05	0.05	7986811
Aroclor 1260	ug/L	-	<0.05	0.05	7986811
Total PCB	ug/L	3.0	<0.05	0.05	7986811
Surrogate Recovery (%)					
Decachlorobiphenyl	%	-	79		7986811

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground

Water Condition

Site Location: PEEL REGION SNOW STORGAE

Sampler Initials: DP

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Bureau Veritas ID			SOL754		
Sampling Date			2022/05/09		
			10:00		
COC Number			877485-01-01		
	UNITS	Criteria	BH5-3/MW	RDL	QC Batch
Calculated Parameters					
1,3-Dichloropropene (cis+trans)	ug/L	0.5	<0.50	0.50	7983481
Volatile Organics				•	
Acetone (2-Propanone)	ug/L	2700	<10	10	7986264
Benzene	ug/L	5.0	<0.17	0.17	7986264
Bromodichloromethane	ug/L	16.0	<0.50	0.50	7986264
Bromoform	ug/L	25.0	<1.0	1.0	7986264
Bromomethane	ug/L	0.89	<0.50	0.50	7986264
Carbon Tetrachloride	ug/L	0.79	<0.20	0.20	7986264
Chlorobenzene	ug/L	30	<0.20	0.20	7986264
Chloroform	ug/L	2.4	<0.20	0.20	7986264
Dibromochloromethane	ug/L	25.0	<0.50	0.50	7986264
1,2-Dichlorobenzene	ug/L	3.0	<0.50	0.50	7986264
1,3-Dichlorobenzene	ug/L	59	<0.50	0.50	7986264
1,4-Dichlorobenzene	ug/L	1.0	<0.50	0.50	7986264
Dichlorodifluoromethane (FREON 12)	ug/L	590	<1.0	1.0	7986264
1,1-Dichloroethane	ug/L	5	<0.20	0.20	7986264
1,2-Dichloroethane	ug/L	1.6	<0.50	0.50	7986264
1,1-Dichloroethylene	ug/L	1.6	<0.20	0.20	7986264
cis-1,2-Dichloroethylene	ug/L	1.6	<0.50	0.50	7986264
trans-1,2-Dichloroethylene	ug/L	1.6	<0.50	0.50	7986264
1,2-Dichloropropane	ug/L	5.0	<0.20	0.20	7986264
cis-1,3-Dichloropropene	ug/L	0.5	<0.30	0.30	7986264
trans-1,3-Dichloropropene	ug/L	0.5	<0.40	0.40	7986264
Ethylbenzene	ug/L	2.4	<0.20	0.20	7986264
Ethylene Dibromide	ug/L	0.2	<0.20	0.20	7986264
Hexane	ug/L	51	<1.0	1.0	7986264
Methylene Chloride(Dichloromethane)	ug/L	50	<2.0	2.0	7986264
Methyl Ethyl Ketone (2-Butanone)	ug/L	1800	<10	10	7986264
Methyl Isobutyl Ketone	ug/L	640	<5.0	5.0	7986264
Methyl t-butyl ether (MTBE)	ug/L	15	<0.50	0.50	7986264
RDI - Reportable Detection Limit					

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Site Location: PEEL REGION SNOW STORGAE

Sampler Initials: DP

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Bureau Veritas ID			SOL754		
Sampling Date			2022/05/09		
Jamping Date			10:00		
COC Number			877485-01-01		
	UNITS	Criteria	BH5-3/MW	RDL	QC Batch
Styrene	ug/L	5.4	<0.50	0.50	7986264
1,1,1,2-Tetrachloroethane	ug/L	1.1	<0.50	0.50	7986264
1,1,2,2-Tetrachloroethane	ug/L	1.0	<0.50	0.50	7986264
Tetrachloroethylene	ug/L	1.6	<0.20	0.20	7986264
Toluene	ug/L	24	<0.20	0.20	7986264
1,1,1-Trichloroethane	ug/L	200	<0.20	0.20	7986264
1,1,2-Trichloroethane	ug/L	4.7	<0.50	0.50	7986264
Trichloroethylene	ug/L	1.6	<0.20	0.20	7986264
Trichlorofluoromethane (FREON 11)	ug/L	150	<0.50	0.50	7986264
Vinyl Chloride	ug/L	0.5	<0.20	0.20	7986264
p+m-Xylene	ug/L	-	<0.20	0.20	7986264
o-Xylene	ug/L	-	<0.20	0.20	7986264
Total Xylenes	ug/L	300	<0.20	0.20	7986264
F1 (C6-C10)	ug/L	750	<25	25	7986264
F1 (C6-C10) - BTEX	ug/L	750	<25	25	7986264
F2-F4 Hydrocarbons	-	·			
F2 (C10-C16 Hydrocarbons)	ug/L	150	<100	100	7989444
F3 (C16-C34 Hydrocarbons)	ug/L	500	<200	200	7989444
F4 (C34-C50 Hydrocarbons)	ug/L	500	<200	200	7989444
Reached Baseline at C50	ug/L	-	Yes		7989444
Surrogate Recovery (%)					
o-Terphenyl	%	-	98		7989444
4-Bromofluorobenzene	%	-	93		7986264
D4-1,2-Dichloroethane	%	-	104		7986264
D8-Toluene	%	-	98		7986264

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Bureau Veritas Job #: C2C4120 Report Date: 2022/05/16 AECOM Canada Ltd Client Project #: 60646784

Site Location: PEEL REGION SNOW STORGAE

Sampler Initials: DP

TEST SUMMARY

Bureau Veritas ID: SOL754

Sample ID: BH5-3/MW Matrix: Water

Collected:

2022/05/09

Shipped:

Received: 2022/05/09

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	7983964	N/A	2022/05/12	Automated Statchk
1,3-Dichloropropene Sum	CALC	7983481	N/A	2022/05/12	Automated Statchk
Chloride by Automated Colourimetry	KONE	7987615	N/A	2022/05/11	Alina Dobreanu
Chromium (VI) in Water	IC	7983524	N/A	2022/05/12	Theodora LI
Free (WAD) Cyanide	SKAL/CN	7991656	N/A	2022/05/12	Nimarta Singh
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	7989444	2022/05/11	2022/05/11	Anna Stuglik-Rolland
Mercury	CV/AA	7988165	2022/05/11	2022/05/11	Jaswinder Kaur
Dissolved Metals by ICPMS	ICP/MS	7989687	N/A	2022/05/12	Arefa Dabhad
PAH Compounds in Water by GC/MS (SIM)	GC/MS	7989423	2022/05/11	2022/05/12	Jonghan Yoon
Polychlorinated Biphenyl in Water	GC/ECD	7986811	2022/05/10	2022/05/11	Farag Mansour
Volatile Organic Compounds and F1 PHCs	GC/MSFD	7986264	N/A	2022/05/11	Xueming Jiang

Bureau Veritas ID: SOL754 Dup

Sample ID: BH5-3/MW

Matrix: Water

Collected: 2022/05/09 **Shipped:**

Received: 2022/05/09

Test DescriptionInstrumentationBatchExtractedDate AnalyzedAnalystFree (WAD) CyanideSKAL/CN7991656N/A2022/05/12Nimarta Singh

Site Location: PEEL REGION SNOW STORGAE

Sampler Initials: DP

GENERAL COMMENTS

Each te	mperature is the	average of up to	three cooler temperatures taken at receipt
]	Package 1	7.0°C	
Revised	Report (2022/05,	/16) : Results ha	ve been split onto separate reports per client request.
Cooler	custody seal prese	ent and intact.	
Results	relate only to the	e items tested.	

QUALITY ASSURANCE REPORT

AECOM Canada Ltd Client Project #: 60646784

Site Location: PEEL REGION SNOW STORGAE

Sampler Initials: DP

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
7986264	4-Bromofluorobenzene	2022/05/11	96	70 - 130	96	70 - 130	93	%		
7986264	D4-1,2-Dichloroethane	2022/05/11	103	70 - 130	101	70 - 130	102	%		
7986264	D8-Toluene	2022/05/11	102	70 - 130	103	70 - 130	99	%		
7986811	Decachlorobiphenyl	2022/05/11	76	60 - 130	68	60 - 130	78	%		
7989423	D10-Anthracene	2022/05/12	104	50 - 130	99	50 - 130	114	%		
7989423	D14-Terphenyl (FS)	2022/05/12	89	50 - 130	94	50 - 130	91	%		
7989423	D8-Acenaphthylene	2022/05/12	95	50 - 130	88	50 - 130	90	%		
7989444	o-Terphenyl	2022/05/11	96	60 - 130	95	60 - 130	95	%		
7983524	Chromium (VI)	2022/05/12	99	80 - 120	103	80 - 120	<0.50	ug/L	NC (1)	20
7986264	1,1,1,2-Tetrachloroethane	2022/05/11	98	70 - 130	95	70 - 130	<0.50	ug/L	NC (1)	30
7986264	1,1,1-Trichloroethane	2022/05/11	100	70 - 130	97	70 - 130	<0.20	ug/L	NC (1)	30
7986264	1,1,2,2-Tetrachloroethane	2022/05/11	98	70 - 130	93	70 - 130	<0.50	ug/L	NC (1)	30
7986264	1,1,2-Trichloroethane	2022/05/11	107	70 - 130	101	70 - 130	<0.50	ug/L	NC (1)	30
7986264	1,1-Dichloroethane	2022/05/11	97	70 - 130	93	70 - 130	<0.20	ug/L	NC (1)	30
7986264	1,1-Dichloroethylene	2022/05/11	102	70 - 130	99	70 - 130	<0.20	ug/L	NC (1)	30
7986264	1,2-Dichlorobenzene	2022/05/11	99	70 - 130	96	70 - 130	<0.50	ug/L	NC (1)	30
7986264	1,2-Dichloroethane	2022/05/11	97	70 - 130	92	70 - 130	<0.50	ug/L	NC (1)	30
7986264	1,2-Dichloropropane	2022/05/11	97	70 - 130	92	70 - 130	<0.20	ug/L	NC (1)	30
7986264	1,3-Dichlorobenzene	2022/05/11	99	70 - 130	96	70 - 130	<0.50	ug/L	NC (1)	30
7986264	1,4-Dichlorobenzene	2022/05/11	115	70 - 130	112	70 - 130	<0.50	ug/L	NC (1)	30
7986264	Acetone (2-Propanone)	2022/05/11	100	60 - 140	94	60 - 140	<10	ug/L	NC (1)	30
7986264	Benzene	2022/05/11	93	70 - 130	90	70 - 130	<0.17	ug/L	NC (1)	30
7986264	Bromodichloromethane	2022/05/11	100	70 - 130	95	70 - 130	<0.50	ug/L	NC (1)	30
7986264	Bromoform	2022/05/11	92	70 - 130	87	70 - 130	<1.0	ug/L	NC (1)	30
7986264	Bromomethane	2022/05/11	103	60 - 140	95	60 - 140	<0.50	ug/L	NC (1)	30
7986264	Carbon Tetrachloride	2022/05/11	97	70 - 130	95	70 - 130	<0.20	ug/L	NC (1)	30
7986264	Chlorobenzene	2022/05/11	100	70 - 130	96	70 - 130	<0.20	ug/L	NC (1)	30
7986264	Chloroform	2022/05/11	99	70 - 130	95	70 - 130	<0.20	ug/L	NC (1)	30
7986264	cis-1,2-Dichloroethylene	2022/05/11	98	70 - 130	94	70 - 130	<0.50	ug/L	NC (1)	30
7986264	cis-1,3-Dichloropropene	2022/05/11	90	70 - 130	81	70 - 130	<0.30	ug/L	NC (1)	30
7986264	Dibromochloromethane	2022/05/11	96	70 - 130	91	70 - 130	<0.50	ug/L	NC (1)	30

QUALITY ASSURANCE REPORT(CONT'D)

AECOM Canada Ltd Client Project #: 60646784

Site Location: PEEL REGION SNOW STORGAE

Sampler Initials: DP

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
7986264	Dichlorodifluoromethane (FREON 12)	2022/05/11	88	60 - 140	88	60 - 140	<1.0	ug/L	NC (1)	30
7986264	Ethylbenzene	2022/05/11	94	70 - 130	91	70 - 130	<0.20	ug/L	NC (1)	30
7986264	Ethylene Dibromide	2022/05/11	97	70 - 130	91	70 - 130	<0.20	ug/L	NC (1)	30
7986264	F1 (C6-C10) - BTEX	2022/05/11					<25	ug/L	NC (1)	30
7986264	F1 (C6-C10)	2022/05/11	93	60 - 140	95	60 - 140	<25	ug/L	NC (1)	30
7986264	Hexane	2022/05/11	104	70 - 130	101	70 - 130	<1.0	ug/L	NC (1)	30
7986264	Methyl Ethyl Ketone (2-Butanone)	2022/05/11	100	60 - 140	95	60 - 140	<10	ug/L	NC (1)	30
7986264	Methyl Isobutyl Ketone	2022/05/11	87	70 - 130	83	70 - 130	<5.0	ug/L	NC (1)	30
7986264	Methyl t-butyl ether (MTBE)	2022/05/11	87	70 - 130	84	70 - 130	<0.50	ug/L	NC (1)	30
7986264	Methylene Chloride(Dichloromethane)	2022/05/11	105	70 - 130	101	70 - 130	<2.0	ug/L	NC (1)	30
7986264	o-Xylene	2022/05/11	92	70 - 130	90	70 - 130	<0.20	ug/L	NC (1)	30
7986264	p+m-Xylene	2022/05/11	96	70 - 130	94	70 - 130	<0.20	ug/L	NC (1)	30
7986264	Styrene	2022/05/11	97	70 - 130	94	70 - 130	<0.50	ug/L	NC (1)	30
7986264	Tetrachloroethylene	2022/05/11	98	70 - 130	95	70 - 130	<0.20	ug/L	NC (1)	30
7986264	Toluene	2022/05/11	92	70 - 130	90	70 - 130	<0.20	ug/L	NC (1)	30
7986264	Total Xylenes	2022/05/11					<0.20	ug/L	NC (1)	30
7986264	trans-1,2-Dichloroethylene	2022/05/11	102	70 - 130	98	70 - 130	<0.50	ug/L	NC (1)	30
7986264	trans-1,3-Dichloropropene	2022/05/11	102	70 - 130	88	70 - 130	<0.40	ug/L	NC (1)	30
7986264	Trichloroethylene	2022/05/11	102	70 - 130	99	70 - 130	<0.20	ug/L	NC (1)	30
7986264	Trichlorofluoromethane (FREON 11)	2022/05/11	103	70 - 130	101	70 - 130	<0.50	ug/L	NC (1)	30
7986264	Vinyl Chloride	2022/05/11	98	70 - 130	96	70 - 130	<0.20	ug/L	NC (1)	30
7986811	Aroclor 1242	2022/05/11					<0.05	ug/L		
7986811	Aroclor 1248	2022/05/11					<0.05	ug/L		
7986811	Aroclor 1254	2022/05/11					<0.05	ug/L		
7986811	Aroclor 1260	2022/05/11	88	60 - 130	73	60 - 130	<0.05	ug/L		
7986811	Total PCB	2022/05/11	88	60 - 130	73	60 - 130	<0.05	ug/L	NC (1)	40
7987615	Dissolved Chloride (Cl-)	2022/05/11	115	80 - 120	104	80 - 120	<1.0	mg/L	1.1 (1)	20
7988165	Mercury (Hg)	2022/05/11	93	75 - 125	95	80 - 120	<0.10	ug/L	NC (1)	20
7989423	1-Methylnaphthalene	2022/05/12	93	50 - 130	83	50 - 130	<0.050	ug/L	NC (1)	30
7989423	2-Methylnaphthalene	2022/05/12	99	50 - 130	87	50 - 130	<0.050	ug/L	NC (1)	30
7989423	Acenaphthene	2022/05/12	100	50 - 130	88	50 - 130	<0.050	ug/L	NC (1)	30

QUALITY ASSURANCE REPORT(CONT'D)

AECOM Canada Ltd Client Project #: 60646784

Site Location: PEEL REGION SNOW STORGAE

Sampler Initials: DP

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
7989423	Acenaphthylene	2022/05/12	100	50 - 130	88	50 - 130	<0.050	ug/L	NC (1)	30
7989423	Anthracene	2022/05/12	98	50 - 130	88	50 - 130	<0.050	ug/L	NC (1)	30
7989423	Benzo(a)anthracene	2022/05/12	101	50 - 130	86	50 - 130	<0.050	ug/L	NC (1)	30
7989423	Benzo(a)pyrene	2022/05/12	101	50 - 130	86	50 - 130	<0.0090	ug/L	NC (1)	30
7989423	Benzo(b/j)fluoranthene	2022/05/12	93	50 - 130	85	50 - 130	<0.050	ug/L	NC (1)	30
7989423	Benzo(g,h,i)perylene	2022/05/12	98	50 - 130	85	50 - 130	<0.050	ug/L	NC (1)	30
7989423	Benzo(k)fluoranthene	2022/05/12	109	50 - 130	86	50 - 130	<0.050	ug/L	NC (1)	30
7989423	Chrysene	2022/05/12	102	50 - 130	87	50 - 130	<0.050	ug/L	NC (1)	30
7989423	Dibenzo(a,h)anthracene	2022/05/12	109	50 - 130	92	50 - 130	<0.050	ug/L	NC (1)	30
7989423	Fluoranthene	2022/05/12	92	50 - 130	90	50 - 130	<0.050	ug/L	NC (1)	30
7989423	Fluorene	2022/05/12	95	50 - 130	87	50 - 130	<0.050	ug/L	NC (1)	30
7989423	Indeno(1,2,3-cd)pyrene	2022/05/12	99	50 - 130	86	50 - 130	<0.050	ug/L	NC (1)	30
7989423	Naphthalene	2022/05/12	97	50 - 130	87	50 - 130	<0.050	ug/L	NC (1)	30
7989423	Phenanthrene	2022/05/12	100	50 - 130	89	50 - 130	<0.030	ug/L	NC (1)	30
7989423	Pyrene	2022/05/12	92	50 - 130	92	50 - 130	<0.050	ug/L	NC (1)	30
7989444	F2 (C10-C16 Hydrocarbons)	2022/05/11	95	60 - 130	96	60 - 130	<100	ug/L	NC (1)	30
7989444	F3 (C16-C34 Hydrocarbons)	2022/05/11	106	60 - 130	109	60 - 130	<200	ug/L	3.0 (1)	30
7989444	F4 (C34-C50 Hydrocarbons)	2022/05/11	105	60 - 130	106	60 - 130	<200	ug/L	NC (1)	30
7989687	Dissolved Antimony (Sb)	2022/05/12	105	80 - 120	100	80 - 120	<0.50	ug/L	NC (1)	20
7989687	Dissolved Arsenic (As)	2022/05/12	99	80 - 120	99	80 - 120	<1.0	ug/L	NC (1)	20
7989687	Dissolved Barium (Ba)	2022/05/12	102	80 - 120	99	80 - 120	<2.0	ug/L	0.13 (1)	20
7989687	Dissolved Beryllium (Be)	2022/05/12	103	80 - 120	100	80 - 120	<0.40	ug/L	NC (1)	20
7989687	Dissolved Boron (B)	2022/05/12	102	80 - 120	100	80 - 120	<10	ug/L	0.38 (1)	20
7989687	Dissolved Cadmium (Cd)	2022/05/12	102	80 - 120	98	80 - 120	<0.090	ug/L	NC (1)	20
7989687	Dissolved Chromium (Cr)	2022/05/12	100	80 - 120	98	80 - 120	<5.0	ug/L	NC (1)	20
7989687	Dissolved Cobalt (Co)	2022/05/12	99	80 - 120	98	80 - 120	<0.50	ug/L	0.77 (1)	20
7989687	Dissolved Copper (Cu)	2022/05/12	105	80 - 120	97	80 - 120	<0.90	ug/L	0.66 (1)	20
7989687	Dissolved Lead (Pb)	2022/05/12	101	80 - 120	100	80 - 120	<0.50	ug/L	NC (1)	20
7989687	Dissolved Molybdenum (Mo)	2022/05/12	108	80 - 120	103	80 - 120	<0.50	ug/L	2.7 (1)	20
7989687	Dissolved Nickel (Ni)	2022/05/12	95	80 - 120	93	80 - 120	<1.0	ug/L	3.1 (1)	20
7989687	Dissolved Selenium (Se)	2022/05/12	100	80 - 120	101	80 - 120	<2.0	ug/L	NC (1)	20

QUALITY ASSURANCE REPORT(CONT'D)

AECOM Canada Ltd Client Project #: 60646784

Site Location: PEEL REGION SNOW STORGAE

Sampler Initials: DP

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPI	כ
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
7989687	Dissolved Silver (Ag)	2022/05/12	90	80 - 120	95	80 - 120	<0.090	ug/L	NC (1)	20
7989687	Dissolved Sodium (Na)	2022/05/12	NC	80 - 120	98	80 - 120	<100	ug/L	0.37 (1)	20
7989687	Dissolved Thallium (TI)	2022/05/12	103	80 - 120	105	80 - 120	<0.050	ug/L	NC (1)	20
7989687	Dissolved Uranium (U)	2022/05/12	105	80 - 120	103	80 - 120	<0.10	ug/L	3.6 (1)	20
7989687	Dissolved Vanadium (V)	2022/05/12	96	80 - 120	94	80 - 120	<0.50	ug/L	7.8 (1)	20
7989687	Dissolved Zinc (Zn)	2022/05/12	97	80 - 120	97	80 - 120	<5.0	ug/L	1.9 (1)	20
7991656	WAD Cyanide (Free)	2022/05/12	94 (2)	80 - 120	95	80 - 120	<1	ug/L	NC (3)	20

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

- (1) Duplicate Parent ID
- (2) Matrix Spike Parent ID [SOL754-10]
- (3) Duplicate Parent ID [SOL754-10]

Site Location: PEEL REGION SNOW STORGAE

Sampler Initials: DP

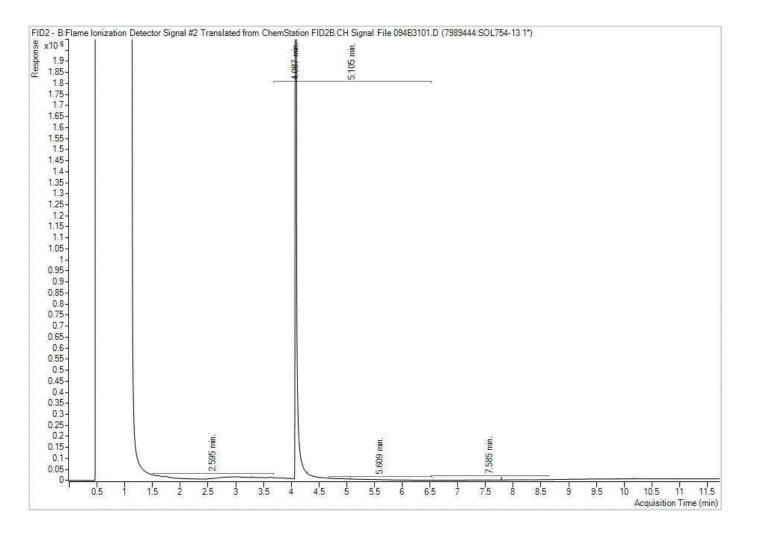
VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

U REAU ERITAS		VOICE TO:				REPO	RT TO:						PROJEC	TINFORM	IATION:		Marijar	9-May-22 13:	32	-
ny Name		CONTRACTOR CONTRACTOR		Compa			ada Ud	0			Quotation	t:	C203	75				8 8 1 8		le Order#:
on: ss:	Accounts Payable 50 Sportsworld C		290	Attenti	Brian	Sportswork	huanist	1 GV	Ch	Zan	P.O. #:		60646	3784	NIE C		C20	C4120		377485
13.	Kitchener ON N2	P 0A4	di Tun Ye		Kita	hener, on	J NOP	GA4	SMIN	210	Project Na	ne:	Pcol	Region	n Snin	Stronge	CTN	ENV-765		ct Manage
	(519) 650-5313 CANSSC.E-billin		(519) 650-3422	-		340-1617	Fax:	-	, 0	14/2	Site#:		Si	25	0	0				Marijane Cruz
OF RE	GULATED DRINKING		TED INTENDED	Email:	AND DESCRIPTION OF THE PERSONS ASSESSMENT	.holden@aecor	n.com , dh	wan ()	LICKI		Sampled B			ENDA BE SPECIE				C#877485-01-01	me (TAT) Required:	
IOL KE	SUBMITTED ON T	HE BUREAU VER	ITAS DRINKING	NATER CHAI	N OF CUSTOD	Y WUST BE				1	TOIO ME		(I CLINOL	6	10)			Please provide advar		ects
18093-00110	tion 153 (2011)		Other Regulation	s	Special	Instructions	circle):	4			s Pkg	al Oxygen Demand (BOD)		clay free			Principle section of	andard) TAT: If Rush TAT is not specific	ed):	
	Res/Park Medium		Sanitary Sewer					eg E			rganic	mand		zi .			Transaction Company	= 5-7 Working days for mo		
le 3 F	Agri/Other For RS		Storm Sewer B Municipality	ylaw			Hg /	by HS		Water	80 IOCI	an Dei	Solids	m (0.2	nsive		Please note: S days - contact	tandard TAT for certain tes your Project Manager for c	its such as BOD and Di letails	oxins/Furans a
ile		PWQO	Reg 406 Tabl	е			Field Filtered (please of Metals / Hg / Cr VI	Reg 153 VOCs by HS & F1-F4	AHs	O.Reg 153 PCBs (Water)	fetais	Oxyge	pded 8	uminu	prehe			Rush TAT (if applies to		
	to about Cale of	Other _	Ati- orang				Met Fil	153 V	Reg 153 PAHs	153	153 Metais	mical	Susper	red Alt	Com		Date Required Rush Confirma	ation Number:	Time Require	
Samp	include Criteria	a on Certificate of A		Date Samples	Time Sample	d Matrix	E ~	O.Reg	D.Reg	Reg	O.Reg (Wtr)	ioche	Fotal S	issolv	3CAp		# of Bottles		(call lab for #	V)
	162						/	7	-	1	0.5	an .	j. j.		LE C		5.5		A STATE OF THE A STAT	
		Bh5-3/	MW N	199,22	1000	6W		1/	-	-	4	6	6	~			18			
						+			_	_										
							Little													
					1			_	+	+							-			
							THE I													
							-													
					+	+			+	-							-			_
							The second													
-									-	-										
							121						×							
_	RELINQUISHED BY: (S	ionature (Briet)	Date: (YY/	MM/DD)	Time	BECEIVED	BY: (Signature)	Deleth		Date: (YY	MW/DDI			#1000	used and		Laboration	ory Use Only		
anish	0. 11	and Print	22/05/		'w	ZVIT	10 1 // //	5		bate: (YY		17	7.72		submitted	Time Sensitive	Temperatu	. / 1	Custody Seal	Yes
		1	001011	0 1 11			154141	1	- 6	0	11/1	15	-	-			161	976	Present Intact	


Bureau Veritas Canada (2019) Inc.

Bureau Veritas Job #: C2C4120 Report Date: 2022/05/16 Bureau Veritas Sample: SOL754 AECOM Canada Ltd Client Project #: 60646784

Project name: PEEL REGION SNOW STORGAE

Client ID: BH5-3/MW

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Site Location: PEEL REGION SNOW STORGAE

Sampler Initials: DP

Exceedance Summary Table – Reg153/04 T2-GW-C Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS		
No Exceedances								
The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to								
applicable regulatory guidelines	;.							

Jia He, M.Eng., P.Eng Geotechnical Engineer

AECOM Canada Ltd. 1000-5090 Explorer Drive Mississauga, ON L4W 4X6 Canada

T: 905 238 0007 www.aecom.com

AECOM Canada Ltd. 50 Sportsworld Crossing Road, Suite 290 Kitchener, ON N2P 0A4 Canada

T: 519.650.5313 F: 519.650.3424 www.aecom.com

To: Region of Peel Date: June 6, 2024

Project #: 60646784

From: Miln Harvey, Ph.D., P.Eng.

Brian Holden, M.Sc., P.Geo.

1

CC:

Technical Memorandum

Subject: Supplemental Hydrogeological Memorandum - Peel Region Snow Storage, Region of Peel

1. Purpose

The purpose of this supplemental hydrogeological memorandum is to provide the results of infiltration tests that were completed for nine (9) proposed snow disposal locations in the Town of Caledon and the City of Brampton, Ontario (the Site) and the outstanding hydrogeological testing and water quality sampling results from Site #5. As per the client's request, four (4) sites (Site #2, 4, 7, and 8) have been cancelled during the completion of the project. The location of the infiltration tests at five (5) sites are presented in **Appendix A**. This memorandum describes the infiltration test results of the following sites:

- Site #1 Highway No. 50 Carpool Lot
- Site #3 West Brampton Reservoir and Pumping Station
- Site #5 Johnston Sports Park
- Site #6 Tullamore Reservoir and Pumping Station
- Site #9 Alloa Reservoir and Pumping Station

The memorandum will also present the results of the hydrogeological testing, water quality sampling for Site #5 and present hydrographs for all monitoring wells installed as part of the investigation. This memo is to be read in conjunction with the *Geotechnical*, *Hydrogeological* and *Contaminated Site Assessment Report* (AECOM, 2022).

2. Infiltration Testing Methodology

Infiltration rate testing was completed using a Guelph Permeameter to evaluate the field saturated vertical hydraulic conductivity within the upper 0.22 to 0.51 m of surficial soils at two (2) to three (3) locations within the five (5) sites (Site #1, 3, 5, 6 and 9) during the period of June 28 and July 4, 2022. The Guelph Permeameter is an in-hole Mariotte bottle device used for measuring the rate of water influx into an unsaturated column of soil by measuring the steady-state flow rate necessary to maintain a constant depth of water in an uncased cylindrical well, from which an estimate of the soil hydraulic properties are determined. The steady state flow rate was measured under constant water heads of 5 cm and 24 cm at each of the testing locations.

aecom.com Ref: 60646784

June 6, 2024

Table 1: Infiltration Test Results

		Co-ordinate	es – Zone 17	Double of			Field Saturated	Calculations	
Site Name and Address	Test Location ID	Easting (m)	Northing (m)	Depth of Tested Borehole (mBGS) ¹	Dominant Soil Type	Interpretation Method	Hydraulic Conductivity ² (K _{fs})	Percolation Rate ³ (X)	Percolation Time (T Time) ⁴
0: "4 1: 1	IETA A	004000	40550000	, ,		0: 1 11	(m/s)	(mm/hour)	min/cm
Site #1: Highway No. 50 Car Pool Lot (11221 Hwy 50, Brampton, ON	IFT1-1	604803.0	4855699.3	0.51	Clayey silt with some sand to sandy, trace of grass roots and organics	Single Head	6.4 X 10 ⁻⁷	41	15
L6R 3J7)	IFT1-2	604794.0	4855664.6	0.50	Silty clay to clayey silt with trace of some sand	Double and Single Head	9.6 X 10 ⁻⁷	46	13
Site #3: West Brampton Reservoir	IFT3-1	595110.5	4834615.7	0.31	Fine sand with trace gravel and silt	Double and Single Head	4.9 X 10 ⁻⁶	71	8
and Pumping Station (9624 Peel Regional Rd 1, Brampton, ON L6X 0B5)	IFT3-2	595026.0	4834490.0	0.22	Sand with trace to some silt and gravel (FILL)	Double and Single Head	2.7 X 10 ⁻⁶	60	10
	IFT3-3	594782.6	4834559.2	0.24	Sand with trace to some silt and gravel (FILL)	Single Head	1.8 X 10 ⁻⁶	54	11
Site #5: Johnston Sports Park (6898 King St, Caledon East, ON	IFT5-1	596881.9	4855781.9	0.35	Clayey silt to silty clay with trace gravel & trace to some sand, occ. Organics	Single Head	6.5 X 10 ⁻⁷	41	15
L7C 0V1)	IFT5-2	596956.8	4855754.1	0.45	Clayey silt to silty clay with trace sand	Double and Single Head	1.3 X 10 ⁻⁷	27	22
	IFT5-3	596884.5	4855690.4	0.40	Clayey silt to silty clay with trace sand, gravel & occ. Organics	Double and Single Head	-	-	-
Site #6: Tullamore Reservoir and Pumping	IFT6-1	600291.7	4850743.6	0.40	Sand with some gravel, trace silt & trace clay (FILL)	Double and Single Head	8.9 X 10 ⁻⁷	45	13
Station (12078 Innis Lake Rd, Caledon East, ON L7C 0Z7)	IFT6-2	600328.4	4850716.1	0.40	Sand with some silt, trace clay, and trace to some gravel (FILL)	Double and Single Head	6.4 X 10 ⁻⁷	41	15
Site #9: Alloa Reservoir and Pumping Station	IFT9-1	591562.2	4839601.1	0.40	Sand with some gravel & trace silt (FILL)	Double and Single Head	8.3 X 10 ⁻⁶	82	7
(1278 Mayfield Rd, Caledon, ON L7C 0Y7)	IFT9-2	591562.2	4839601.1	0.26	Sand with some gravel to gravelly, trace silt (FILL)	Double and Single Head	1.5 X 10 ⁻⁶	51	12

Notes: 1. mBGS = metres Below Ground Surface. 2. from Guelph Permeameter data analysis.

aecom.com Ref: 60646784

^{3.} Ontario Ministry of Municipal Affairs and Housing (OMMAH). 1997. Supplementary Guidelines to the Ontario Building Code 1997. SG-6 - Percolation Time and Soil Descriptions. Toronto, Ontario. $K_{ls} = (6E-11)^*X^{3.7363}$.

^{4.} Based on Measured Percolation Rate

June 6, 2024

Table 2: Daily Mean Ambient Air Temperature and Total Precipitation Summary for Climate Station No. 6158731

Date	Mean Ambient Air Temperature 0°C	Total Precipitation (mm)	Location of Completed Infiltration Test
June 27, 2022	17.2	0.0	-
June 28, 2022	17.6	0.0	IFT1-1, IFT1-2, IFT6-1, and IFT6-2
June 29, 2022	19.8	4.2	-
June 30, 2022	20.8	0.0	IFT5-1, IFT5-2, IFT5-3, IFT9-1, and IFT9-2
July 3, 2022	20.6	0.0	-
July 4, 2022	20.9	0.0	IFT3-1, IFT3-2, and IFT3-3

Note: Air Temperature and Precipitation data were obtained from the Environment Canada website.

3. Site #1 – Highway No. 50 Carpool Lot

Site #1 is located at the south side of Mayfield Road and the west side of Highway 50 in Brampton (Appendix A). The site is an undeveloped area covered by grass and bushes. Two (2) infiltration tests were completed including IFT1-1 in Clayey Silt with some sand and IFT1-2 in Silty clay to clayey silt.

3.1 Infiltration Testing Results

Based on the completed analysis it was determined that the field saturated vertical hydraulic conductivity of the surficial soils at the two (2) locations of testing ranged between 6.4 x 10⁻⁷ m/s (IFT1-1) and 9.6 x 10⁻⁷ m/s (IFT1-2).

It was also determined that percolation rates ranged between 41 and 46 mm/hour and percolation times ranged between 13 and 15 min/cm at IFT1-1 and IFT1-2, respectively.

Analysis of field collected data was conducted using the Soil moisture Equipment Corporation Guelph Permeameter calculation worksheet and is provided in **Appendix B**. The testing and data analysis results are summarized in **Table 1**. If the measured steady state flow rate under the water head of 5 cm is lower than the steady state water flow rate under the water head of 10 cm, the single head method was used for data interpretation. Otherwise, the double head method was used for data interpretation. The normal average for the two methods was used in the calculations as shown in **Appendix B**.

The calculated infiltration rates for Site #1 indicate that the local shallow soils generally are sufficiently permeable to consider multiple Low Impact Development (LID) technologies, as per guidance provided by Ministry of the Environment, Conservation and Parks (MECP) in their *Stormwater Management Planning and Design Manual* (Table 4.1, 2003), as well as by TRCA / Credit Valley Conservation Authority (CVC), within their *Low Impact Development Stormwater Management Planning and Design Guide* (Version 1.0, 2010, Table 3.4.1).

4. Site #3 – West Brampton Reservoir and Pumping Station

Site #3 is located at the west side of Mississauga Road and the south side of Williams Parkway in Brampton, as shown in **Appendix A**. The entrance of the site has been developed with asphalt pavement structure which connected with an existing structure for agriculture purpose. Both northwest and southeast sides of the structure is undeveloped areas covered by grass and bushes. Six (6) boreholes from BH3-1 to BH3-6 on the green land were advanced. During the investigation, no abnormal odour or staining was detected.

4.1 Groundwater Level Monitoring

A groundwater monitoring well (BH3-4/MW) was constructed at the site on December 16, 2021 as part of the geotechnical investigation. Groundwater level monitoring at BH3-4/MW was conducted by AECOM between February 11, 2022 to July 7, 2022. **Table 3** provides a summary of BH3-4/MW including groundwater levels, elevation data, depths, and screen intervals (in mBGS and mASL).

As shown in **Table 3**, observed static groundwater level elevations at BH3-4/MW ranged from approximately 226.50 mASL to 226.74 mASL. It is expected that the groundwater levels within the Site #3 will be subjected to seasonal fluctuations including response to spring freshet and localized precipitation events. Continuous groundwater monitoring was attempted at BH3-4/MW, but the datalogger installed failed to accurately record the groundwater levels on an hourly basis.

226.74

226.56

Monitoring	Ground Surface	Screen Interval Depth (mBGS) ¹				Groundwater Level Depth and Elevation			
Well ID Elevation (mASL) ²	Тор	Bottom	Тор	Bottom	Date	Depth to Groundwater (mBGS) ¹	Groundwater Elevation (mASL) ²		
						Feb 11, 2022	4.50	226.50	
						Feb 28, 2022	4.43	226.57	
BH3-4/MW	231.00	4.00	5.52	227.00	225.48	Mar 8, 2022	4.40	226.60	

May 9, 2022

Jul 7, 2022

4.26

4.44

Table 3: Construction Details and Groundwater Level Measurements (BH3-4/MW)

Notes: 1. mBGS = metres below ground surface 2. mASL = metres above mean sea level

4.2 Infiltration Testing Results

Based on the completed analysis it was determined that the field saturated vertical hydraulic conductivity of the surficial soils at the three (3) locations of testing ranged between 1.8 x 10⁻⁶ m/s (IFT3-3) and 4.9 x 10⁻⁶ m/s (IFT3-1).

It was also determined that percolation rates ranged between 54 and 71 mm/hour and percolation times ranged between 8 and 11 min/cm at IFT3-1, IFT3-2, and IFT3-3, respectively.

Analysis of field collected data was conducted using the Soil moisture Equipment Corporation Guelph Permeameter calculation worksheet and is provided in **Appendix B**. The testing and data analysis results are summarized in **Table 1**. If the measured steady state flow rate under the water head of 5 cm is lower than the steady state water flow rate under the water head of 10 cm, the single head method was used for data interpretation. Otherwise, the double head method was used for data interpretation. The normal average for the two methods was used in the calculations as shown in **Appendix B**.

The calculated infiltration rates for Site #3 indicate that the local shallow soils generally are sufficiently permeable to consider multiple Low Impact Development (LID) technologies, as per guidance provided by Ministry of the Environment, Conservation and Parks (MECP) in their *Stormwater Management Planning and Design Manual* (Table 4.1, 2003), as well as by TRCA / Credit Valley Conservation Authority (CVC), within their *Low Impact Development Stormwater Management Planning and Design Guide* (Version 1.0, 2010, Table 3.4.1).

5. Site #5 – Johnston Sports Park

Site #5 is located at the west side of Centreville Creek Road and the north side of King St in Caledon, as shown in **Appendix A**. The access road from King Street as well as two parking areas were developed with asphalt pavement. The rest areas of the site are undeveloped areas covered by grass and bushes. Five (5) boreholes including BH5-1 to BH5-5 on the green land were advanced. During the investigation, no abnormal odour or staining was detected.

5.1 Groundwater Level Monitoring

A groundwater monitoring well (BH5-3/MW) was constructed at the site on December 20, 2021 as part of the geotechnical investigation. Groundwater level monitoring at BH5-3/MW was conducted by AECOM between

6

February 11, 2022 to June 30, 2022. **Table 4** provides a summary of BH5-3/MW including groundwater levels, elevation data, depths, and screen intervals (in mBGS and mASL).

Table 4: Construction Details and Groundwater Level Measurements (BH5-3/MW)

Ground Monitoring Surface		Screen Interval Depth (mBGS) ¹			n Interval on (mASL)²	Groundwater Level Depth and Elevation		
Well ID	Elevation (mASL) ²	Тор	Bottom	Тор	Bottom	Date	Depth to Groundwater (mBGS) ^{1,3}	Groundwater Elevation (mASL) ^{2,3}
					Feb 11, 2022	0.14	267.36	
						Feb 28, 2022	0.32	267.18
BH5-3/MW	267.50	2.13	5.18	265.37	262.32	Mar 7, 2022	0.31	267.19
DU2-2/IAIAA	207.50	2.13	5.16	265.37		Mar 8, 2022	0.31	267.19
						May 9, 2022	0.19	267.31
						Jun 30, 2022	0.11	267.39

Notes: 1. mBGS = metres below ground surface

The Monitoring well BH5-3/MW was frozen during four (4) site visits conducted between February 11, 2022 to March 8, 2022. As shown in **Table 3**, observed static groundwater level elevations at BH5-3/MW ranged from approximately 267.31 mASL to 267.39 mASL. It is expected that the groundwater levels within the Site #5 will be subjected to seasonal fluctuations including response to spring freshet and localized precipitation.

5.2 Hydraulic Conductivity Test

SWRT was conducted at BH5-3/MW on May 9, 2022. Collected data were analyzed to provide an estimate of the hydraulic conductivity (K) of the stratum surrounding each respective monitoring well screen. SWRT results for BH5-3/MW are summarized in **Table 5**, with the individual analysis reports contained in **Appendix C**.

Table 5: Single Well Response Testing Results (BH5-3/MW)

Monitoring Well ID	Test Date	Analytical Method ¹	Top of Test Interval (mBGS) ²	Bottom of Test Interval (mBGS) ²	Test Type	Hydraulic Conductivity (m/s) ³	Geologic Formation
BH5-3/MW	May 9, 2022	Hvorslev	2.27	5.32	Rising Head	1.34 X 10 ⁻⁸	Silty Clay

Notes: 1: Hvorslev (1951)

2: mBGS = metres Below Ground Surface

3: m/s = metre per second

5.3 Groundwater Quality

Groundwater samples were collected from BH5-3/MW on May 9, 2022 and submitted to Bureau Veritas Laboratories for geochemical analysis. The results of the analysis were compared to Provincial Water Quality Standards (PWQO) criteria limits. As shown in **Table 6**, dissolved boron and dissolved Cobalt exceeded the PWQO guidelines limits. Given these exceedances, the use of water treatment prior to the discharge to the natural environment should be included as part of the dewatering plan. Certificates of Analysis provided by Bureau Veritas Laboratories are included in **Appendix D**.

^{2.} mASL = metres above mean sea level

^{3.} The monitoring well BH5-3/MW was frozen from February 11, 2022 to March 8, 2022. Groundwater level data collected from February 11, 2022 to March 8, 2022 at BH5-3/MW are pre-development.

Table 6: Summary of Parameters Exceeding PWQO Guidelines (BH5-3/MW)

Parameter Group	Monitoring Well	Parameter	PWQO Guideline (ug/L)	Reported Value (ug/L)
Metals	BH5-3/MW	Dissolved Cobalt	0.9	1.1

Notes: ug/L = micrograms per Litre

5.4 Infiltration Testing Results

Based on the completed analysis it was determined that the field saturated vertical hydraulic conductivity of the surficial soils at the three (3) locations of testing ranged between 1.3×10^{-7} m/s (IFT5-2) and 6.5×10^{-7} m/s (IFT5-1).

It was also determined that percolation rates ranged between 27 and 41 mm/hour and percolation times ranged between 15 and 22 min/cm at IFT5-1 and IFT5-2, respectively.

Analysis of field collected data was conducted using the Soil moisture Equipment Corporation Guelph Permeameter calculation worksheet and is provided in **Appendix B**. The testing and data analysis results are summarized in **Table 1**. If the measured steady state flow rate under the water head of 5 cm is lower than the steady state water flow rate under the water head of 10 cm, the single head method was used for data interpretation. Otherwise, the double head method was used for data interpretation. The normal average for the two methods was used in the calculations as shown in **Appendix B**.

The calculated infiltration rates for Site #5 indicate that the local shallow soils generally are sufficiently permeable, as only 2 of 3 locations meet the minimum 15 mm/hr percolation rate to consider multiple Low Impact Development (LID) technologies, as per guidance provided by Ministry of the Environment, Conservation and Parks (MECP) in their *Stormwater Management Planning and Design Manual* (Table 4.1, 2003), as well as by TRCA / Credit Valley Conservation Authority (CVC), within their *Low Impact Development Stormwater Management Planning and Design Guide* (Version 1.0, 2010, Table 3.4.1).

6. Site #6 – Tullamore Reservoir and Pumping Station

Site #6 is located at the west side of Innis Lake Road and the north side of Mayfield Rd in Brampton (**Appendix A**). The south part of the site was developed with an existing structure with the asphalt pavement parking area and the access road. An existing stormwater management pond is located at the west side of the structure. The other access loop with asphalt pavement was developed at the north part of the site. The rest areas of the site are undeveloped and covered by grass and bushes. Three (3) boreholes (BH6-1, BH6-2, and BH6-3) on the green land were advanced. During the investigation, no abnormal odour or staining was detected.

6.1 Groundwater Level Monitoring

A groundwater monitoring well (BH6-1/MW) was constructed at the site on November 15, 2021 as part of the project-related geotechnical investigation. Groundwater level monitoring at BH6-1/MW was conducted by AECOM between March 7, 2022 to June 28, 2022. **Table 7** provides a summary of BH6-1/MW including groundwater levels, elevation data, depths, and screen intervals (in mBGS and mASL).

Table 7: Construction Details and Groundwater Level Measurements (Dno-1/MVV	Table 7:	Construction Details and Groundwater Level Measurements ((BH6-1/MW)
---	----------	---	------------

Ground Monitoring Surface					n Interval on (mASL)²	Groundwater Level Depth and Elevation		
Well ID	Elevation (mASL) ²	Тор	Bottom	Тор	Bottom	Date	Depth to Groundwater (mBGS) ^{1,3,4}	Groundwater Elevation (mASL) ^{2,3,4}
						Mar 7, 2022	0.66	230.34
DUG 1/MIM	231.00	1.50	2.41	229.50	228.59	Mar 8, 2022	1.83	229.17
BH6-1/MW	231.00	1.50	2.41	229.50	226.59	May 9, 2022	0.70	230.30
						Jun 28, 2022	1.30	229.70

Notes: 1. mBGS = metres below ground surface

- 2. mASL = metres above mean sea level
- 3. Groundwater level data collected on March 7, 2022 was pre-development.
- 4. Groundwater level data collected on March 8, 2022 are not static as the well was recovering from the following development and/or groundwater sampling.

As shown in **Table 3**, observed static groundwater level elevations at BH6-1/MW ranged from approximately 229.70 mASL to 230.30 mASL. It is expected that the groundwater levels within the Site #6 will be subjected to seasonal fluctuations including response to spring freshet and localized precipitation.

Long-term groundwater data was also being collected at BH6-1/MW using water level data loggers. The purpose of this monitoring is to assess water level fluctuation over time, the recorded groundwater level elevations at BH6-1/MW ranged from approximately 229.17 mASL to 230.34 mASL. The collected groundwater data was analyzed. Hydrographs along with the local precipitation data from nearest climate station (TORONTO INTL A) are in **Appendix E**.

6.2 Infiltration Testing Results

Infiltration rate testing will be completed using a Guelph Permeameter to evaluate the field saturated vertical hydraulic conductivity within the upper surficial soils at the selected location within Site #6 in Spring 2022. The infiltration testing results will be presented in a subsequent memorandum to this report.

Based on the completed analysis it was determined that the field saturated vertical hydraulic conductivity of the surficial soils at the two (2) locations of testing ranged between 6.4×10^{-7} m/s (IFT6-2) and 8.9×10^{-7} m/s (IFT6-1).

It was also determined that percolation rates ranged between 41 and 45 mm/hour and percolation times ranged between 13 and 15 min/cm at IFT6-1 and IFT6-2, respectively.

Analysis of field collected data was conducted using the Soil moisture Equipment Corporation Guelph Permeameter calculation worksheet and is provided in **Appendix B**. The testing and data analysis results are summarized in **Table 1**. If the measured steady state flow rate under the water head of 5 cm is lower than the steady state water flow rate under the water head of 10 cm, the single head method was used for data interpretation. Otherwise, the double head method was used for data interpretation. The normal average for the two methods was used in the calculations as shown in **Appendix B**.

The calculated infiltration rates for Site #6 indicate that the local shallow soils generally are sufficiently permeable to consider multiple Low Impact Development (LID) technologies, as per guidance provided by Ministry of the Environment, Conservation and Parks (MECP) in their *Stormwater Management Planning and Design Manual* (Table 4.1, 2003), as well as by TRCA / Credit Valley Conservation Authority (CVC), within their *Low Impact Development Stormwater Management Planning and Design Guide* (Version 1.0, 2010, Table 3.4.1).

aecom.com Ref: 60646784

June 6, 2024

7. Site #9 – Alloa Reservoir and Pumping Station

Site #9 is located at the west side of Creditview Road and the north side of Mayfield Rd in Brampton, as shown in **Appendix A**. The south half part of the site has been developed with an existing structure with asphalt pavement parking area and access road. The north half of the site are undeveloped areas covered by grass. Three (3) boreholes including BH9-1 to BH9-3/MW on the green land were advanced.

7.1 Groundwater Level Monitoring

A groundwater monitoring well (BH9-3/MW) was constructed at the site on November 16, 2021 as part of the geotechnical investigation. Groundwater level monitoring at BH9-3/MW was conducted by AECOM between March 7, 2022 to June 30, 2022. **Table 8** provides a summary of BH9-3/MW including groundwater levels, elevation data, depths, and screen intervals (in mBGS and mASL).

Table 8: Construction Details and Groundwater Level Measurements (BH9-3/MW)

Ground Monitoring Surface		Screen Interval Depth (mBGS) ₁			Screen Interval Gr Elevation (mASL) ²		ater Level Depth and Elevation		
Well ID	Elevation (mASL) ²	Top Bottom	Тор	Bottom	Date	Depth to Groundwater (mBGS) ^{1,3,4}	Groundwater Elevation (mASL) ^{2,3,4}		
						Mar 7, 2022	3.23	258.77	
BH9-3/MW	262.00	3.26	0.04	258.74	74 255.69	Mar 8, 2022	5.25	256.76	
BH9-3/MW	202.00	262.00 3.26	6.31	258.74		May 9, 2022	3.00	259.00	
						Jun 30, 2022	3.34	258.66	

Notes: 1. mBGS = metres below ground surface

- 3. Groundwater level data collected on March 7, 2022 was pre-development.
- 4. Groundwater level data collected on March 8, 2022 are not static as the well was recovering from the following development and/or groundwater sampling.

As shown in **Table 3**, observed static groundwater level elevations at BH9-3/MW ranged from approximately 258.66 mASL to 259.00 mASL. It is expected that the groundwater levels within the Site #9 will be subjected to seasonal fluctuations including response to spring freshet and localized precipitation.

Long-term groundwater data are also being collected at BH9-3/MW using water level data loggers. The purpose of this monitoring is to assess water level fluctuation over time, the recorded groundwater level elevations at BH9-3/MW ranged from approximately 256.76 mASL to 259.00 mASL. The collected groundwater data was analyzed. Hydrographs along with the local precipitation data from nearest climate station (TORONTO INTL A) are in **Appendix E**.

7.2 Infiltration Testing Results

Based on the completed analysis it was determined that the field saturated vertical hydraulic conductivity of the surficial soils at the two (2) locations of testing ranged between 1.5 x 10⁻⁶ m/s (IFT9-2) and 8.3 x 10⁻⁶ m/s (IFT9-1).

It was also determined that percolation rates ranged between 51 and 82 mm/hour and percolation times ranged between 7 and 12 min/cm at IFT9-1 and IFT9-2, respectively.

^{2.} mASL = metres above mean sea level

Analysis of field collected data was conducted using the Soil moisture Equipment Corporation Guelph Permeameter calculation worksheet and is provided in **Appendix B**. The testing and data analysis results are summarized in **Table 1**. If the measured steady state flow rate under the water head of 5 cm is lower than the steady state water flow rate under the water head of 10 cm, the single head method was used for data interpretation. Otherwise, the double head method was used for data interpretation. The normal average for the two methods was used in the calculations as shown in **Appendix B**.

The calculated infiltration rates for Site #9 indicate that the local shallow soils generally are sufficiently permeable to consider multiple Low Impact Development (LID) technologies, as per guidance provided by Ministry of the Environment, Conservation and Parks (MECP) in their *Stormwater Management Planning and Design Manual* (Table 4.1, 2003), as well as by TRCA / Credit Valley Conservation Authority (CVC), within their *Low Impact Development Stormwater Management Planning and Design Guide* (Version 1.0, 2010, Table 3.4.1).

8. Climate Data

In a review of the test data and infiltration rate estimates presented herein, it should be considered that according to the Toronto and Region Conservation Authority (TRCA) / Credit Valley Conservation Authority (CVC), within their *Low Impact Development Stormwater Management Planning and Design Guide* (Version 1.0, 2010), infiltration testing "should not be conducted in the rain or within 24 hours of significant rainfall events (>15 millimetres depth), or when the temperature is below freezing" (Appendix C, Section C2.3).

Mean ambient air temperatures on the dates of infiltration testing ranged between 17.6 and 20.9°C, as reported by Environment Canada (www.climate.weather.gc.ca) for the Toronto INTL A (Climate ID 6158731). **Table 2** provides a summary of the daily mean ambient air temperatures and the total precipitation on the days prior to and on which each infiltration test was completed, as reported by Environment Canada for Climate Station No. 6158731.

Precipitation received at Climate Station No. 6158731 also was evaluated for each infiltration testing event and was found to be less than 15 mm within the preceding 24-hour period. As per the data presented in **Table 2**, the precipitation received both prior to as well as on the day of testing is not expected to have negatively affected the infiltration results presented herein.

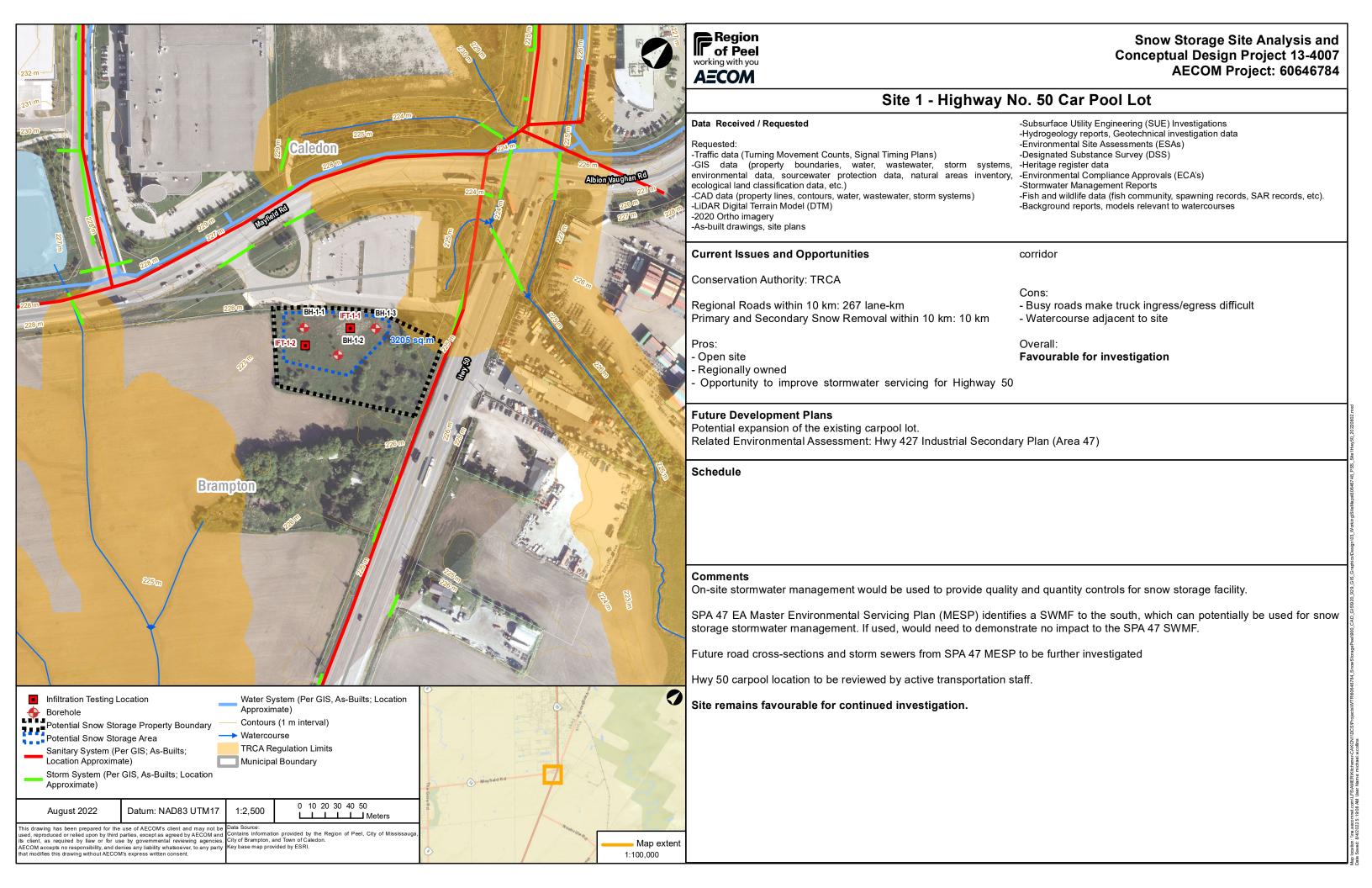
9. References

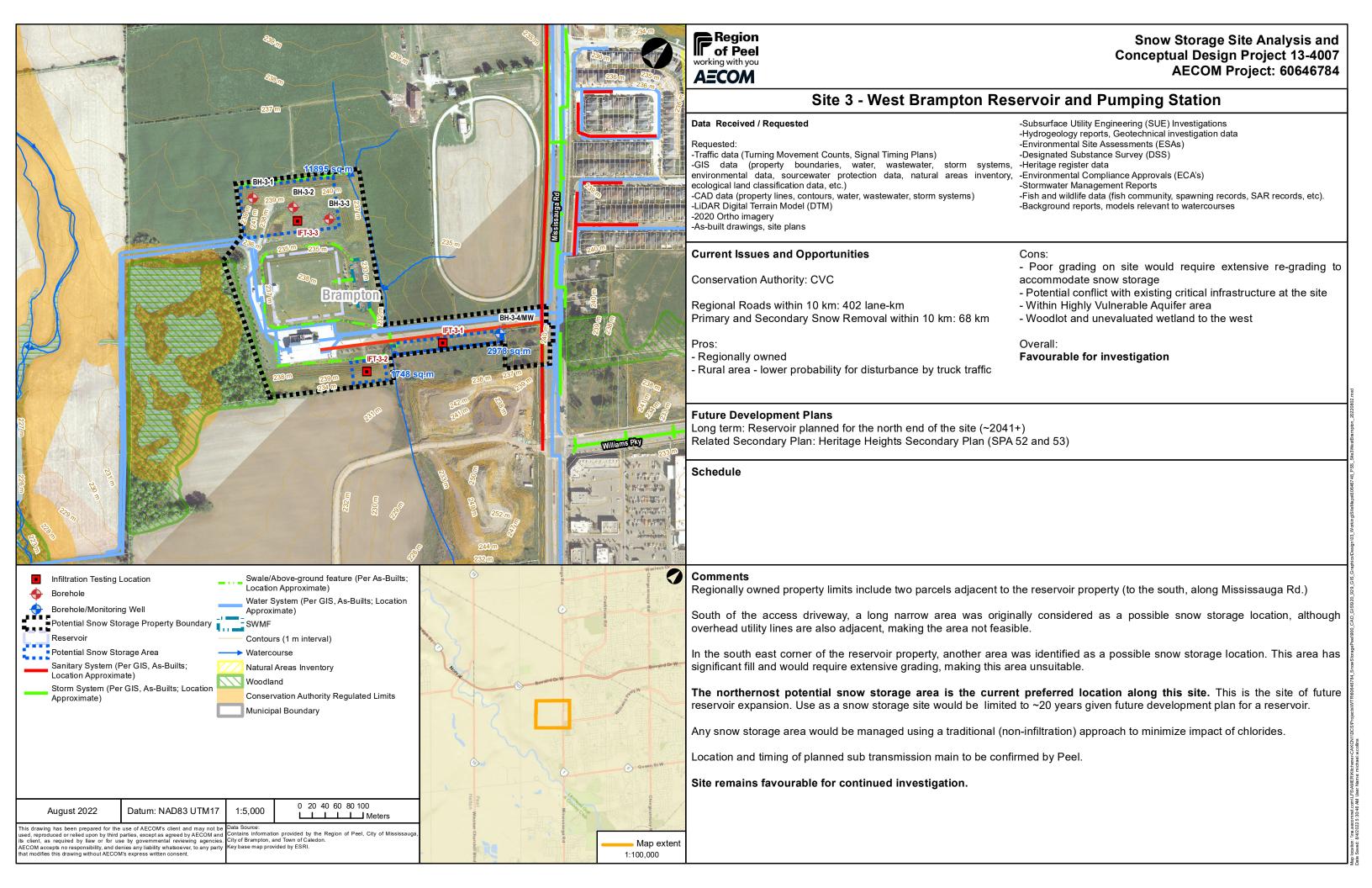
AECOM, June 2022:

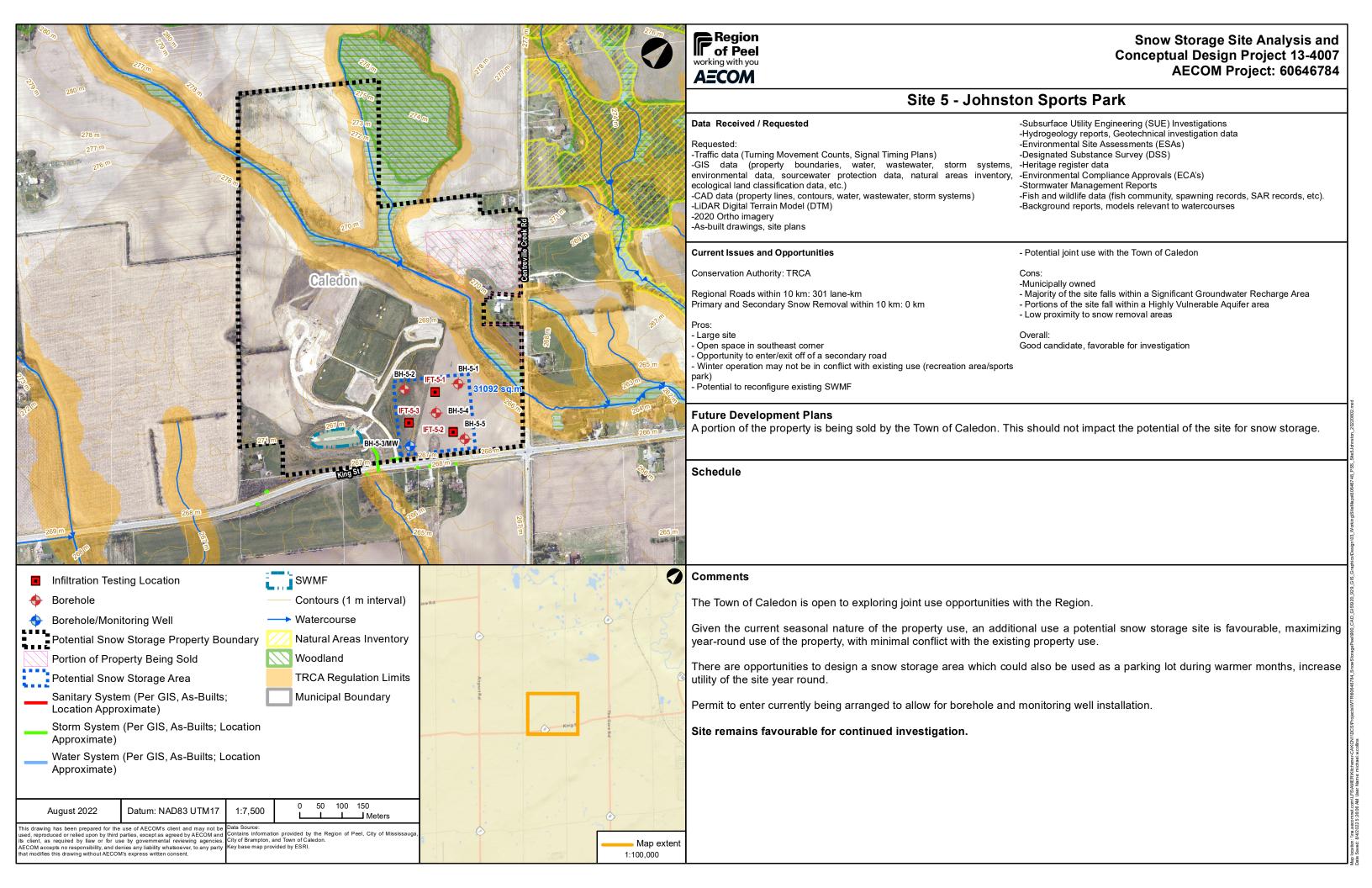
Geotechnical, Hydrogeological and Contaminated Site Assessment Report, Peel Region Snow Storage, Peel Region. Project No. 60646784.

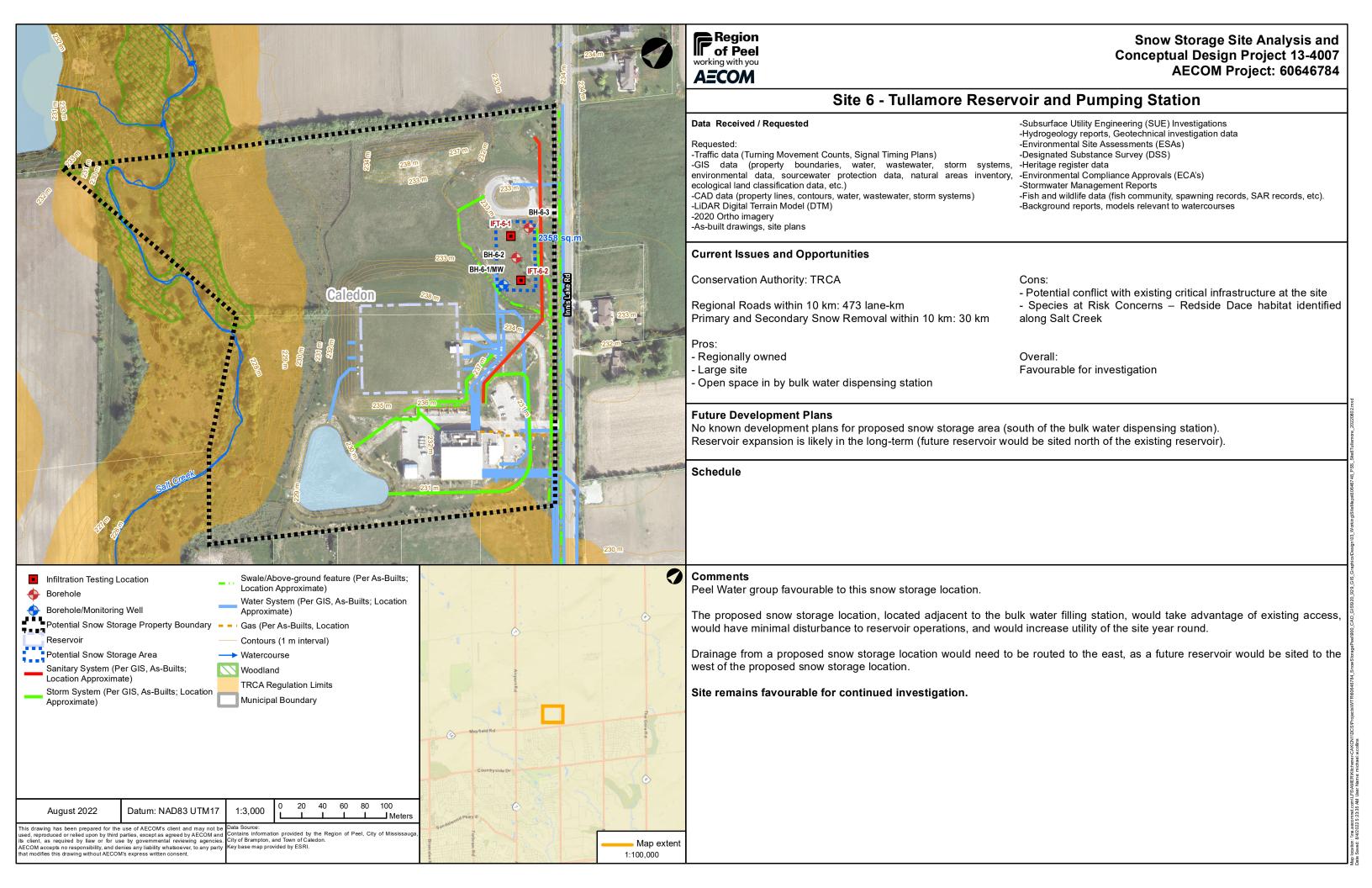
Environment Canada, 2022:

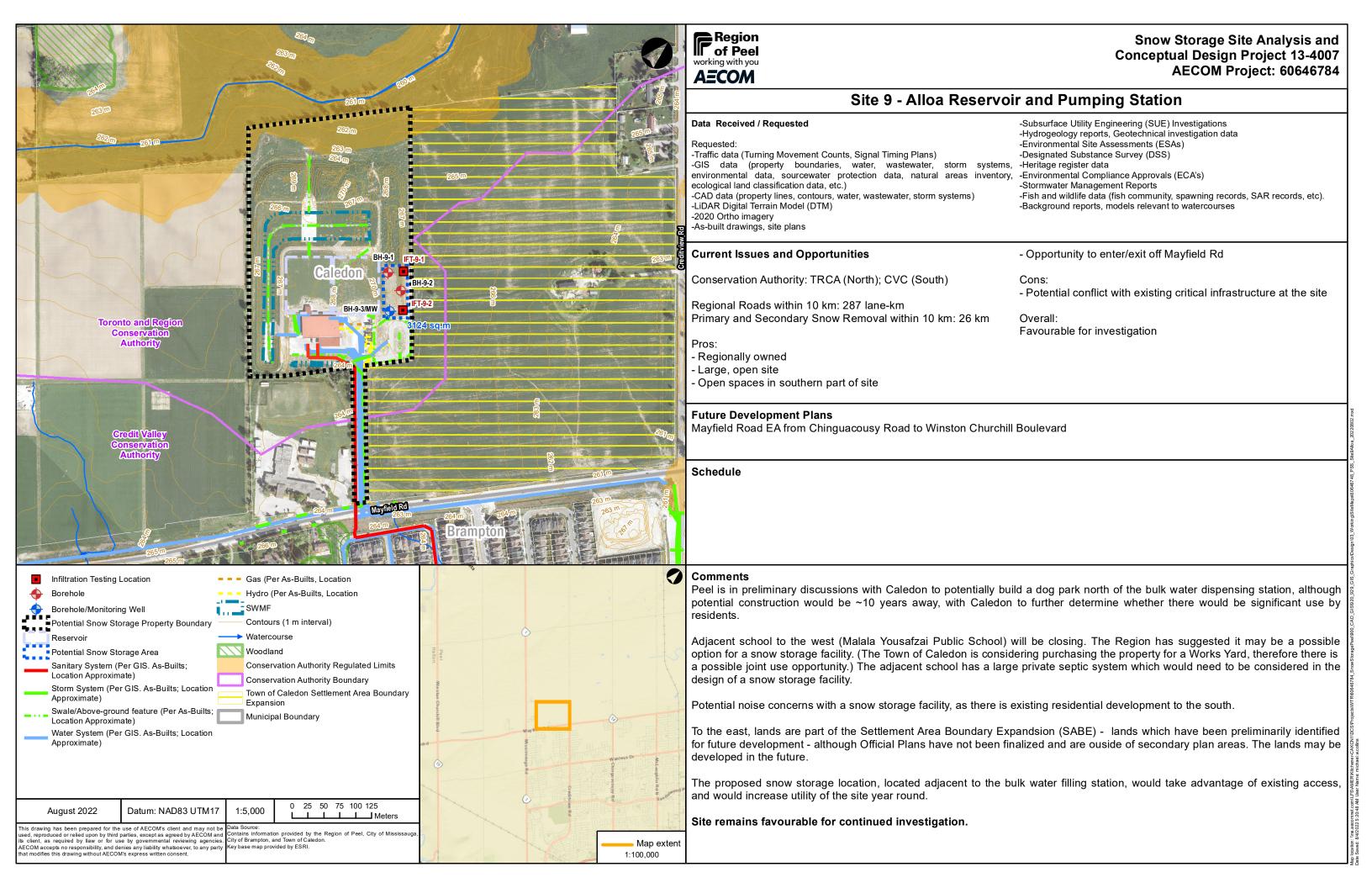
Canadian Historical Climate Data, Toronto INTL A – Station ID 6158731 – Website: https://climate.weather.gc.ca/historical_data/search_historic_data_e.html

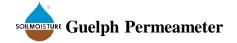

Ministry of Environment, Conservation and Parks (MECP), 2003: Stormwater Management Planning and Design Manual.


Toronto & Region Conservation Authority (TRCA) / Credit Valley Conservation Authority (CVC), 2010: Low Impact Development Stormwater Management Planning and Design Guide (Version 1.0).




Appendix A


Peel Snow Storage Study Site Map



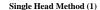
Appendix B

Infiltration Test Analysis Results

IFT1-1

Site #1: Highway No. 50 Carpool Lot (11221 Hwy 50, Brampton, ON L6R 3J7)

K_{fc} = 6.36E-05 cm/sec


3.82E-03 cm/min

1.50E-03 inch/min

2.50E-05 inch/sec

6.36E-07 m/s

 $\Phi_{\rm m} = \frac{5.30\text{E-}04}{5.30\text{E-}04} \text{ cm}^2/\text{min}$

(enter "35.22" for Combined and "2.16" for Inner reservoir): 35.22 Enter water Head Height ("H" in cm): Enter the Borehole Radius ("a" in cm):

Enter the soil texture-structure category (enter one of the below numbers): 3 1. Compacted, Structure-less, clayey or silty materials such as

applicable for agricultural soils.

- landfill caps and liners, lacustrine or marine sediments, etc. 2. Soils which are both fine textured (clayey or silty) and
- unstructured; may also include some fine sands. 3. Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently
- 4. Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macropors, etc

	Steady State Rate of Water Level Change ("R" in cm/min):	0.1000	
Res Type			
Н	10		
а	3 α*=	0.12	cm -1
a*		1.28754	
CO.01 CO.04	1.29	0.0587	
C0.12 C0.36 C	-	6.36E-05 3.82E-03 6.36E-07	cm/min
	0.100 0.06	1.50E-03 2.50E-05	inch/min inch/sec
pi	3.14 $\Phi_{m} =$	5.30E-04	cm²/min

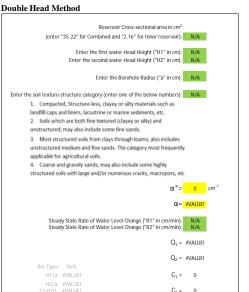
Calculation formulas related to shape factor (C). Where H_I is the first water head height (cm), H_I is the second water head height

Soil Texture-Structure Category	α*(cm ⁻¹)	Shape Factor
Compacted, Structure-less, clayey or silty materials such is landfill caps and liners, lacustrine or marine ediments, etc.	0.01	$C_1 = \left(\frac{H_2/_a}{2.081 + 0.121 \left(\frac{H_2}{a}\right)}\right)^{0.672}$
oils which are both fine textured (clayey or silty) and nstructured, may also include some fine sands.	0.04	$C_1 = \left(\frac{H_1/a}{1.992 + 0.091(^{H_1}/a)}\right)^{0.683}$ $C_2 = \left(\frac{H_2/a}{1.992 + 0.091(^{H_2}/a)}\right)^{0.683}$
iost structured soils from clays through loams; also cludes unstructured medium and fine sands. The tegory most frequently applicable for agricultural ils.	0.12	$C_1 = \left(\frac{H_1/a}{2.074 + 0.093 \binom{H_1/a}{4}}\right)^{0.754}$ $C_2 = \left(\frac{H_2/a}{2.074 + 0.093 \binom{H_2/a}{4}}\right)^{0.754}$
oarse and gravely sands; may also include some highly ructured soils with large and/or numerous cracks, nacro pores, etc.	0.36	$C_1 = \left(\frac{H_1/a}{2.074 + 0.093(H_1/a)}\right)^{0.754}$ $C_2 = \left(\frac{H_2/a}{2.074 + 0.093(H_2/a)}\right)^{0.754}$

Single Head Method (2)

Reservoir Cross-sectional area in cm² (enter "35.22" for Combined and "2.16" for Inner reservoir): 35.22 Enter water Head Height ("H" in cm): Enter the Borehole Radius ("a" in cm): Enter the soil texture-structure category (enter one of the below numbers): 3 1. Compacted, Structure-less, clavey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc. 2. Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.

3. Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils. 4. Coarse and gravely sands; may also include some highly


structured soils with large and/or numerous cracks, macropors, etc

 $\Phi_{\rm m} = \frac{5.30E-04}{5.30E-04} \, cm^2 / min$ Calculation formulas related to one-head and two-head methods. Where R is steady-state rate of fall of water in reservo (cm/s), K_{fs} is Soil saturated hydraulic conductivity (cm/s), Φ_m is Soil matric flux potential (cm²/s), a^* is Macroscopic capillary

length parameter (from Table 2), a is Borehole radius (cm), H_1 is the first head of water established in borehole (cm), H_2 is the second head of water established in borehole (cm) and C is Shape factor (from Table 2).

One Head, Combined Reservoir	$Q_1 = \bar{R}_1 \times 35.22$	$K_{fs} = \frac{C_1 \times Q_1}{2\pi H_1^2 + \pi a^2 C_1 + 2\pi \left(\frac{H_1}{a^*}\right)}$
One Head, Inner Reservoir	$Q_1 = \bar{R}_1 \times 2.16$	$\Phi_m = \frac{C_1 \times Q_1}{(2\pi H_1^2 + \pi a^2 C_1)a^* + 2\pi H_1}$
Two Head, Combined Reservoir	$Q_1 = \overline{R}_1 \times 35.22$ $Q_2 = \overline{R}_2 \times 35.22$	$\begin{aligned} G_1 &= \frac{H_1C_1}{\pi(2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))} \\ G_2 &= \frac{H_1C_2}{\pi(2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))} \\ K_{fx} &= G_2Q_2 - G_1Q_1 \\ G_3 &= \frac{(2H_2^2 + a^2C_2)C_1}{2\pi(2H_1H_2(H_1 - H_1) + a^2(H_1C_2 - H_2C_1))} \end{aligned}$
Two Head, Inner Reservoir	$Q_1 = \bar{R}_1 \times 2.16$ $Q_2 = \bar{R}_2 \times 2.16$	$G_4 = \frac{(2H_1^2 + a^2C_1)C_2}{2\pi(2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))}$ $\Phi_m = G_3Q_1 - G_4Q_2$

 $G_1 = #VALUE!$ G₂ = #VALUE! G₃ = #VALUE! C2-0.36: #VALUE! G₄ = #VALUE! K_{fs} = #VALUE! cm/sec #VALUE! cm/min #VALUE! m/sec #VALUE! inch/min #VALUE! inch/sec Φ_m = #VALUE! cm²/min $\Theta_{fs} = N/A cm^3/cm^3$

> $\Theta_i = N/A cm^3/cm^3$ Sorptivity #VALUE! (cm min **

IFT1-2

Site #1: Highway No. 50 Carpool Lot (11221 Hwy 50, Brampton, ON L6R 3J7)

K_{fc} = 9.61E-05 cm/sec

5.77E-03 cm/min

2.27E-03 inch/min

3.78E-05 inch/sec

9.61E-07 m/s

 $\Phi_{\rm m} = \frac{8.01\text{E-}04}{\text{cm}^2/\text{min}}$

Single Head Method (1)

(enter "35.22" for Combined and "2.16" for Inner reservoir): 35.22 Enter water Head Height ("H" in cm): Enter the Borehole Radius ("a" in cm):

Enter the soil texture-structure category (enter one of the below numbers): 3

- 1. Compacted, Structure-less, clavey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc.
- 2. Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.
- 3. Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.
- 4. Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macropors, etc

Calculation formulas related to shape factor (C). Where H_I is the first water head height (cm), H_I is the second water head height (cm), a is borehole radius (cm) and a* is microscopic capillary length factor which is decided according to the soil texture-structure category. For one-head method, only G₇ needs to be calculated while for two-head method, G₂ and G₂ are calculated (Zang et al., 1998).

Soil Texture-Structure Category	α*(cm-1)	Shape Factor
Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc.	0.01	$C_1 = \left(\frac{H_2/_a}{2.081 + 0.121 \binom{H_2/_a}{a}}\right)^{0.672}$
Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.	0.04	$C_1 = \left(\frac{H_1/a}{1.992 + 0.091 {}^{(H_1/a)}}\right)^{0.683}$ $C_2 = \left(\frac{H_2/a}{1.992 + 0.091 {}^{(H_2/a)}}\right)^{0.683}$
Most structured soils from clays through loams, also nincludes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.	0.12	$C_1 = \left(\frac{H_1/a}{2.074 + 0.093 {}^{(H_1/a)}}\right)^{0.754}$ $C_2 = \left(\frac{H_2/a}{2.074 + 0.093 {}^{(H_2/a)}}\right)^{0.754}$
Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macro pores, etc.	0.36	$C_1 = \left(\frac{H_1/a}{2.074 + 0.093(^{H_1}/a)}\right)^{0.754}$ $C_2 = \left(\frac{H_2/a}{2.074 + 0.093(^{H_2}/a)}\right)^{0.754}$

Single Head Method (2)

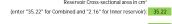
pi 3.1415

Reservoir Cross-sectional area in cm² (enter "35.22" for Combined and "2.16" for Inner reservoir): 35.22

Enter water Head Height ("H" in cm): Enter the Borehole Radius ("a" in cm):

Enter the soil texture-structure category (enter one of the below numbers): 3

- 1. Compacted, Structure-less, clavey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc.
- 2. Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.
- 3. Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.
- 4. Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macropors, etc


Steady State Rate of Water Level Change ("R" in cm/min): 0.4000

Н	20
а	3
	6.6667 0.12
0.01	1.7546
	1.9031 1.9802
	1.9802 1.9802
R	0.400

 $\Phi_{\rm m} = \frac{1.07E-03}{cm^2/min}$ Calculation formulas related to one-head and two-head methods. Where R is steady-state rate of fall of water in reservoir (cm/s), K_{fs} is Soil saturated hydraulic conductivity (cm/s), Φ_m is Soil matric flux potential (cm²/s), a^* is Macroscopic capillary length parameter (from Table 2), a is Borehole radius (cm), H_1 is the first head of water established in borehole (cm), H_2 is the second head of water established in borehole (cm) and C is Shape factor (from Table 2).

	and in continue (am) and	- in shalf interes (mean rash s).
One Head, Combined Reservoir	$Q_1 = \bar{R}_1 \times 35.22$	$K_{fx} = \frac{C_1 \times Q_1}{2\pi H_1^2 + \pi a^2 C_1 + 2\pi \left(\frac{H_1}{a^*}\right)}$
One Head, Inner Reservoir	$Q_1 = \bar{R}_1 \times 2.16$	$\Phi_m = \frac{C_1 \times Q_1}{(2\pi H_1^2 + \pi a^2 C_1)a^* + 2\pi H_1}$
Two Head, Combined Reservoir	$Q_1 = \overline{R}_1 \times 35.22$ $Q_2 = \overline{R}_2 \times 35.22$	$G_1 = \frac{H_2C_1}{\pi(2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))}$ $G_2 = \frac{H_1C_2}{\pi(2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))}$ $K_{fx} = G_2Q_2 - G_1Q_1$ $G_3 = \frac{(2H_2^2 + a^2C_2)C_1}{2\pi(2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))}$
Two Head, Inner Reservoir	$Q_1 = \bar{R}_1 \times 2.16$ $Q_2 = \bar{R}_2 \times 2.16$	$G_4 = \frac{(2H_1^2 + a^2C_1)C_2}{2\pi(2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))}$ $\phi_m = G_3Q_1 - G_4Q_2$

Double Head Method

Enter the first water Head Height ("H1" in cm): Enter the second water Head Height ("H2" in cm):

Enter the Borehole Radius ("a" in cm): 3

- Enter the soil texture-structure category (enter one of the below numbers): 3 1. Compacted, Structure-less, clayey or silty materials such as
 - landfill caps and liners, lacustrine or marine sediments, etc.
 - 2. Soils which are both fine textured (clavey or silty) and unstructured: may also include some fine sands.
 - 3. Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.
 - 4. Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macropors, etc

α*= 0.12 cm⁻¹

Steady State Rate of Water Level Change ("R1" in cm/min): 0.1000 Steady State Rate of Water Level Change ("R2" in cm/min): 0.4000

 $Q_1 = 0.0587$

 $Q_2 = 0.2348$ Res Type: 35.22 $C_1 = 1.28754$ C₂ = 1.98019

 $G_1 = 0.00208$

 $G_2 = 0.0016$ C2-0.12: 1.98019 $G_3 = 0.04247$

C2-0.36: 1.98019 $G_4 = 0.0169$ K_{fs} = 2.53E-04 cm/sec

1.52E-02 cm/min 2.53E-06 m/sec 5.98E-03 inch/min 9.96E-05 inch/sec

Φ_m = ####### cm²/min

 $\Theta_{fs} = N/A cm^3/cm^3$

 $\Theta_i = N/A cm^3/cm^3$

Sorptivity #VALUE! (cm min **

IFT3-1

Site #3: West Brampton Reservoir and Pumping Station (9624 Peel Regional Rd 1, Brampton, ON L6X 0B5)

K_{fc} = 4.89E-04 cm/sec

2.93E-02 cm/min

1.16E-02 inch/min

1.93E-04 inch/sec

4.89E-06 m/s

 $\Phi_{\rm m} = \frac{1.36\text{E-}03}{\text{cm}^2/\text{min}}$

Reservoir Cross-sectional area in cm²

(enter "35.22" for Combined and "2.16" for Inner reservoir): 35.22

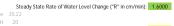
mbined and "2.16" for Inner reservoir): 35.2
Enter water Head Height ("H" in cm): 15
Enter the Borehole Radius ("a" in cm): 3

Enter the soil texture-structure category (enter one of the below numbers): 4

- Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc.
- Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.
- Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.
- Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macropors, etc

Calculation formulas related to shape factor (C). Where H_I is the first water head height (cm), H_I is the second water head height (cm), a is borehole radius (cm) and a^* is microscopic capillary length factor which is decided according to the soil texture-structure category. For one-head arthrody, outh C_I reach to be calculated C_I and C_I is calculated C_I and C_I is calculated C_I and C_I is the factor C_I in C_I is the factor C_I in C_I is the factor C_I in C_I in C_I is the factor C_I in $C_$

Soil Texture-Structure Category	α*(cm ⁻¹)	Shape Factor
Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc.	0.01	$C_1 = \left(\frac{H_2/_a}{2.081 + 0.121 \left(\frac{H_2}{a}\right)}\right)^{0.672}$
Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.	0.04	$C_1 = \left(\frac{H_1/a}{1.992 + 0.091(\frac{H_1}{a})}\right)^{0.683}$ $C_2 = \left(\frac{H_2/a}{1.992 + 0.091(\frac{H_2}{a})}\right)^{0.683}$
Most structured soils from clays through loams, also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.	0.12	$C_1 = \left(\frac{H_1/a}{2.074 + 0.093 \binom{H_1/a}{1}}\right)^{0.754}$ $C_2 = \left(\frac{H_2/a}{2.074 + 0.093 \binom{H_2/a}{1}}\right)^{0.754}$
Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macro pores, etc.	0.36	$C_1 = \left(\frac{H_1/a}{2.074 + 0.093 \binom{H_1/a}{1}}\right)^{0.754}$ $C_2 = \left(\frac{H_2/a}{2.074 + 0.093 \binom{H_2/a}{1}}\right)^{0.754}$


Single Head Method (2)

Reservoir Cross-sectional area in cm²

(enter "35.22" for Combined and "2.16" for Inner reservoir);
Enter water Head Height ("H" in cm): 20
Enter the Borehole Radius ("a" in cm): 3

Enter the soil texture-structure category (enter one of the below numbers):

- 1. Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc.
- Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.
 Most structured soils from clays through loams; also includes
- unstructured medium and fine sands. The category most frequently applicable for agricultural soils.
- Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macropors, etc

а	3	α*=	0.36	cm ⁻¹
	6.6667 0.36	C =	1.98019	
0.01	1.7546	Q =	0.9392	
	1.9031 1.9802	K _{fs} =	6.37E-04	cm/sec
	1.9802 1.9802		3.82E-02 6.37E-06	
	1.600		1.51E-02	inch/min
Q	0.9392		2.51E-04	inch/sec
pi	3.1415			

Calculation formulas related to one-head and two-head methods. Where R is steady-state rate of fall of water in reservoir (cmis), $K_{p,i}$ is Soil saturated hydraulic conductivity (cmis), Φ_m is Soil matrix flux potential (cmi-s), α^* is Macroscopic capillary length parameter (from Table 2), α is Derebole radius (cm), H_1 is the first head of water established in borehole (cm) and G is Shape factor (from Table 2).

One Head, Combined Reservoir	$Q_1 = \bar{R}_1 \times 35.22$	$K_{fs} = \frac{C_1 \times Q_1}{2\pi H_1^2 + \pi a^2 C_1 + 2\pi \left(\frac{H_1}{a^+}\right)}$
One Head, Inner Reservoir	$Q_1 = \bar{R}_1 \times 2.16$	$\Phi_m = \frac{C_1 \times Q_1}{(2\pi H_1^2 + \pi a^2 C_1)a^* + 2\pi H_1}$
Two Head, Combined Reservoir	$Q_1 = \bar{R}_1 \times 35.22$ $Q_2 = \bar{R}_2 \times 35.22$	$G_1 = \frac{H_1C_1}{\pi(2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))}$ $G_2 = \frac{H_1C_2}{\pi(2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))}$ $K_{fx} = G_2Q_2 - G_1Q_1$ $G_3 = \frac{(H_2^2 + a^2C_2)C_1}{2\pi(2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))}$
Two Head, Inner Reservoir	$Q_1 = \bar{R}_1 \times 2.16$ $Q_2 = \bar{R}_2 \times 2.16$	$G_4 = \frac{(2H_1^2 + a^2C_1)C_2}{2\pi(2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))}$ $\Phi_m = G_3Q_1 - G_4Q_2$

Double Head Method

Enter the Borehole Radius ("a" in cm): 3

Enter the soil texture-structure category (enter one of the below numbers):

- 1. Compacted, Structure-less, clayey or silty materials such as
- landfill caps and liners, lacustrine or marine sediments, etc.

 2. Soils which are both fine textured (clayer or silty) and
- unstructured; may also include some fine sands.

 3. Most structured soils from clays through loams; also includes
- Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.
- Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macropors, etc

Steady State Rate of Water Level Change ("R1" in cm/min): 0.6000 Steady State Rate of Water Level Change ("R2" in cm/min): 1.6000

Q₁ = 0.3522

> 1.04E-01 cm/min 1.73E-05 m/sec 4.09E-02 inch/min 6.82E-04 inch/sec

K_{fs} = 1.73E-03 cm/sec

Φ_m = ####### cm²/min

 $\Theta_{fs} = N/A cm^3 / cm^3$

Θ_i = N/A cm³/cm³

Sorptivity #VALUE! (cm min **

IFT3-2

Site #3: West Brampton Reservoir and Pumping Station (9624 Peel Regional Rd 1, Brampton, ON L6X 0B5)

K_{fc} = 2.68E-04 cm/sec

1.61E-02 cm/min

6.34E-03 inch/min

1.06E-04 inch/sec

2.68E-06 m/s

 $\Phi_{\rm m} = \frac{7.46\text{E-}04}{\text{cm}^2/\text{min}}$

Single Head Method (1)

(enter "35.22" for Combined and "2.16" for Inner reservoir): 35.22 Enter water Head Height ("H" in cm): Enter the Borehole Radius ("a" in cm):

Enter the soil texture-structure category (enter one of the below numbers): 4 1. Compacted, Structure-less, clavey or silty materials such as

- landfill caps and liners, lacustrine or marine sediments, etc.
- 2. Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.
- 3. Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.
- 4. Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macropors, etc

Calculation formulas related to shape factor (C). Where H_I is the first water head height (cm), H_I is the second water head height (cm), a is borehole radius (cm) and a* is microscopic capillary length factor which is decided according to the soil texture-structure category. For one-head method, only G₇ needs to be calculated while for two-head method, G₂ and G₂ are calculated (Zang et al., 1998).

Soil Texture-Structure Category	α*(cm ⁻¹)	Shape Factor
Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc.	0.01	$C_1 = \left(\frac{H_2/a}{2.081 + 0.121 \binom{H_2/a}{a}}\right)^{0.672}$
Soils which are both fine textured (clayey or sitty) and unstructured; may also include some fine sands.	0.04	$C_1 = \left(\frac{H_1/_{\alpha}}{1.992 + 0.091(H_1/_{\alpha})}\right)^{0.683}$ $C_2 = \left(\frac{H_2/_{\alpha}}{1.992 + 0.091(H_2/_{\alpha})}\right)^{0.683}$
Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.	0.12	$C_1 = \left(\frac{H_1/a}{2.074 + 0.093 \binom{H_1/a}{a}}\right)^{0.754}$ $C_2 = \left(\frac{H_2/a}{2.074 + 0.093 \binom{H_2/a}{a}}\right)^{0.754}$
Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macro pores, etc.	0.36	$C_1 = \left(\frac{H_1/_{\alpha}}{2.074 + 0.093 (H_1/_{\alpha})}\right)^{0.754}$ $C_2 = \left(\frac{H_2/_{\alpha}}{2.074 + 0.093 (H_2/_{\alpha})}\right)^{0.754}$

Single Head Method (2)

Reservoir Cross-sectional area in cm² (enter "35.22" for Combined and "2.16" for Inner reservoir): 35.22

Enter water Head Height ("H" in cm): Enter the Borehole Radius ("a" in cm):

Enter the soil texture-structure category (enter one of the below numbers):

- 1. Compacted, Structure-less, clavey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc. 2. Soils which are both fine textured (clayey or silty) and
- unstructured; may also include some fine sands. 3. Most structured soils from clays through loams; also includes
- unstructured medium and fine sands. The category most frequently applicable for agricultural soils. 4. Coarse and gravely sands; may also include some highly
- structured soils with large and/or numerous cracks, macropors, etc

Steady State Rate of Water Level Change ("R" in cm/min): 0.4000

Н	10
а	3
H/a a*	3.3333 0.36
0.01	1.2184
	1.2902 1.2875
	1.2875 1.2875
	0.400 0.2348
pi	3.1415

Calculation formulas related to one-head and two-head methods. Where R is steady-state rate of fall of water in reservoir (cm/s), K_{fs} is Soil saturated hydraulic conductivity (cm/s), Φ_m is Soil matric flux potential (cm²/s), a^* is Macroscopic capillary

length parameter (from Table 2), a is Borehole radius (cm), H_1 is the first head of water established in borehole (cm), H_2 is the second head of water established in borehole (cm) and C is Shape factor (from Table 2).

One Head, Combined Reservoir	$Q_1 = \overline{R}_1 \times 35.22$	$K_{fs} = \frac{C_1 \times Q_1}{2\pi H_1^2 + \pi a^2 C_1 + 2\pi \left(\frac{H_1}{a^*}\right)}$
One Head, Inner Reservoir	$Q_1 = \overline{R}_1 \times 2.16$	$\Phi_m = \frac{C_1 \times Q_1}{(2\pi H_1^2 + \pi a^2 C_1)a^* + 2\pi H_1}$
Two Head, Combined Reservoir	$Q_1 = \overline{R}_1 \times 35.22$ $Q_2 = \overline{R}_2 \times 35.22$	$G_1 = \frac{H_1C_1}{\pi(2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))}$ $G_2 = \frac{H_1C_2}{\pi(2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))}$ $K_{f,e} = G_2Q_2 - G_1Q_1$ $G_3 = \frac{(2H_1^2 + a^2C_2)C_1}{2\pi(2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))}$
Two Head, Inner Reservoir	$Q_1 = \bar{R}_1 \times 2.16$ $Q_2 = \bar{R}_2 \times 2.16$	$\begin{split} G_4 &= \frac{(2H_2^2 + a^2C_1)C_2}{2\pi \left(2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1)\right)} \\ \phi_m &= G_3Q_1 - G_4Q_2 \end{split}$

Double Head Method

Enter the soil texture-structure category (enter one of the below numbers): 4

- 1. Compacted, Structure-less, clayey or silty materials such as
- landfill caps and liners, lacustrine or marine sediments, etc. 2. Soils which are both fine textured (clavey or silty) and
- unstructured: may also include some fine sands.
- 3. Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.
- 4. Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macropors, etc

Steady State Rate of Water Level Change ("R1" in cm/min): 0.1
Steady State Rate of Water Level Change ("R2" in cm/min): 0.4

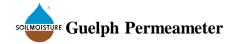
 $Q_1 = 0.0587$ $Q_2 = 0.2348$

Res Type: 35.22 $C_1 = 0.80315$ C₂ = 1.28754 $G_1 = 0.00526$ $G_2 = 0.00422$ $G_3 = 0.05569$ C2-0.36: 1.28754

> K_{fs} = 6.82E-04 cm/sec 4.09E-02 cm/min 6.82E-06 m/sec 1.61E-02 inch/min 2.68E-04 inch/sec

 $G_4 = 0.02415$

Φ_m = ####### cm²/min


 $\Theta_{fs} = N/A cm^3/cm^3$

 $\Theta_i = N/A cm^3/cm^3$

Sorptivity #VALUE! (cm min .56

IFT3-3

Site #3: West Brampton Reservoir and Pumping Station (9624 Peel Regional Rd 1, Brampton, ON L6X 0B5)

Single Head Method (1)

Reservoir Cross-sectional area in cm² (enter "35.22" for Combined and "2.16" for Inner reservoir): 35.22

mbined and "2.16" for Inner reservoir): 35.22
Enter water Head Height ("H" in cm): 10
Enter the Borehole Radius ("a" in cm): 3

Enter the soil texture-structure category (enter one of the below numbers): 4

- Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc.
- Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.
- Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.
- Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macropors, etc

	Steady State Rate of Water Level Change ("R" in cm/min):	0.2000	
Res Type			
Н	10		
а	3 α *=	0.36	cm -1
	3.33	4 00754	
		1.28754	
	1.22 Q =	0.1174	
C0.04			
C0.12	1.29 K _{fs} =	1.80E-04	cm/sec
CO.36	1.29	1.08E-02	cm/min
C	1.29	1.80E-06	m/sec
R	0.200	4.25E-03	inch/min
Q	0.12	7.09E-05	inch/sec
pi	3.14		
	$\Phi_{\rm m}$ =	5.00E-04	cm²/min

Single Head Method (2)

Reservoir Cross-sectional area in cm²

(enter "35.22" for Combined and "2.16" for Inner reservoir):

Enter water lead Height ("H" in cm):

Enter the Borehole Radius ("a" in cm):

3

Enter the soil texture-structure category (enter one of the below numbers):

4

- Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc.
- Soils which are both fine textured (clayer or silty) and unstructured; may also include some fine sands.
- Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.
- 4. Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macropors, etc

Steady State Rate of Water Level Change ("R" in cm/min): 0.2000

Н	10			
а	3	α*=	0.36	cm -1
	3.3333 0.36	C =	1.28754	
0.01	1.2184	Q =	0.1174	
	1.2902 1.2875	K _{fs} =	1.80E-04	cm/s
	1.2875 1.2875		1.08E-02 1.80E-06	
	0.200 0.1174		4.25E-03 7.09E-05	
pi	3.1415			

Average

Ţ.

Calculation formulas related to thape factor (C). Where H_1 is the first water head height (cm), H_2 is the second water head height (cm), a is borehole radius (cm) and a^* is microscopic capillary length factor which is decided according to the soil texture-structure category. For one-head method, only C_1 reach to be calculated C_2 and C_2 is calculated C_2 and C_3 is C_3 .

Soil Texture-Structure Category	α*(cm ⁻¹)	Shape Factor
Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc.	0.01	$C_1 = \left(\frac{H_2/a}{2.081 + 0.121 \binom{H_2/a}{2}}\right)^{0.672}$
Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.	0.04	$C_1 = \left(\frac{H_1/a}{1.992 + 0.091 \binom{H_1}{a}}\right)^{0.683}$ $C_2 = \left(\frac{H_2/a}{1.992 + 0.091 \binom{H_2}{a}}\right)^{0.683}$
Most structured soils from clays through loams, also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.	0.12	$C_1 = \left(\frac{H_1/a}{2.074 + 0.093(^{H_1}/a)}\right)^{0.754}$ $C_2 = \left(\frac{H_2/a}{2.074 + 0.093(^{H_2}/a)}\right)^{0.754}$
Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macro pores, etc.	0.36	$C_1 = \left(\frac{H_1/a}{2.074 + 0.093 \binom{H_1}{a}}\right)^{0.754}$ $C_2 = \left(\frac{H_2/a}{2.074 + 0.093 \binom{H_2}{a}}\right)^{0.754}$

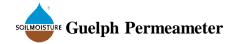
Calculation formulas related to one-head and two-head methods. Where R is steady-state rate of fall of water in reservoir (cm/s), R_{p_1} is Soil saturated hydraulic conductivity (cm/s), θ_{m_1} is Soil matric flux potential (cm/s), a^* is Macroscopic capillary length parameter (from Table 2), a is Borehole radius (cm), H_1 is the first head of water established in borehole (cm) and G is Shape factor (from Table 2).

One Head, Combined Reservoir	$Q_1 = \bar{R}_1 \times 35.22$	$K_{fs} = \frac{C_1 \times Q_1}{2\pi H_1^2 + \pi a^2 C_1 + 2\pi \left(\frac{H_1}{a^*}\right)}$
One Head, Inner Reservoir	$Q_1 = \bar{R}_1 \times 2.16$	$\Phi_m = \frac{C_1 \times Q_1}{(2\pi H_1^2 + \pi a^2 C_1)a^* + 2\pi H_1}$
Two Head, Combined Reservoir	$Q_1 = \overline{R}_1 \times 35.22$ $Q_2 = \overline{R}_2 \times 35.22$	$G_1 = \frac{H_2C_1}{\pi(2H_1H_2(H_2 - H_2) + a^2(H_1C_2 - H_2C_1))}$ $G_2 = \frac{H_1C_2}{\pi(2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))}$ $K_{f,g} = G_2Q_2 - G_1Q_1$ $G_3 = \frac{(2H_2^2 + a^2C_2)C_1}{2\pi(2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))}$
Two Head, Inner Reservoir	$Q_1 = \bar{R}_1 \times 2.16$ $Q_2 = \bar{R}_2 \times 2.16$	$G_4 = \frac{(2H_1^2 + a^2C_1)C_2}{2\pi(2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))}$ $\phi_m = G_3Q_1 - G_4Q_2$

Double Head Method

applicable for agricultural soils.

4. Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macropors, etc.


 $Q_1 = \text{#VALUE!}$ $Q_2 = \text{#VALUE!}$

Θ_{fs} = N/A cm³/cm³

 $\Theta_{i} = N/A cm^{3} / cm^{3}$ Sorptivity #VALUE! (cm min⁻¹⁶

IFT5-1

Site #5: Johnston Sports Park (6898 King St, Caledon East, ON L7C 0V1)

Single Head Method (1)

Reservoir Cross-sectional area in cr

(enter "35.22" for Combined and "2.16" for Inner reservoir): 35.22

Enter water Head Height ("H" in cm): 24

Enter the Borehole Radius ("a" in cm): 3

Enter the soil texture-structure category (enter one of the below numbers): 3

- Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc.
 Soils which are both fine textured (clayey or silty) and
- unstructured; may also include some fine sands.

 3. Most structured soils from clays through loams; also includes
- unstructured medium and fine sands. The category most frequently applicable for agricultural soils.

 4. Coarse and gravely sands; may also include some highly
- Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macropors, etc

Single Head Method (2)

pi 3.1415

Reservoir Cross-sectional area in cm²
(enter "35.22" for Combined and "2.16" for Inner reservoir): 35.22

ombined and "2.16" for Inner reservoir):

Enter water Head Height ("H" in cm):

Enter the Borehole Radius ("a" in cm):

Enter the soil texture-structure category (enter one of the below numbers): 3

- 1. Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc.
- Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.
- Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.
- Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macropors, etc

Steady State Rate of Water Level Change ("R" in cm/min): 0.2500

Н	24
а	3
	8 0.12
0.01	1.9122
	2.0893 2.1962
	2.1962 2.1962
R	0.250

Average Double Head Method

K_{fc} = 6.53E-05 cm/sec

3.92E-03 cm/min

1.54E-03 inch/min

2.57E-05 inch/sec

6.53E-07 m/s

 $\Phi_{\rm m} = \frac{5.44\text{E-}04}{\text{cm}^2/\text{min}}$

Reservoir Cross-sectional area in cm²
(enter "35.22" for Combined and "2.16" for Inner reservoir): N/A

Enter the first water Head Height ("H1" in cm): N/A
Enter the second water Head Height ("H2" in cm): N/A

Enter the Borehole Radius ("a" in cm): N/A

Enter the soil texture-structure category (enter one of the below numbers): N/A

1. Compacted, Structure-less, clayey or silty materials such as

- landfill caps and liners, lacustrine or marine sediments, etc.
- Soils which are both fine textured (clayey or silty) and unstructured: may also include some fine sands.
- Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.
- Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macropors, etc

Steady State Rate of Water Level Change ("R1" in cm/min): N/A Steady State Rate of Water Level Change ("R2" in cm/min): N/A

Q₁ = #VALUE!

C2-0.36: $\prescript{#VALUE!}$ ominator: $\prescript{#VALUE!}$ $\prescript{G_4 = \prescript{#VALUE!}}$ $\prescript{K_K = \prescript{#VALUE!}}$ $\prescript{K_K = \prescript{#VALUE!}}$

#VALUE! cm/min #VALUE! m/sec #VALUE! inch/min #VALUE! inch/sec

Φ_m = #VALUE! cm²/min

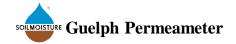
Θ_{fs} = N/A cm³/cm³

Θ_i = N/A cm³/cm³

Sorptivity #VALUE! (cm min **

Calculation formulas solated to shape factor (C). Where H_i is the first water head height (cm), H_i is the second water head height (cm), d_i is borehole radius (cm) as d_i is microscopic capillary length factor which is decided according to the soil texture-structure category. For one-beat endrolo, out C reserve to be calculated within for two-beat ended (C, c, in G, C, c) accludated (Z, c) and (Z, c) is (Z, c).

 $\Phi_{\rm m} = \frac{5.44\text{E-}04}{5.44\text{E-}04} \text{ cm}^2/\text{min}$


Soil Texture-Structure Category	α*(cm ⁻¹)	Shape Factor
Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc.	0.01	$C_1 = \left(\frac{H_2/a}{2.081 + 0.121 \left(\frac{H_2/a}{a}\right)}\right)^{0.672}$
Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.	0.04	$C_1 = \left(\frac{H_1/a}{1.992 + 0.091(H_1/a)}\right)^{0.683}$ $C_2 = \left(\frac{H_2/a}{1.992 + 0.091(H_2/a)}\right)^{0.683}$
Most structured soils from clays through loams, also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.	0.12	$C_1 = \left(\frac{H_1/a}{2.074 + 0.093 \binom{H_1/a}{a}}\right)^{0.754}$ $C_2 = \left(\frac{H_2/a}{2.074 + 0.093 \binom{H_2/a}{a}}\right)^{0.754}$
Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macro pores, etc.	0.36	$C_1 = \left(\frac{H_1/a}{2.074 + 0.093 \binom{H_1}{a}}\right)^{0.754}$ $C_2 = \left(\frac{H_2/a}{2.074 + 0.093 \binom{H_2}{a}}\right)^{0.754}$

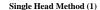
Calculation formulas related to one-head and two-head methods. Where R is steady-state rate of fall of water in reservoir (cm/s), R_{p_1} is Soil saturated hydraulic conductivity (cm/s), θ_{m_1} is Soil matric flux potential (cm/s), a^* is Macroscopic capillary length parameter (from Table 2), a is Borehole radius (cm), H_1 is the first head of water established in borehole (cm) and G is Shape factor (from Table 2).

One Head, Combined Reservoir	$Q_1 = \overline{R}_1 \times 35.22$	$K_{fs} = \frac{C_1 \times Q_1}{2\pi H_1^2 + \pi a^2 C_1 + 2\pi \left(\frac{H_1}{a^2}\right)}$
One Head, Inner Reservoir	$Q_1 = \bar{R}_1 \times 2.16$	$\Phi_m = \frac{C_1 \times Q_1}{(2\pi H_1^2 + \pi a^2 C_1)a^* + 2\pi H_1}$
Two Head, Combined Reservoir	$Q_1 = \overline{R}_1 \times 35.22$ $Q_2 = \overline{R}_2 \times 35.22$	$G_1 = \frac{H_2C_1}{\pi(2H_2H_2(H_2 - H_2) + a^2(H_1C_2 - H_2C_1))}$ $G_2 = \frac{H_1C_2}{\pi(2H_2H_2(H_2 - H_2) + a^2(H_1C_2 - H_2C_1))}$ $K_{f,e} = G_2Q_2 - G_1Q_1$ $G_3 = \frac{(2H_2^2 + a^2C_2)C_1}{2\pi(2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))}$
Two Head, Inner Reservoir	$Q_1 = \bar{R}_1 \times 2.16$ $Q_2 = \bar{R}_2 \times 2.16$	$\begin{split} G_4 &= \frac{(2H_2^2 + a^2C_1)C_2}{2\pi \left(2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1)\right)} \\ \Phi_m &= G_3Q_1 - G_4Q_2 \end{split}$

IFT5-2

Site #5: Johnston Sports Park (6898 King St, Caledon East, ON L7C 0V1)

K_{fr} = 1.31E-05 cm/sec


7.83E-04 cm/min

3.08E-04 inch/min

5.14E-06 inch/sec

1.31E-07 m/s

 $\Phi_{\rm m} = \frac{1.09\text{E-}04}{\text{cm}^2/\text{min}}$

Reservoir Cross-sectional area in cm²

(enter "35.22" for Combined and "2.16" for Inner reservoir):

Enter water Head Height ("H" in cm):

Enter the Borehole Radius (r8" in cm):

3

Enter the soil texture-structure category (enter one of the below numbers): 3

1. Compacted, Structure-less, clayey or silty materials such as

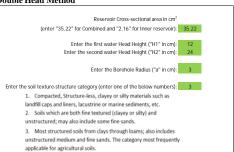
- Compacted, Structure-less, clayer or silty materials such landfill caps and liners, lacustrine or marine sediments, etc.
- Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.
- Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.
- Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macropors, etc

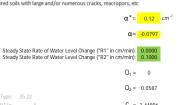
Calculation formulas related to shape factor (C). Where H_I is the first water head height (cm), H_I is the second water head height (cm), a is borehole radius (cm) and a^* is microscopic capillary length factor which is decided according to the soil texture-structure category. For one-head arthrody, outh C_I reach to be calculated C_I and C_I is calculated C_I and C_I is C_I .

Soil Texture-Structure Category	α*(cm ⁻¹)	Shape Factor
Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc.	0.01	$C_1 = \left(\frac{H_2/_a}{2.081 + 0.121 \left(\frac{H_2}{a}\right)}\right)^{0.672}$
Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.	0.04	$C_1 = \left(\frac{H_1/a}{1.992 + 0.091(H_1/a)}\right)^{0.683}$ $C_2 = \left(\frac{H_2/a}{1.992 + 0.091(H_2/a)}\right)^{0.683}$
Most structured soils from clays through loams, also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.	0.12	$C_1 = \left(\frac{H_1/a}{2.074 + 0.093 \binom{H_1/a}{a}}\right)^{0.754}$ $C_2 = \left(\frac{H_2/a}{2.074 + 0.093 \binom{H_2/a}{a}}\right)^{0.754}$
Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macro pores, etc.	0.36	$C_1 = \left(\frac{H_1/a}{2.074 + 0.093 \binom{H_1/a}{a}}\right)^{0.754}$ $C_2 = \left(\frac{H_2/a}{2.074 + 0.093 \binom{H_2/a}{a}}\right)^{0.754}$

Single Head Method (2)

Enter the soil texture-structure category (enter one of the below numbers): 3


- Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc.
- Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.
 Most structured soils from clays through loams; also includes
- Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.
- Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macropors, etc


Calculation formulas related to one-head and two-head methods. Where R is steady-state rate of fall of water in reservoir (cm/s), R_{p_1} is Soil saturated hydraulic conductivity (cm/s), θ_{m_1} is Soil matric flux potential (cm/s), a^* is Macroscopic capillary length parameter (from Table 2), a is Borehole radius (cm), H_1 is the first head of water established in borehole (cm) and G is Shape factor (from Table 2).

One Head, Combined Reservoir	$Q_1 = \bar{R}_1 \times 35.22$	$K_{fs} = \frac{C_1 \times Q_1}{2\pi H_1^2 + \pi a^2 C_1 + 2\pi \left(\frac{H_1}{a^+}\right)}$
One Head, Inner Reservoir	$Q_1 = \bar{R}_1 \times 2.16$	$\Phi_m = \frac{C_1 \times Q_1}{(2\pi H_1^2 + \pi a^2 C_1)a^* + 2\pi H_1}$
Two Head, Combined Reservoir	$Q_1 = \bar{R}_1 \times 35.22$ $Q_2 = \bar{R}_2 \times 35.22$	$G_1 = \frac{H_1C_1}{\pi(2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))}$ $G_2 = \frac{H_1C_2}{\pi(2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))}$ $K_{fx} = G_2Q_2 - G_1Q_1$ $G_3 = \frac{(H_2^2 + a^2C_2)C_1}{2\pi(2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))}$
Two Head, Inner Reservoir	$Q_1 = \bar{R}_1 \times 2.16$ $Q_2 = \bar{R}_2 \times 2.16$	$G_4 = \frac{(2H_1^2 + a^2C_1)C_2}{2\pi(2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))}$ $\Phi_m = G_3Q_1 - G_4Q_2$

Double Head Method

Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macropors, etc.

nC
in
nin iec
iec
min
,,,,,,
cm ³

 $\Theta_1 = N/A cm^3/cm^3$ Sorptivity #VALUE! (cm min^{-%}

IFT5-3

Site #5: Johnston Sports Park (6898 King St, Caledon East, ON L7C 0V1)

K_{fr} = 0.00E+00 cm/sec 0.00E+00 cm/min

0.00E+00 m/s

 $\Phi_{\rm m} = \frac{0.00E+00}{0.00E+00}$ cm²/min

0.00E+00 inch/min

0.00E+00 inch/sec

Single Head Method (1)

(enter "35.22" for Combined and "2.16" for Inner reservoir): 35.22 Enter water Head Height ("H" in cm):

Enter the Borehole Radius ("a" in cm):

Enter the soil texture-structure category (enter one of the below numbers): 3

- 1. Compacted, Structure-less, clavey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc.
- 2. Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.

Soil Texture-Structure Category

Compacted, Structure-less, clayey or silty materials such

as landfill caps and liners, lacustrine or marine

Coarse and gravely sands; may also include some highly

structured soils with large and/or numerous cracks,

sediments, etc.

- 3. Most structured soils from clays through loams: also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.
- 4. Coarse and gravely sands; may also include some highly

structu	red soils with large and/or numerous cracks, macrop	ors, e	etc	
Res Type	Steady State Rate of Water Level Change ("R" in cm/	min):	0.0000	
	10			
а	3	α *=	0.12	cm -1
	3.33 0.12	C =	1.28754	
C0.01	1.22	Q=	0	
C0.04 C0.12		K _{fs} =	0.00E+00	cm/sec
C0.36 C	1.29 1.29		0.00E+00 0.00E+00	
R	0.000		0.00E+00	
Q	0		0.00E+00	inch/sec
pi	3.14	Φ _m =	0.00E+00	cm²/mir

4. Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macropors, etc Steady State Rate of Water Level Change ("R" in cm/min): 0.0000 $\alpha^* = 0.12 \text{ cm}^{-1}$ H/a 8 a* 0.12 C = 2.19621 Q = 0 $K_{fs} = 0.00E+00$ cm/sec C0.36 2.1962 C 2.1962 0.00E+00 cm/min 0.00E+00 m/ses R 0.000 0.00E+00 inch/mir pi 3.1415

Calculation formulas related to shape factor (C). Where H_1 is the first water head height (cm), H_2 is the second water head height

are calculated (Zang et al., 1998).			Cis Shape factor (from Table 2).
Shape Factor	second nead of water establis	ned in obtenoic (cin) and	
$= \left(\frac{H_2/a}{2.081 + 0.121 \binom{H_2/a}{a}}\right)^{0.672}$	One Head, Combined Reservoir	$Q_1 = \bar{R}_1 \times 35.22$	$K_{fx} = \frac{C_1 \times Q_1}{2\pi H_1^2 + \pi a^2 C_1 + 2\pi \left(\frac{H_2}{a^2}\right)}$
	One Head, Inner Reservoir	$Q_1 = \overline{R}_1 \times 2.16$	$\Phi_m = \frac{C_1 \times Q_1}{(2\pi H_1^2 + \pi \alpha^2 C_1)\alpha^* + 2\pi H_1}$
$= \left(\frac{H_1/a}{1.992 + 0.091(H_1/a)}\right)^{0.683}$			$G_1 = \frac{H_2C_1}{\pi(2H_1H_2(H_2 - H_1) + \alpha^2(H_1C_2 - H_2C_1))}$
$= \left(\frac{H_2/a}{1.992 + 0.091(^{H_2}/a)}\right)^{0.683}$	Two Head, Combined Reservoir		$G_2 = \frac{H_1 C_2}{\pi \left(2H_1 H_2 (H_2 - H_1) + \alpha^2 (H_1 C_2 - H_2 C_1) \right)}$
$= \left(\frac{H_1/a}{2.074 + 0.093(\frac{H_1}{a})}\right)^{0.754}$	Combined Reservoir	$Q_2 = \overline{R}_2 \times 35.22$	$K_{fs} = G_2 Q_2 - G_1 Q_1$
$= \left(\frac{H_2/a}{2.074 + 0.093(^{H_2}/a)}\right)^{0.754}$			$G_3 = \frac{(2H_2^2 + a^2C_2)C_1}{2\pi \left(2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1)\right)}$
$= \left(\frac{H_1/a}{2.074 + 0.093(\frac{H_1}{a})}\right)^{0.754}$ $= \left(\frac{H_2/a}{a}\right)^{0.754}$	Two Head, Inner Reservoir	$Q_1 = \overline{R}_1 \times 2.16$ $Q_2 = \overline{R}_2 \times 2.16$	$\begin{split} G_4 &= \frac{(2H_1^2 + a^2C_1)C_2}{2\pi \left(2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1)\right)} \\ \Phi_m &= G_3Q_1 - G_4Q_2 \end{split}$
$(2.074 + 0.093(^{H_2}/_a))$			

Single Head Method (2)

Reservoir Cross-sectional area in cm²

(enter "35.22" for Combined and "2.16" for Inner reservoir): 35.22 Enter water Head Height ("H" in cm): Enter the Borehole Radius ("a" in cm):

Enter the soil texture-structure category (enter one of the below numbers): 3

- 1. Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc.
- 2. Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.
- 3. Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.

Calculation formulas related to one-head and two-head methods. Where R is steady-state rate of fall of water in reservoi (cm), a is borehole acidos (cm) and a^* is microscopic capillary length factor which is decided according to the soil testing extractive category. For one-head method, only C resceived to the calculated which is decided according to the soil testine-structure category. For one-head method, only C resceived in the calculated which is decided according to the soil testine-structure category. For one-head method, only C resceived in the calculated which is decided according to the soil testine-structure category. For one-head method, only C resceived in the calculated which is for two-head method, C and C are calculated which is C and C are calculated C and C are cal

Double Head Method

Enter the first water Head Height ("H1" in cm): Enter the second water Head Height ("H2" in cm):

Enter the Borehole Radius ("a" in cm): 3

- Enter the soil texture-structure category (enter one of the below numbers): 3 1. Compacted, Structure-less, clayey or silty materials such as
 - landfill caps and liners, lacustrine or marine sediments, etc.
 - 2. Soils which are both fine textured (clavey or silty) and

unstructured: may also include some fine sands.

- 3. Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.
- 4. Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macropors, etc

α*= 0.12 cm

Steady State Rate of Water Level Change ("R1" in cm/min): Steady State Rate of Water Level Change ("R2" in cm/min):

Q₂ = 0 Res Type: 35.22 $C_1 = 1.28754$ H2/a: 8 C1-0.01: 1.21841 C₂ = 2.19621

 $G_1 = 0.00148$

 $G_2 = 0.00105$

 $G_3 = 0.03617$ C2-0.36: 2.19621 $G_4 = 0.01114$

> $K_{fs} = 0.00E+00$ cm/sec 0.00E+00 cm/min 0.00E+00 m/sec 0.00E+00 inch/min

0.00E+00 inch/sec $\Phi_{\rm m} = \frac{0.00E+00}{0.00E+00} \, cm^2 / min$

 $\Theta_{fs} = N/A cm^3/cm^3$

Θ_i = N/A cm³/cm³

Sorptivity #VALUE! (cm min **

		(2001 : 0.222 (/4))
Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.	0.04	$C_1 = \left(\frac{H_1/a}{1.992 + 0.091(H_1/a)}\right)^{0.683}$ $C_2 = \left(\frac{H_2/a}{1.992 + 0.091(H_2/a)}\right)^{0.683}$
Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.	0.12	$C_1 = \left(\frac{H_1/a}{2.074 + 0.093 \binom{H_1}{a}}\right)^{0.754}$ $C_2 = \left(\frac{H_2/a}{2.074 + 0.093 \binom{H_2}{a}}\right)^{0.754}$
		$C = \begin{pmatrix} H_1/a \end{pmatrix}^{0.754}$

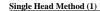
0.01

0.36

IFT6-1

Site #6: Tullamore Reservoir and Pumping Station (12078 Innis

Lake Rd, Caledon East, ON L7C 0Z7)


K_{fr} = 8.92E-05 cm/sec

5.35E-03 cm/min

2.11E-03 inch/min

3.51E-05 inch/sec

8.92E-07 m/s

Enter the soil texture-structure category (enter one of the below numbers): 4

- 1. Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc.
- 2. Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.
- 3. Most structured soils from clavs through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.
- structured soils with large and/or numerous cracks, macropors, etc

4. Coarse and gravely sands; may also include some highly

	$\Phi_{\rm m} = \frac{2.45 \text{E-}04}{\text{cm}^2/\text{min}}$	$\Phi_{\rm m} = \frac{2.50\text{E-}04}{\text{cm}^2/\text{min}}$
٠.	Calculation formulas related to shape factor (C). Where H_1 is the first water head height (cm), H_2 is the second water head height a is borehole radius (cm) and a is microscopic capillary length factor which is decided according to the soil texture-structure category.	Calculation formulas related to one-head and two-head methods. Where R is steady-static (cm/s), K_{fg} is Soil saturated hydraulic conductivity (cm/s), Φ_m is Soil matric flux potential (cm
	with a potential method only G-needs to be calculated while for two-head method only G-are calculated (7ans et al. 1998)	length parameter (from Table 2), a is Borehole radius (cm), H1 is the first head of water establish

Single Head Method (2)

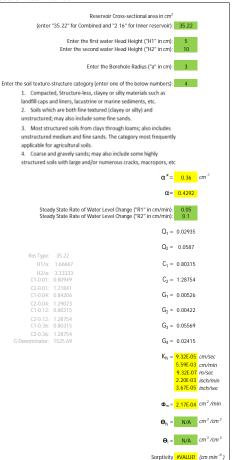
Soil Texture-Structure Category	α*(cm ⁻¹)	Shape Factor	Γ
Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc.	0.01	$C_1 = \left(\frac{H_2/_a}{2.081 + 0.121 \left(\frac{H_2}{a}\right)}\right)^{0.672}$	
Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.	0.04	$C_1 = \left(\frac{H_1/_a}{1.992 + 0.091 \binom{H_1/_a}{2}}\right)^{0.683}$ $C_2 = \left(\frac{H_2/_a}{1.992 + 0.091 \binom{H_2/_a}{2}}\right)^{0.683}$	
Most structured soils from clays through loams, also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.	0.12	$C_1 = \left(\frac{H_1/_a}{2.074 + 0.093(^{H_1}/_a)}\right)^{0.754}$ $C_2 = \left(\frac{H_2/_a}{2.074 + 0.093(^{H_2}/_a)}\right)^{0.754}$	
Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macro pores, etc.	0.36	$C_1 = \left(\frac{H_1/a}{2.074 + 0.093 \binom{H_1}{a}}\right)^{0.754}$ $C_2 = \left(\frac{H_2/a}{2.074 + 0.093 \binom{H_2}{a}}\right)^{0.754}$	

		less, clayey or silty materials such as			Φ _m = 2.48E-04 cm ² /mi
landfil	l caps and liners, lacu	strine or marine sediments, etc.			
2. So	oils which are both fin	e textured (clayey or silty) and			0
unstru	ictured; may also incl	ude some fine sands.			
3. M	ost structured soils fr	rom clays through loams; also includes			
unstru	actured medium and f	fine sands. The category most frequently	y		
	able for agricultural se				7
4. Co	parse and gravely san	ds; may also include some highly			
struct	ured soils with large a	and/or numerous cracks, macropors, et	c		
	Steady State Rate	e of Water Level Change ("R" in cm/min)	0.1000		
Res Type	35.22				
H	10				
а	3	α*=	0.36	cm ⁻¹	
H/a	3.3333				
a*	0.36	C =	1.28754		
C0.01	1.2184	Q =	0.0587		
C0.04	1.2902	V			
	1.2875	K _{fs} =	9.01E-05		
C0.36	1.2875 1.2875		5.40E-03 9.01E-07		
				inch/min	\uparrow_H
0				inch/sec	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ni	3.1415				2a
		Φ_=	2 50F-04	cm2/min	

Reservoir Cross-sectional area in cm²

Enter water Head Height ("H" in cm):

Enter the Borehole Radius ("a" in cm):


(enter "35.22" for Combined and "2.16" for Inner reservoir): 35.22

Enter the soil texture-structure category (enter one of the below numbers):

Calculation formulas related to one-head and two-head methods. Where R is steady-state rate of fall of water in reservoir
(cm/s), Kfg is Soil saturated hydraulic conductivity (cm/s), Φ_m is Soil matric flux potential (cm ² /s), α^* is Macroscopic capillary
length parameter (from Table 2), a is Borehole radius (cm), H1 is the first head of water established in borehole (cm), H2 is the
second head of water established in horehole (cm) and Cis Shane factor (from Table 2)

One Head, Combined Reservoir	$Q_1 = \bar{R}_1 \times 35.22$	$K_{fs} = \frac{C_1 \times Q_1}{2\pi H_1^2 + \pi a^2 C_1 + 2\pi \left(\frac{H_1}{a^*}\right)}$
One Head, Inner Reservoir	$Q_1 = \overline{R}_1 \times 2.16$	$\Phi_m = \frac{C_1 \times Q_1}{(2\pi H_1^2 + \pi a^2 C_1)a^* + 2\pi H_1}$
Two Head, Combined Reservoir	$Q_1 = \overline{R}_1 \times 35.22$ $Q_2 = \overline{R}_2 \times 35.22$	$\begin{aligned} G_1 &= \frac{H_1C_1}{\pi(2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))} \\ G_2 &= \frac{H_1C_2}{\pi(2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))} \\ K_{fx} &= G_2Q_2 - G_1Q_1 \\ G_3 &= \frac{(2H_2^2 + a^2C_2)C_1}{2\pi(2H_1H_2(H_1 - H_1) + a^2(H_1C_2 - H_2C_1))} \end{aligned}$
Two Head, Inner Reservoir	$Q_1 = \bar{R}_1 \times 2.16$ $Q_2 = \bar{R}_2 \times 2.16$	$G_4 = \frac{(2H_1^2 + a^2C_1)C_2}{2\pi(2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))}$ $\Phi_m = G_3Q_1 - G_4Q_2$

Double Head Method

IFT6-2

Site #6: Tullamore Reservoir and Pumping Station (12078 Innis

Lake Rd, Caledon East, ON L7C 0Z7)

Single Head Method (1)

(enter "35.22" for Combined and "2.16" for Inner reservoir): 35.22

Enter water Head Height ("H" in cm): Enter the Borehole Radius ("a" in cm):

Enter the soil texture-structure category (enter one of the below numbers): 3

- 1. Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc.
- 2. Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.
- 3. Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.
- 4. Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macropors, etc

	Steady State Rate of Water Level Change ("R" in cm/mir	1):	0.1000	
Res Type	35.2			
Н	10			
а	3 α *	=	0.12	cm -1
H/a	3.33			
a*	0.12 C	=	1.28754	
C0.01	1.22 Q	=	0.0587	
C0.04	1.29			
CO.12	1.29 K _{fs}	=	6.36E-05	cm/sec
C0.36	1.29		3.82E-03	cm/min
C	1.29		6.36E-07	m/sec
R	0.100		1.50E-03	inch/min
Q	0.06		2.50E-05	inch/sec
pi	3.14			
	Φ_{m}	-	5.30E-04	cm²/mir

Single Head Method (2)


pi 3.1415

Reservoir Cross-sectional area in cm² (enter "35.22" for Combined and "2.16" for Inner reservoir): 35.22

Enter water Head Height ("H" in cm): Enter the Borehole Radius ("a" in cm):

Enter the soil texture-structure category (enter one of the below numbers): 3

- 1. Compacted, Structure-less, clavey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc.
- 2. Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands. 3. Most structured soils from clays through loams; also includes
- unstructured medium and fine sands. The category most frequently applicable for agricultural soils.
- 4. Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macropors, etc

Н	20
а	3
	6.6667 0.12
01	1.7546
	1.9031 1.9802
	1.9802 1.9802
R	0.200

2.52E-05 inch/sec $\Phi_{\rm m} = \frac{5.33\text{E-}04}{\text{cm}^2/\text{min}}$

K_{fc} = 6.39E-05 cm/sec

3.84E-03 cm/min

6.39E-07 m/s 1.51E-03 inch/min

Average

Calculation formulas related to shape factor (C). Where H_T is the first water head height (cm), H_2 is the second water head height (cm), a is borehole radius (cm) and a* is microscopic capillary length factor which is decided according to the soil texture-structure category. For one-head method, only G₇ needs to be calculated while for two-head method, G₂ and G₂ are calculated (Zang et al., 1998).

Soil Texture-Structure Category	α*(cm-1)	Shape Factor
Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc.	0.01	$C_1 = \left(\frac{H_2/_a}{2.081 + 0.121 \left(\frac{H_2}{a}\right)}\right)^{0.672}$
Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.	0.04	$C_1 = \left(\frac{H_1/a}{1.992 + 0.091(^{H_2}/a)}\right)^{0.683}$ $C_2 = \left(\frac{H_2/a}{1.992 + 0.091(^{H_2}/a)}\right)^{0.683}$
Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.	0.12	$C_1 = \left(\frac{H_1/_a}{2.074 + 0.093 \binom{H_1/_a}{A}}\right)^{0.754}$ $C_2 = \left(\frac{H_2/_a}{2.074 + 0.093 \binom{H_2/_a}{A}}\right)^{0.754}$
Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macro pores, etc.	0.36	$C_1 = \left(\frac{H_1/a}{2.074 + 0.093(^{H_2}/a)}\right)^{0.754}$ $C_2 = \left(\frac{H_2/a}{2.074 + 0.093(^{H_2}/a)}\right)^{0.754}$

Calculation formulas related to one-head and two-head methods. Where R is steady-state rate of fall of water in reservoir (cm/s), K_{fs} is Soil saturated hydraulic conductivity (cm/s), Φ_m is Soil matric flux potential (cm²/s), a^* is Macroscopic capillary length parameter (from Table 2), a is Borehole radius (cm), H_1 is the first head of water established in borehole (cm), H_2 is the second head of water established in borehole (cm) and C is Shape factor (from Table 2).

One Head, Combined Reservoir	$Q_1 = \bar{R}_1 \times 35.22$	$K_{fs} = \frac{C_1 \times Q_1}{2\pi H_1^2 + \pi a^2 C_1 + 2\pi \left(\frac{H_1}{a^*}\right)}$
One Head, Inner Reservoir	$Q_1 = \bar{R}_1 \times 2.16$	$\Phi_m = \frac{C_1 \times Q_1}{(2\pi H_1^2 + \pi a^2 C_1)a^* + 2\pi H_1}$
Two Head, Combined Reservoir	$Q_1 = \bar{R}_1 \times 35.22$ $Q_2 = \bar{R}_2 \times 35.22$	$G_1 = \frac{H_1C_1}{\pi(2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))}$ $G_2 = \frac{H_1C_2}{\pi(2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))}$ $K_{fg} = G_2Q_2 - G_1Q_1$ $G_3 = \frac{(2H_2^2 + a^2C_2)C_1}{2\pi(2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))}$
Two Head, Inner Reservoir	$Q_1 = \bar{R}_1 \times 2.16$ $Q_2 = \bar{R}_2 \times 2.16$	$G_4 = \frac{(2H_1^2 + a^2C_1)C_2}{2\pi(2H_2H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))}$ $\Phi_m = G_3Q_1 - G_4Q_2$

Double Head Method

Enter the Borehole Radius ("a" in cm): 3

Enter the soil texture-structure category (enter one of the below numbers): 3

- 1. Compacted, Structure-less, clayey or silty materials such as
- landfill caps and liners, lacustrine or marine sediments, etc. 2. Soils which are both fine textured (clavey or silty) and
- unstructured: may also include some fine sands.
- 3. Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.
- 4. Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macropors, etc

$$\alpha^* = 0.12$$
 cm

Steady State Rate of Water Level Change ("R1" in cm/min): 0.1000 Steady State Rate of Water Level Change ("R2" in cm/min): 0.2000

 $Q_1 = 0.0587$ $Q_2 = 0.1174$

Res Type: 35.22 $C_1 = 1.28754$ C₂ = 1.98019 $G_1 = 0.00208$

 $G_2 = 0.0016$ $G_3 = 0.04247$

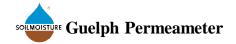
C2-0.36: 1.98019 $G_4 = 0.0169$

> 3.94E-03 cm/min 6.56E-07 m/sec 1.55E-03 inch/min 2.58E-05 inch/sec

K_{fs} = 6.56E-05 cm/sec

Φ_m = 5.09E-04 cm²/min

 $\Theta_{fs} = N/A cm^3/cm^3$


 $\Theta_i = N/A cm^3/cm^3$

Sorptivity #VALUE! (cm min **

IFT9-1

Site #9: Alloa Reservoir and Pumping Station (1278 Mayfield

Rd, Caledon, ON L7C 0Y7)

K_{fc} = 8.30E-04 cm/sec

4.98E-02 cm/min

1.96E-02 inch/min

3.27E-04 inch/sec

8.30E-06 m/s

 $\Phi_{\rm m} = \frac{2.30\text{E-}03}{\text{cm}^2/\text{min}}$

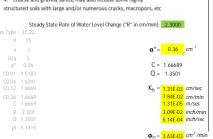
Enter water Head Height ("H" in cm): Enter the Borehole Radius ("a" in cm):

Enter the soil texture-structure category (enter one of the below numbers): 4

- 1. Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc.
- 2. Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.
- 3. Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.
- 4. Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macropors, etc

Res Type	Steady State Rate of Water Level Change ("R" in cm/m 35.2	nin):	0.2000	
а		α *=	0.36	cm ⁻¹
a*		-	0.80315	
C0.01 C0.04 C0.12	0.84		0.1174 3.53E-04	cm/sec
CO.36			2.12E-02 3.53E-06	cm/min
	0.200 0.12		8.34E-03 1.39E-04	
pi	3.14) m =	9.81E-04	cm²/min

Calculation formulas related to shape factor (C). Where H_T is the first water head height (cm), H_2 is the second water head height (cm), a is borehole radius (cm) and a* is microscopic capillary length factor which is decided according to the soil texture-structure category. For one-head method, only Gr needs to be calculated while for two-head method, G. and G. are calculated (Zang et al., 1998).

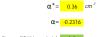

Soil Texture-Structure Category	α*(cm ⁻¹)	Shape Factor
Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc.	0.01	$C_1 = \left(\frac{H_2/_a}{2.081 + 0.121 \left(\frac{H_2}{a}\right)}\right)^{0.672}$
Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.	0.04	$C_1 = \left(\frac{H_1/a}{1.992 + 0.091(H_1/a)}\right)^{0.683}$ $C_2 = \left(\frac{H_2/a}{1.992 + 0.091(H_2/a)}\right)^{0.683}$
Most structured soils from clays through loams, also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.	0.12	$C_1 = \left(\frac{H_1/a}{2.074 + 0.093 \binom{H_1/a}{a}}\right)^{0.754}$ $C_2 = \left(\frac{H_2/a}{2.074 + 0.093 \binom{H_2/a}{a}}\right)^{0.754}$
Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macro pores, etc.	0.36	$C_1 = \left(\frac{H_1/a}{2.074 + 0.093 \binom{H_1/a}{a}}\right)^{0.754}$ $C_2 = \left(\frac{H_2/a}{2.074 + 0.093 \binom{H_2/a}{a}}\right)^{0.754}$

Single Head Method (2)

Reservoir Cross-sectional area in cm² (enter "35.22" for Combined and "2.16" for Inner reservoir): 35.22 Enter water Head Height ("H" in cm): Enter the Borehole Radius ("a" in cm):

Enter the soil texture-structure category (enter one of the below numbers): 4

- 1. Compacted, Structure-less, clavey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc.
- 2. Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands. 3. Most structured soils from clays through loams; also includes
- unstructured medium and fine sands. The category most frequently applicable for agricultural soils. 4. Coarse and gravely sands; may also include some highly
- structured soils with large and/or numerous cracks, macropors, etc


Calculation formulas related to one-head and two-head methods. Where R is steady-state rate of fall of water in reservoir (cm/s), K_{fs} is Soil saturated hydraulic conductivity (cm/s), Φ_m is Soil matric flux potential (cm²/s), a^* is Macroscopic capillary length parameter (from Table 2), a is Borehole radius (cm), H_1 is the first head of water established in borehole (cm), H_2 is the second head of water established in borehole (cm) and C is Shape factor (from Table 2).

	One Head, Combined Reservoir	$Q_1 = \bar{R}_1 \times 35.22$	$K_{fs} = \frac{C_1 \times Q_1}{2\pi H_1^2 + \pi a^2 C_1 + 2\pi \left(\frac{H_1}{a^*}\right)}$
ĺ	One Head, Inner Reservoir	$Q_1 = \overline{R}_1 \times 2.16$	$\Phi_m = \frac{C_1 \times Q_1}{(2\pi H_1^2 + \pi a^2 C_1)a^* + 2\pi H_1}$
	Two Head, Combined Reservoir	$Q_1 = \overline{R}_1 \times 35.22$ $Q_2 = \overline{R}_2 \times 35.22$	$\begin{aligned} G_1 &= \frac{H_1C_1}{\pi(2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))} \\ G_2 &= \frac{H_1C_2}{\pi(2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))} \\ K_{fx} &= G_2Q_2 - G_1Q_1 \\ G_3 &= \frac{(2H_2^2 + a^2C_2)C_1}{2\pi(2H_1H_2(H_1 - H_1) + a^2(H_1C_2 - H_2C_1))} \end{aligned}$
	Two Head, Inner Reservoir	$Q_1 = \bar{R}_1 \times 2.16$ $Q_2 = \bar{R}_2 \times 2.16$	$G_4 = \frac{(2H_1^2 + a^2C_1)C_2}{2\pi(2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))}$ $\Phi_m = G_3Q_1 - G_4Q_2$

Double Head Method

- 1. Compacted, Structure-less, clayey or silty materials such as
 - landfill caps and liners, lacustrine or marine sediments, etc.
 - 2. Soils which are both fine textured (clavey or silty) and
- unstructured: may also include some fine sands. 3. Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently
- applicable for agricultural soils. 4. Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macropors, etc

Steady State Rate of Water Level Change ("R1" in cm/min): 0.2
Steady State Rate of Water Level Change ("R2" in cm/min): 2.3 $Q_1 = 0.1174$

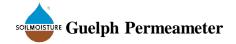
		Q ₂ = 1.3501
Res Type: H1/a:	35.22 1.66667	C ₁ = 0.80315
H2/a: C1-0.01:		C ₂ = 1.66689

 $G_1 = 0.00261$ $G_2 = 0.00181$ $G_3 = 0.04053$

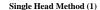
C2-0.36: 1.66689 $G_4 = 0.01035$ K_{fs} = 2.14E-03 cm/sec 1.28E-01 cm/min 2.14E-05 m/sec

> 8.41E-04 inch/sec Φ_m = ####### cm²/min

 $\Theta_{fs} = N/A cm^3/cm^3$


5.04E-02 inch/min

Θ_i = N/A cm³/cm³ Sorptivity #VALUE! (cm min **


IFT9-2

Site #9: Alloa Reservoir and Pumping Station (1278 Mayfield

Rd, Caledon, ON L7C 0Y7)

(enter "35.22" for Combined and "2.16" for Inner reservoir): 35.22

Enter water Head Height ("H" in cm): Enter the Borehole Radius ("a" in cm):

Enter the soil texture-structure category (enter one of the below numbers): 4

- 1. Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc.
- 2. Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.
- 3. Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.
- 4. Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macropors, etc

Single Head Method (2)

Reservoir Cross-sectional area in cm² (enter "35.22" for Combined and "2.16" for Inner reservoir): 35.22 Enter water Head Height ("H" in cm): Enter the Borehole Radius ("a" in cm):

Enter the soil texture-structure category (enter one of the below numbers): 4

- 1. Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc.
- 2. Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.
- 3. Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.
- 4. Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macropors, etc

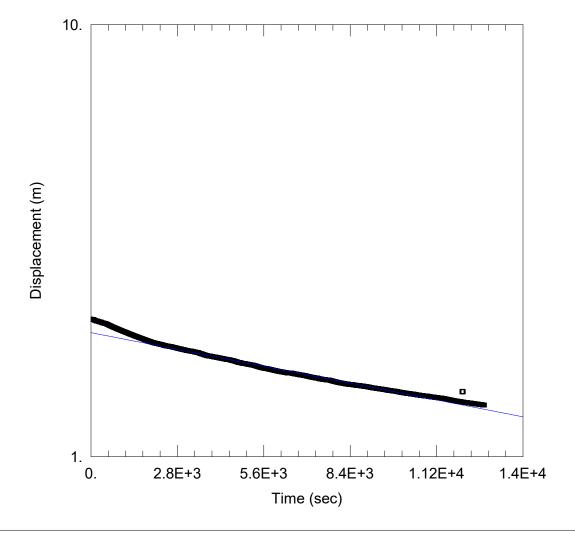
Steady State Rate of Water Level Change ("R" in cm/min): 0.2000

Н	15			
а	3	α*=	0.36	cm ⁻¹
H/a a*	5 0.36	C =	1.66689	
0.01	1.5183	Q =	0.1174	
	1.6291 1.6669	K _{fs} =	1.14E-04	cm/sec
	1.6669 1.6669		6.82E-03 1.14E-06	
R	0.200		2.68E-03	inch/min
0	0.1174		4.47E-05	inch/sec
pi	3.1415			

Average Double Head Method

Calculation formulas related to shape factor (C). Where H_T is the first water head height (cm), H_2 is the second water head height (cm), a is borehole radius (cm) and a is microscopic capillary length factor which is decided according to the soil texture-structure category. For one-head method, only G, needs to be calculated while for two-head method, G; and G; are calculated [Zang et al., 1998].

Soil Texture-Structure Category	α*(cm ⁻¹)	Shape Factor
Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc.	0.01	$C_1 = \left(\frac{H_2/_a}{2.081 + 0.121 \left(\frac{H_2}{a}\right)}\right)^{0.672}$
Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.	0.04	$C_1 = \left(\frac{H_1/_a}{1.992 + 0.091(^{H_1}/_a)}\right)^{0.683}$ $C_2 = \left(\frac{H_2/_a}{1.992 + 0.091(^{H_2}/_a)}\right)^{0.683}$
Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.	0.12	$C_1 = \left(\frac{H_1/_a}{2.074 + 0.093 \binom{H_1/_a}{a}}\right)^{0.754}$ $C_2 = \left(\frac{H_2/_a}{2.074 + 0.093 \binom{H_2/_a}{a}}\right)^{0.754}$
Coarse and gravely sands, may also include some highly structured soils with large and/or numerous cracks, macro pores, etc.	0.36	$C_1 = \left(\frac{H_1/a}{2.074 + 0.093(^{H_2}/a)}\right)^{0.754}$ $C_2 = \left(\frac{H_2/a}{2.074 + 0.093(^{H_2}/a)}\right)^{0.754}$


Calculation formulas related to one-head and two-head methods. Where R is steady-state rate of fall of water in reservoir (cm/s), K_{fx} is Soil saturated hydraulic conductivity (cm/s), Φ_m is Soil matric flux potential (cm²/s), a^* is Macroscopic capillary length parameter (from Table 2), a is Borehole radius (cm), H_1 is the first head of water established in borehole (cm), H_2 is the second head of water established in borehole (cm) and C is Shape factor (from Table 2).

	One Head, Combined Reservoir	$Q_1 = \bar{R}_1 \times 35.22$	$K_{fs} = \frac{C_1 \times Q_1}{2\pi H_1^2 + \pi a^2 C_1 + 2\pi \left(\frac{H_1}{a^*}\right)}$
İ	One Head, Inner Reservoir	$Q_1 = \bar{R}_1 \times 2.16$	$\Phi_m = \frac{C_1 \times Q_1}{(2\pi H_1^2 + \pi a^2 C_1)a^* + 2\pi H_1}$
	Two Head, Combined Reservoir	$Q_1 = \bar{R}_1 \times 35.22$ $Q_2 = \bar{R}_2 \times 35.22$	$\begin{split} G_1 &= \frac{H_3 \mathcal{L}_1}{\pi (2H_1H_2(H_2 - H_1) + a^2(H_1\mathcal{L}_2 - H_2\mathcal{L}_1))} \\ G_2 &= \frac{H_1\mathcal{L}_2}{\pi (2H_1H_2(H_2 - H_1) + a^2(H_1\mathcal{L}_2 - H_2\mathcal{L}_1))} \\ K_{fg} &= \mathcal{G}_2\mathcal{Q}_2 - \mathcal{G}_1\mathcal{Q}_1 \\ G_3 &= \frac{(2H_2^2 + a^2\mathcal{L}_2)\mathcal{L}_1}{2\pi (2H_1H_2(H_2 - H_1) + a^2(H_1\mathcal{L}_2 - H_2\mathcal{L}_1))} \end{split}$
	Two Head, Inner Reservoir	$Q_1 = \bar{R}_1 \times 2.16$ $Q_2 = \bar{R}_2 \times 2.16$	$G_4 = \frac{(2H_1^2 + a^2C_1)C_2}{2\pi(2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))}$ $\Phi_m = G_3Q_1 - G_4Q_2$

	Reservoir Cross-sectional area in cm ²		
(enter	"35.22" for Combined and "2.16" for Inner reservoir):	35.22	
	Enter the first water Head Height ("H1" in cm):	5	
	Enter the second water Head Height ("H2" in cm):		
	Enter the Borehole Radius ("a" in cm):	3	
or the soil texture.	structure category (enter one of the below numbers):	4	
	ed, Structure-less, clayey or silty materials such as		
	nd liners, lacustrine or marine sediments, etc.		
	ch are both fine textured (clayey or silty) and		
	; may also include some fine sands.		
	actured soils from clays through loams; also includes medium and fine sands. The category most frequently		
	agricultural soils.	y	
	nd gravely sands; may also include some highly		
structured so	ils with large and/or numerous cracks, macropors, et	c	
	α*=	0.36	cm -1
	α=	0.0506	
Stead	ly State Rate of Water Level Change ("R1" in cm/min):	0.1	
Stead	ly State Rate of Water Level Change ("R2" in cm/min):	0.2	
	Q ₁ =	0.0587	
	·		
Day Town		0.1174	
Res Type: H1/a:		0.80315	
H2/a:	5		
C1-0.01:		1.66689	
C2-0.01: C1-0.04:		0.00261	
C2-0.04:	1.62914		
C1-0.12: C2-0.12:	_	0.00181	
C2-0.12: C1-0.36:		0.04053	
C2-0.36:			
G-Denominator:	$G_4 = G_4 = G_4$	0.01035	
	$K_{fs} =$	5.89E-05	cm/sec
		3.53E-03	
		5.89E-07 1.39F-03	m/sec inch/min
		2.32E-05	
			2 ((
	$\Phi_{\rm m}$ =	1.16E-03	cm²/min
	6 . =	N/A	cm³/cm³
	5 _E		
	Θ_i =	N/A	cm³/cm³
	Sorptivity	#VALUE!	(cm min **)

Appendix C

Single Well Response Test Analysis Reports

SITE 5 - JOHNSTON SPORTS PARK - BH5-3/MW - RISING HEAD TEST

Data Set: C:\...\BH5-3 RHT.aqt

Time: 16:02:36 Date: 05/20/22

PROJECT INFORMATION

Company: AECOM Canada Ltd.

Client: Peel Region Project: 60646784 Location: Site 5 Test Well: BH5-3/MW

Test Date: 2022-05-09

AQUIFER DATA

Saturated Thickness: 5.13 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (BH5-3/MW)

Initial Displacement: 2.08 m

Static Water Column Height: 5.13 m

Total Well Penetration Depth: 5.13 m

Screen Length: 3.05 m Well Radius: 0.102 m

Casing Radius: 0.025 m

SOLUTION

Aquifer Model: Unconfined Solution Method: Hvorslev

K = 1.343E-8 m/secy0 = 1.935 m

Appendix D

Groundwater Quality Results – Laboratory Certificate of Analysis

Your Project #: 60646784

Site#: SITE 5

Site Location: PEEL REGION SNOW STORGAE

Your C.O.C. #: 877485-01-01

Attention: Brian Holden

AECOM Canada Ltd 50 Sportsworld Crossing Rd Suite 290 Kitchener, ON Canada N2P 0A4

Report Date: 2022/05/16

Report #: R7127331 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C2C4120 Received: 2022/05/09, 13:32

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Methylnaphthalene Sum	1	N/A	2022/05/12	CAM SOP-00301	EPA 8270D m
1,3-Dichloropropene Sum	1	N/A	2022/05/12		EPA 8260C m
Chloride by Automated Colourimetry	1	N/A	2022/05/11	CAM SOP-00463	SM 23 4500-Cl E m
Chromium (VI) in Water	1	N/A	2022/05/12	CAM SOP-00436	EPA 7199 m
Free (WAD) Cyanide	1	N/A	2022/05/12	CAM SOP-00457	OMOE E3015 m
Petroleum Hydrocarbons F2-F4 in Water (1)	1	2022/05/11	2022/05/11	CAM SOP-00316	CCME PHC-CWS m
Mercury	1	2022/05/11	2022/05/11	CAM SOP-00453	EPA 7470A m
Dissolved Metals by ICPMS	1	N/A	2022/05/12	CAM SOP-00447	EPA 6020B m
PAH Compounds in Water by GC/MS (SIM)	1	2022/05/11	2022/05/12	CAM SOP-00318	EPA 8270D m
Polychlorinated Biphenyl in Water	1	2022/05/10	2022/05/11	CAM SOP-00309	EPA 8082A m
Volatile Organic Compounds and F1 PHCs	1	N/A	2022/05/11	CAM SOP-00230	EPA 8260C m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA. Where applicable, the analytical testing herein was performed in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. All methodologies comply with this document and are validated for use in the laboratory. The methods and techniques employed in this analysis conform to the performance criteria (detection limits, accuracy and precision) as outlined in the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. Bureau Veritas is accredited by SCC (Lab ID 97) for all specific parameters as required by Ontario Regulation 153/04.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts that result from the information provided by the customer or their agent.

Your Project #: 60646784

Site#: SITE 5

Site Location: PEEL REGION SNOW STORGAE

Your C.O.C. #: 877485-01-01

Attention: Brian Holden

AECOM Canada Ltd 50 Sportsworld Crossing Rd Suite 290 Kitchener, ON Canada N2P 0A4

Report Date: 2022/05/16

Report #: R7127331 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C2C4120 Received: 2022/05/09, 13:32

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Marijane Cruz Senior Project 16 May 2022 17:

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

The enf

Marijane Cruz, Senior Project Manager Email: Marijane.Cruz@bureauveritas.com

Phone# (905)817-5756

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Site Location: PEEL REGION SNOW STORGAE

Sampler Initials: DP

O.REG 153 METALS & INORGANICS PKG (WTR)

Bureau Veritas ID			SOL754			SOL754		
Campling Data			2022/05/09			2022/05/09		
Sampling Date			10:00			10:00		
COC Number			877485-01-01			877485-01-01		
	UNITS	Criteria	BH5-3/MW	RDL	QC Batch	BH5-3/MW Lab-Dup	RDL	QC Batch
Inorganics								
WAD Cyanide (Free)	ug/L	66	<1	1	7991656	<1	1	7991656
Dissolved Chloride (Cl-)	mg/L	790	1.1	1.0	7987615			
Metals	Metals							
Chromium (VI)	ug/L	25	<0.50	0.50	7983524			
Mercury (Hg)	ug/L	0.29	<0.10	0.10	7988165			
Dissolved Antimony (Sb)	ug/L	6.0	<0.50	0.50	7989687			
Dissolved Arsenic (As)	ug/L	25	2.9	1.0	7989687			
Dissolved Barium (Ba)	ug/L	1000	57	2.0	7989687			
Dissolved Beryllium (Be)	ug/L	4.0	<0.40	0.40	7989687			
Dissolved Boron (B)	ug/L	5000	72	10	7989687			
Dissolved Cadmium (Cd)	ug/L	2.7	<0.090	0.090	7989687			
Dissolved Chromium (Cr)	ug/L	50	<5.0	5.0	7989687			
Dissolved Cobalt (Co)	ug/L	3.8	1.1	0.50	7989687			
Dissolved Copper (Cu)	ug/L	87	0.92	0.90	7989687			
Dissolved Lead (Pb)	ug/L	10	<0.50	0.50	7989687			
Dissolved Molybdenum (Mo)	ug/L	70	7.2	0.50	7989687			
Dissolved Nickel (Ni)	ug/L	100	2.0	1.0	7989687			
Dissolved Selenium (Se)	ug/L	10	<2.0	2.0	7989687			
Dissolved Silver (Ag)	ug/L	1.5	<0.090	0.090	7989687			
Dissolved Sodium (Na)	ug/L	490000	26000	100	7989687			
Dissolved Thallium (TI)	ug/L	2.0	<0.050	0.050	7989687			
Dissolved Uranium (U)	ug/L	20	0.70	0.10	7989687			
Dissolved Vanadium (V)	ug/L	6.2	1.4	0.50	7989687			
Dissolved Zinc (Zn)	ug/L	1100	<5.0	5.0	7989687			

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Site Location: PEEL REGION SNOW STORGAE

Sampler Initials: DP

O.REG 153 PAHS (WATER)

Bureau Veritas ID			SOL754		
Sampling Date			2022/05/09		
Jamping Date			10:00		
COC Number			877485-01-01		
	UNITS	Criteria	BH5-3/MW	RDL	QC Batch
Calculated Parameters					
Methylnaphthalene, 2-(1-)	ug/L	3.2	<0.071	0.071	7983964
Polyaromatic Hydrocarbons					
Acenaphthene	ug/L	4.1	<0.050	0.050	7989423
Acenaphthylene	ug/L	1	<0.050	0.050	7989423
Anthracene	ug/L	2.4	<0.050	0.050	7989423
Benzo(a)anthracene	ug/L	1.0	<0.050	0.050	7989423
Benzo(a)pyrene	ug/L	0.01	<0.0090	0.0090	7989423
Benzo(b/j)fluoranthene	ug/L	0.1	<0.050	0.050	7989423
Benzo(g,h,i)perylene	ug/L	0.2	<0.050	0.050	7989423
Benzo(k)fluoranthene	ug/L	0.1	<0.050	0.050	7989423
Chrysene	ug/L	0.1	<0.050	0.050	7989423
Dibenzo(a,h)anthracene	ug/L	0.2	<0.050	0.050	7989423
Fluoranthene	ug/L	0.41	<0.050	0.050	7989423
Fluorene	ug/L	120	<0.050	0.050	7989423
Indeno(1,2,3-cd)pyrene	ug/L	0.2	<0.050	0.050	7989423
1-Methylnaphthalene	ug/L	3.2	<0.050	0.050	7989423
2-Methylnaphthalene	ug/L	3.2	<0.050	0.050	7989423
Naphthalene	ug/L	11	<0.050	0.050	7989423
Phenanthrene	ug/L	1	<0.030	0.030	7989423
Pyrene	ug/L	4.1	<0.050	0.050	7989423
Surrogate Recovery (%)					
D10-Anthracene	%	-	95		7989423
D14-Terphenyl (FS)	%	-	84		7989423

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water

Condition

Site Location: PEEL REGION SNOW STORGAE

Sampler Initials: DP

O.REG 153 PCBS (WATER)

Bureau Veritas ID			SOL754		
Sampling Data			2022/05/09		
Sampling Date			10:00		
COC Number			877485-01-01		
	UNITS	Criteria	BH5-3/MW	RDL	QC Batch
PCBs					
Aroclor 1242	ug/L	-	<0.05	0.05	7986811
Aroclor 1248	ug/L	-	<0.05	0.05	7986811
Aroclor 1254	ug/L	-	<0.05	0.05	7986811
Aroclor 1260	ug/L	-	<0.05	0.05	7986811
Total PCB	ug/L	3.0	<0.05	0.05	7986811
Surrogate Recovery (%)					
Decachlorobiphenyl	%	-	79		7986811

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground

Water Condition

Site Location: PEEL REGION SNOW STORGAE

Sampler Initials: DP

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Bureau Veritas ID			SOL754		
Sampling Date			2022/05/09		
			10:00		
COC Number			877485-01-01		
	UNITS	Criteria	BH5-3/MW	RDL	QC Batch
Calculated Parameters					
1,3-Dichloropropene (cis+trans)	ug/L	0.5	<0.50	0.50	7983481
Volatile Organics				•	
Acetone (2-Propanone)	ug/L	2700	<10	10	7986264
Benzene	ug/L	5.0	<0.17	0.17	7986264
Bromodichloromethane	ug/L	16.0	<0.50	0.50	7986264
Bromoform	ug/L	25.0	<1.0	1.0	7986264
Bromomethane	ug/L	0.89	<0.50	0.50	7986264
Carbon Tetrachloride	ug/L	0.79	<0.20	0.20	7986264
Chlorobenzene	ug/L	30	<0.20	0.20	7986264
Chloroform	ug/L	2.4	<0.20	0.20	7986264
Dibromochloromethane	ug/L	25.0	<0.50	0.50	7986264
1,2-Dichlorobenzene	ug/L	3.0	<0.50	0.50	7986264
1,3-Dichlorobenzene	ug/L	59	<0.50	0.50	7986264
1,4-Dichlorobenzene	ug/L	1.0	<0.50	0.50	7986264
Dichlorodifluoromethane (FREON 12)	ug/L	590	<1.0	1.0	7986264
1,1-Dichloroethane	ug/L	5	<0.20	0.20	7986264
1,2-Dichloroethane	ug/L	1.6	<0.50	0.50	7986264
1,1-Dichloroethylene	ug/L	1.6	<0.20	0.20	7986264
cis-1,2-Dichloroethylene	ug/L	1.6	<0.50	0.50	7986264
trans-1,2-Dichloroethylene	ug/L	1.6	<0.50	0.50	7986264
1,2-Dichloropropane	ug/L	5.0	<0.20	0.20	7986264
cis-1,3-Dichloropropene	ug/L	0.5	<0.30	0.30	7986264
trans-1,3-Dichloropropene	ug/L	0.5	<0.40	0.40	7986264
Ethylbenzene	ug/L	2.4	<0.20	0.20	7986264
Ethylene Dibromide	ug/L	0.2	<0.20	0.20	7986264
Hexane	ug/L	51	<1.0	1.0	7986264
Methylene Chloride(Dichloromethane)	ug/L	50	<2.0	2.0	7986264
Methyl Ethyl Ketone (2-Butanone)	ug/L	1800	<10	10	7986264
Methyl Isobutyl Ketone	ug/L	640	<5.0	5.0	7986264
Methyl t-butyl ether (MTBE)	ug/L	15	<0.50	0.50	7986264

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Site Location: PEEL REGION SNOW STORGAE

Sampler Initials: DP

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Bureau Veritas ID			SOL754		
Sampling Date			2022/05/09		
Sampling Date			10:00		
COC Number			877485-01-01		
	UNITS	Criteria	BH5-3/MW	RDL	QC Batch
Styrene	ug/L	5.4	<0.50	0.50	7986264
1,1,1,2-Tetrachloroethane	ug/L	1.1	<0.50	0.50	7986264
1,1,2,2-Tetrachloroethane	ug/L	1.0	<0.50	0.50	7986264
Tetrachloroethylene	ug/L	1.6	<0.20	0.20	7986264
Toluene	ug/L	24	<0.20	0.20	7986264
1,1,1-Trichloroethane	ug/L	200	<0.20	0.20	7986264
1,1,2-Trichloroethane	ug/L	4.7	<0.50	0.50	7986264
Trichloroethylene	ug/L	1.6	<0.20	0.20	7986264
Trichlorofluoromethane (FREON 11)	ug/L	150	<0.50	0.50	7986264
Vinyl Chloride	ug/L	0.5	<0.20	0.20	7986264
p+m-Xylene	ug/L	-	<0.20	0.20	7986264
o-Xylene	ug/L	-	<0.20	0.20	7986264
Total Xylenes	ug/L	300	<0.20	0.20	7986264
F1 (C6-C10)	ug/L	750	<25	25	7986264
F1 (C6-C10) - BTEX	ug/L	750	<25	25	7986264
F2-F4 Hydrocarbons	•	·		•	•
F2 (C10-C16 Hydrocarbons)	ug/L	150	<100	100	7989444
F3 (C16-C34 Hydrocarbons)	ug/L	500	<200	200	7989444
F4 (C34-C50 Hydrocarbons)	ug/L	500	<200	200	7989444
Reached Baseline at C50	ug/L	-	Yes		7989444
Surrogate Recovery (%)					
o-Terphenyl	%	-	98		7989444
4-Bromofluorobenzene	%	-	93		7986264
D4-1,2-Dichloroethane	%	-	104		7986264
D8-Toluene	%	-	98		7986264
		•	•	•	

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Report Date: 2022/05/16

AECOM Canada Ltd Client Project #: 60646784

Site Location: PEEL REGION SNOW STORGAE

Sampler Initials: DP

TEST SUMMARY

Bureau Veritas ID: SOL754 Sample ID:

Matrix:

BH5-3/MW

Collected: Shipped:

2022/05/09

Matrix: Water

Received: 2022/05/09

Test Description Instrumentation Batch Extracted **Date Analyzed** Analyst CALC 2022/05/12 Methylnaphthalene Sum 7983964 N/A **Automated Statchk** 1,3-Dichloropropene Sum CALC 7983481 N/A 2022/05/12 Automated Statchk KONE Chloride by Automated Colourimetry 7987615 N/A 2022/05/11 Alina Dobreanu Chromium (VI) in Water IC 7983524 N/A 2022/05/12 Theodora LI Free (WAD) Cyanide SKAL/CN N/A 2022/05/12 7991656 Nimarta Singh Petroleum Hydrocarbons F2-F4 in Water GC/FID 7989444 2022/05/11 2022/05/11 Anna Stuglik-Rolland Mercury CV/AA 7988165 2022/05/11 2022/05/11 Jaswinder Kaur Dissolved Metals by ICPMS ICP/MS 7989687 N/A 2022/05/12 Arefa Dabhad PAH Compounds in Water by GC/MS (SIM) GC/MS 7989423 2022/05/11 2022/05/12 Jonghan Yoon 2022/05/10 Polychlorinated Biphenyl in Water GC/ECD 7986811 2022/05/11 Farag Mansour Volatile Organic Compounds and F1 PHCs GC/MSFD 7986264 N/A 2022/05/11 **Xueming Jiang**

Bureau Veritas ID: SOL754 Dup Collected: 2022/05/09 Sample ID:

BH5-3/MW Shipped: Water

Received: 2022/05/09

Batch **Date Analyzed Test Description** Instrumentation **Extracted** Analyst Free (WAD) Cyanide 2022/05/12 SKAL/CN 7991656 N/A Nimarta Singh

Site Location: PEEL REGION SNOW STORGAE

Sampler Initials: DP

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt											
]	Package 1	7.0°C									
Revised Report (2022/05/16): Results have been split onto separate reports per client request.											
Cooler custody seal present and intact.											
Results relate only to the items tested.											

QUALITY ASSURANCE REPORT

AECOM Canada Ltd

Client Project #: 60646784

Site Location: PEEL REGION SNOW STORGAE

Sampler Initials: DP

			Matrix Spike		SPIKED BLANK		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
7986264	4-Bromofluorobenzene	2022/05/11	96	70 - 130	96	70 - 130	93	%		
7986264	D4-1,2-Dichloroethane	2022/05/11	103	70 - 130	101	70 - 130	102	%		
7986264	D8-Toluene	2022/05/11	102	70 - 130	103	70 - 130	99	%		
7986811	Decachlorobiphenyl	2022/05/11	76	60 - 130	68	60 - 130	78	%		
7989423	D10-Anthracene	2022/05/12	104	50 - 130	99	50 - 130	114	%		
7989423	D14-Terphenyl (FS)	2022/05/12	89	50 - 130	94	50 - 130	91	%		
7989423	D8-Acenaphthylene	2022/05/12	95	50 - 130	88	50 - 130	90	%		
7989444	o-Terphenyl	2022/05/11	96	60 - 130	95	60 - 130	95	%		
7983524	Chromium (VI)	2022/05/12	99	80 - 120	103	80 - 120	<0.50	ug/L	NC (1)	20
7986264	1,1,1,2-Tetrachloroethane	2022/05/11	98	70 - 130	95	70 - 130	<0.50	ug/L	NC (1)	30
7986264	1,1,1-Trichloroethane	2022/05/11	100	70 - 130	97	70 - 130	<0.20	ug/L	NC (1)	30
7986264	1,1,2,2-Tetrachloroethane	2022/05/11	98	70 - 130	93	70 - 130	<0.50	ug/L	NC (1)	30
7986264	1,1,2-Trichloroethane	2022/05/11	107	70 - 130	101	70 - 130	<0.50	ug/L	NC (1)	30
7986264	1,1-Dichloroethane	2022/05/11	97	70 - 130	93	70 - 130	<0.20	ug/L	NC (1)	30
7986264	1,1-Dichloroethylene	2022/05/11	102	70 - 130	99	70 - 130	<0.20	ug/L	NC (1)	30
7986264	1,2-Dichlorobenzene	2022/05/11	99	70 - 130	96	70 - 130	<0.50	ug/L	NC (1)	30
7986264	1,2-Dichloroethane	2022/05/11	97	70 - 130	92	70 - 130	<0.50	ug/L	NC (1)	30
7986264	1,2-Dichloropropane	2022/05/11	97	70 - 130	92	70 - 130	<0.20	ug/L	NC (1)	30
7986264	1,3-Dichlorobenzene	2022/05/11	99	70 - 130	96	70 - 130	<0.50	ug/L	NC (1)	30
7986264	1,4-Dichlorobenzene	2022/05/11	115	70 - 130	112	70 - 130	<0.50	ug/L	NC (1)	30
7986264	Acetone (2-Propanone)	2022/05/11	100	60 - 140	94	60 - 140	<10	ug/L	NC (1)	30
7986264	Benzene	2022/05/11	93	70 - 130	90	70 - 130	<0.17	ug/L	NC (1)	30
7986264	Bromodichloromethane	2022/05/11	100	70 - 130	95	70 - 130	<0.50	ug/L	NC (1)	30
7986264	Bromoform	2022/05/11	92	70 - 130	87	70 - 130	<1.0	ug/L	NC (1)	30
7986264	Bromomethane	2022/05/11	103	60 - 140	95	60 - 140	<0.50	ug/L	NC (1)	30
7986264	Carbon Tetrachloride	2022/05/11	97	70 - 130	95	70 - 130	<0.20	ug/L	NC (1)	30
7986264	Chlorobenzene	2022/05/11	100	70 - 130	96	70 - 130	<0.20	ug/L	NC (1)	30
7986264	Chloroform	2022/05/11	99	70 - 130	95	70 - 130	<0.20	ug/L	NC (1)	30
7986264	cis-1,2-Dichloroethylene	2022/05/11	98	70 - 130	94	70 - 130	<0.50	ug/L	NC (1)	30
7986264	cis-1,3-Dichloropropene	2022/05/11	90	70 - 130	81	70 - 130	<0.30	ug/L	NC (1)	30
7986264	Dibromochloromethane	2022/05/11	96	70 - 130	91	70 - 130	<0.50	ug/L	NC (1)	30

AECOM Canada Ltd Client Project #: 60646784

Site Location: PEEL REGION SNOW STORGAE

Sampler Initials: DP

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
7986264	Dichlorodifluoromethane (FREON 12)	2022/05/11	88	60 - 140	88	60 - 140	<1.0	ug/L	NC (1)	30
7986264	Ethylbenzene	2022/05/11	94	70 - 130	91	70 - 130	<0.20	ug/L	NC (1)	30
7986264	Ethylene Dibromide	2022/05/11	97	70 - 130	91	70 - 130	<0.20	ug/L	NC (1)	30
7986264	F1 (C6-C10) - BTEX	2022/05/11					<25	ug/L	NC (1)	30
7986264	F1 (C6-C10)	2022/05/11	93	60 - 140	95	60 - 140	<25	ug/L	NC (1)	30
7986264	Hexane	2022/05/11	104	70 - 130	101	70 - 130	<1.0	ug/L	NC (1)	30
7986264	Methyl Ethyl Ketone (2-Butanone)	2022/05/11	100	60 - 140	95	60 - 140	<10	ug/L	NC (1)	30
7986264	Methyl Isobutyl Ketone	2022/05/11	87	70 - 130	83	70 - 130	<5.0	ug/L	NC (1)	30
7986264	Methyl t-butyl ether (MTBE)	2022/05/11	87	70 - 130	84	70 - 130	<0.50	ug/L	NC (1)	30
7986264	Methylene Chloride(Dichloromethane) 2022/05		105	70 - 130	101	70 - 130	<2.0	ug/L	NC (1)	30
7986264	o-Xylene	2022/05/11	92	70 - 130	90	70 - 130	<0.20	ug/L	NC (1)	30
7986264	p+m-Xylene	2022/05/11	96	70 - 130	94	70 - 130	<0.20	ug/L	NC (1)	30
7986264	Styrene 2022/05/11 97 70 - 130 94 70 - 130		<0.50	ug/L	NC (1)	30				
7986264	Tetrachloroethylene	2022/05/11	98	70 - 130	95	70 - 130	<0.20	ug/L	NC (1)	30
7986264	Toluene	2022/05/11	92	70 - 130	90	70 - 130	<0.20	ug/L	NC (1)	30
7986264	Total Xylenes	2022/05/11					<0.20	ug/L	NC (1)	30
7986264	trans-1,2-Dichloroethylene	2022/05/11	102	70 - 130	98	70 - 130	<0.50	ug/L	NC (1)	30
7986264	trans-1,3-Dichloropropene	2022/05/11	102	70 - 130	88	70 - 130	<0.40	ug/L	NC (1)	30
7986264	Trichloroethylene	2022/05/11	102	70 - 130	99	70 - 130	<0.20	ug/L	NC (1)	30
7986264	Trichlorofluoromethane (FREON 11)	2022/05/11	103	70 - 130	101	70 - 130	<0.50	ug/L	NC (1)	30
7986264	Vinyl Chloride	2022/05/11	98	70 - 130	96	70 - 130	<0.20	ug/L	NC (1)	30
7986811	Aroclor 1242	2022/05/11					<0.05	ug/L		
7986811	Aroclor 1248	2022/05/11					<0.05	ug/L		
7986811	Aroclor 1254	2022/05/11					<0.05	ug/L		
7986811	Aroclor 1260	2022/05/11	88	60 - 130	73	60 - 130	<0.05	ug/L		
7986811	Total PCB	2022/05/11	88	60 - 130	73	60 - 130	<0.05	ug/L	NC (1)	40
7987615	Dissolved Chloride (Cl-)	2022/05/11	115	80 - 120	104	80 - 120	<1.0	mg/L	1.1 (1)	20
7988165	Mercury (Hg)	2022/05/11	93	75 - 125	95	80 - 120	<0.10	ug/L	NC (1)	20
7989423	1-Methylnaphthalene	2022/05/12	93	50 - 130	83	50 - 130	<0.050	ug/L	NC (1)	30
7989423	2-Methylnaphthalene	2022/05/12	99	50 - 130	87	50 - 130	<0.050	ug/L	NC (1)	30
7989423	Acenaphthene	2022/05/12	100	50 - 130	88	50 - 130	<0.050	ug/L	NC (1)	30

AECOM Canada Ltd Client Project #: 60646784

Site Location: PEEL REGION SNOW STORGAE

Sampler Initials: DP

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
7989423	Acenaphthylene	2022/05/12	100	50 - 130	88	50 - 130	<0.050	ug/L	NC (1)	30
7989423	Anthracene	2022/05/12	98	50 - 130	88	50 - 130	<0.050	ug/L	NC (1)	30
7989423	Benzo(a)anthracene	2022/05/12	101	50 - 130	86	50 - 130	<0.050	ug/L	NC (1)	30
7989423	Benzo(a)pyrene	2022/05/12	101	50 - 130	86	50 - 130	<0.0090	ug/L	NC (1)	30
7989423	Benzo(b/j)fluoranthene	2022/05/12	93	50 - 130	85	50 - 130	<0.050	ug/L	NC (1)	30
7989423	Benzo(g,h,i)perylene	2022/05/12	98	50 - 130	85	50 - 130	<0.050	ug/L	NC (1)	30
7989423	Benzo(k)fluoranthene	2022/05/12	109	50 - 130	86	50 - 130	<0.050	ug/L	NC (1)	30
7989423	Chrysene	2022/05/12	102	50 - 130	87	50 - 130	<0.050	ug/L	NC (1)	30
7989423	Dibenzo(a,h)anthracene	2022/05/12	109	50 - 130	92	50 - 130	<0.050	ug/L	NC (1)	30
7989423	Fluoranthene	2022/05/12	92	50 - 130	90	50 - 130	<0.050	ug/L	NC (1)	30
7989423	Fluorene	2022/05/12	95	50 - 130	87	50 - 130	<0.050	ug/L	NC (1)	30
7989423	Indeno(1,2,3-cd)pyrene	2022/05/12	99	50 - 130	86	50 - 130	<0.050	ug/L	NC (1)	30
7989423	Naphthalene	2022/05/12	97	50 - 130	87	50 - 130	<0.050	ug/L	NC (1)	30
7989423	Phenanthrene	2022/05/12	100	50 - 130	89	50 - 130	<0.030	ug/L	NC (1)	30
7989423	Pyrene	2022/05/12	92	50 - 130	92	50 - 130	<0.050	ug/L	NC (1)	30
7989444	F2 (C10-C16 Hydrocarbons)	2022/05/11	95	60 - 130	96	60 - 130	<100	ug/L	NC (1)	30
7989444	F3 (C16-C34 Hydrocarbons)	2022/05/11	106	60 - 130	109	60 - 130	<200	ug/L	3.0 (1)	30
7989444	F4 (C34-C50 Hydrocarbons)	2022/05/11	105	60 - 130	106	60 - 130	<200	ug/L	NC (1)	30
7989687	Dissolved Antimony (Sb)	2022/05/12	105	80 - 120	100	80 - 120	<0.50	ug/L	NC (1)	20
7989687	Dissolved Arsenic (As)	2022/05/12	99	80 - 120	99	80 - 120	<1.0	ug/L	NC (1)	20
7989687	Dissolved Barium (Ba)	2022/05/12	102	80 - 120	99	80 - 120	<2.0	ug/L	0.13 (1)	20
7989687	Dissolved Beryllium (Be)	2022/05/12	103	80 - 120	100	80 - 120	<0.40	ug/L	NC (1)	20
7989687	Dissolved Boron (B)	2022/05/12	102	80 - 120	100	80 - 120	<10	ug/L	0.38 (1)	20
7989687	Dissolved Cadmium (Cd)	2022/05/12	102	80 - 120	98	80 - 120	<0.090	ug/L	NC (1)	20
7989687	Dissolved Chromium (Cr)	2022/05/12	100	80 - 120	98	80 - 120	<5.0	ug/L	NC (1)	20
7989687	Dissolved Cobalt (Co)	2022/05/12	99	80 - 120	98	80 - 120	<0.50	ug/L	0.77 (1)	20
7989687	Dissolved Copper (Cu)	2022/05/12	105	80 - 120	97	80 - 120	<0.90	ug/L	0.66 (1)	20
7989687	Dissolved Lead (Pb)	2022/05/12	101	80 - 120	100	80 - 120	<0.50	ug/L	NC (1)	20
7989687	Dissolved Molybdenum (Mo)	2022/05/12	108	80 - 120	103	80 - 120	<0.50	ug/L	2.7 (1)	20
7989687	Dissolved Nickel (Ni)	2022/05/12	95	80 - 120	93	80 - 120	<1.0	ug/L	3.1 (1)	20
7989687	Dissolved Selenium (Se)	2022/05/12	100	80 - 120	101	80 - 120	<2.0	ug/L	NC (1)	20

AECOM Canada Ltd Client Project #: 60646784

Site Location: PEEL REGION SNOW STORGAE

Sampler Initials: DP

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPI	כ
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
7989687	Dissolved Silver (Ag)	2022/05/12	90	80 - 120	95	80 - 120	<0.090	ug/L	NC (1)	20
7989687	Dissolved Sodium (Na)	2022/05/12	NC	80 - 120	98	80 - 120	<100	ug/L	0.37 (1)	20
7989687	Dissolved Thallium (TI)	2022/05/12	103	80 - 120	105	80 - 120	<0.050	ug/L	NC (1)	20
7989687	Dissolved Uranium (U)	2022/05/12	105	80 - 120	103	80 - 120	<0.10	ug/L	3.6 (1)	20
7989687	Dissolved Vanadium (V)	2022/05/12	96	80 - 120	94	80 - 120	<0.50	ug/L	7.8 (1)	20
7989687	Dissolved Zinc (Zn)	2022/05/12	97	80 - 120	97	80 - 120	<5.0	ug/L	1.9 (1)	20
7991656	WAD Cyanide (Free)	2022/05/12	94 (2)	80 - 120	95	80 - 120	<1	ug/L	NC (3)	20

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

- (1) Duplicate Parent ID
- (2) Matrix Spike Parent ID [SOL754-10]
- (3) Duplicate Parent ID [SOL754-10]

Site Location: PEEL REGION SNOW STORGAE

Sampler Initials: DP

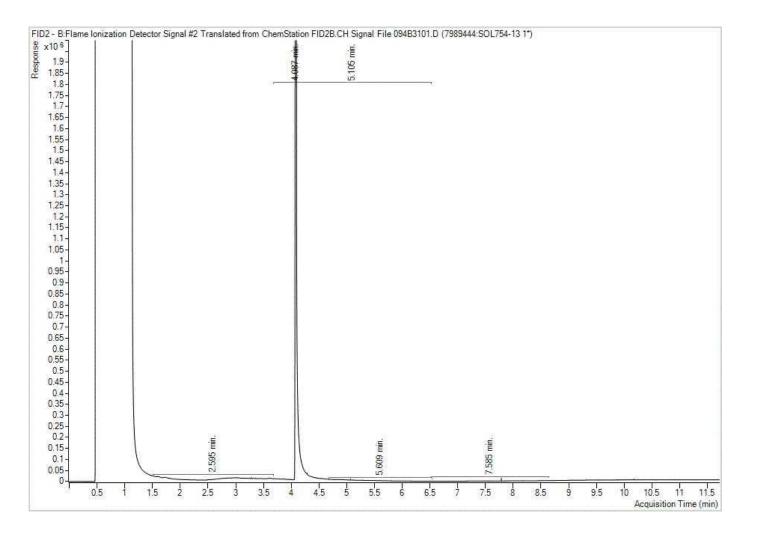
VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

U REAU ERITAS		VOICE TO:				REPO	RT TO:						PROJEC	TINFORM	IATION:		Marijar	9-May-22 13:	32	-
ny Name		CONTRACTOR CONTRACTOR		Compa			ada Ud	0			Quotation	t:	C203	75				8 8 1 8		le Order#:
on: ss:	Accounts Payable 50 Sportsworld C		290	Attenti	Brian	Sportswork	huanist	1 GV	Ch	Zan	P.O. #:		60646	3784	MINISTER OF		C20	C4120		377485
13.	Kitchener ON N2	P 0A4	di Tun Ye		Kita	hener, on	J NOP	GA4	SMIN	210	Project Na	ne:	Pcol	Region	n Snin	Stronge	CTN	ENV-765		ct Manage
	(519) 650-5313 CANSSC.E-billin		(519) 650-3422	-		340-1617	Fax:	-	, 0	14/2	Site#:		Si	25	0	0				Marijane Cruz
OF RE	GULATED DRINKING		TED INTENDED	Email:	AND DESCRIPTION OF THE PERSONS ASSESSMENT	.holden@aecor	n.com , dh	wan ()	LICKI		Sampled B			ENDA BE SPECIE				C#877485-01-01	me (TAT) Required:	
IOL KE	SUBMITTED ON T	HE BUREAU VER	ITAS DRINKING	NATER CHAI	N OF CUSTOD	Y WUST BE				1	TOIO ME		(I CLINOL	6	10)			Please provide advar		ects
18093-00110	tion 153 (2011)		Other Regulation	s	Special	Instructions	circle):	4			s Pkg	al Oxygen Demand (BOD)		clay free			Principle section of	andard) TAT: If Rush TAT is not specific	ed):	
	Res/Park Medium		Sanitary Sewer					eg E			rganic	mand		zi .			Transaction Company	= 5-7 Working days for mo		
le 3 F	Agri/Other For RS		Storm Sewer B Municipality	ylaw			Hg /	by HS		Water	80 IOCI	an Dei	Solids	m (0.2	nsive		Please note: S days - contact	tandard TAT for certain tes your Project Manager for c	its such as BOD and Di letails	oxins/Furans a
ile		PWQO	Reg 406 Tabl	е			Field Filtered (please of Metals / Hg / Cr VI	Reg 153 VOCs by HS & F1-F4	AHs	O.Reg 153 PCBs (Water)	fetais	Oxyge	pded 8	uminu	prehe			Rush TAT (if applies to		
	to about Cale of	Other _	A t t- Orano				Met Fil	153 V	Reg 153 PAHs	153	153 Metais	mical	Susper	red Alt	Com		Date Required Rush Confirma	ation Number:	Time Require	
Samp	include Criteria	a on Certificate of A		Date Samples	Time Sample	d Matrix	E ~	O.Reg	D.Reg	Reg	O.Reg (Wtr)	ioche	Fotal S	issolv	3CAp		# of Bottles		(call lab for #	V)
	142						/	7	-	1	0.5	an .	j. j.		LE C		5.5		* PROPERTY CONT.	
		Bh5-3/	MW N	199,22	1000	6W		1/	-	-	1	6	6	~			18			
						+			_	_										
							LIVE.													
					1	-		_	+	+							-			
							THE I													
							-													
					+	+			+	-							-			_
							The second													
-									-	-										
							121						×							
_	RELINQUISHED BY: (S	ionature (Briet)	Date: (YY/	MM/DD)	Time	BECEIVED	BY: (Signature)	Deleth		Date: (YY	MW/DDI			#1000	used and		Laboration	ory Use Only		
anist	0. 11	and Print	22/05/		'w	ZVIT	1011/1	5		bate: (YY		17	7.72		submitted	Time Sensitive	Temperatu	. / 1	Custody Seal	Yes
		1	001011	0 1 11			1541 41	1	- 6	0	11/1	15	-	-			161	976	Present Intact	


Bureau Veritas Canada (2019) Inc.

Bureau Veritas Job #: C2C4120 Report Date: 2022/05/16 Bureau Veritas Sample: SOL754 AECOM Canada Ltd Client Project #: 60646784

Project name: PEEL REGION SNOW STORGAE

Client ID: BH5-3/MW

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Site Location: PEEL REGION SNOW STORGAE

Sampler Initials: DP

Exceedance Summary Table – Reg153/04 T2-GW-C Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
No Exceedances						
The exceedance summary table	is for information purp	oses only and should not be conside	red a comprehei	nsive listing or state	ment of co	nformance to
applicable regulatory guidelines	i.					

Your Project #: 60646784

Site#: SITE 5

Site Location: PEEL REGION SNOW STORGAE

Your C.O.C. #: 877485-01-01

Attention: Brian Holden

AECOM Canada Ltd 50 Sportsworld Crossing Rd Suite 290 Kitchener, ON Canada N2P 0A4

Report Date: 2022/05/18

Report #: R7129673 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C2C4120 Received: 2022/05/09, 13:32

Sample Matrix: Water # Samples Received: 1

·		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Dissolved Aluminum (0.2 u, clay free)	1	N/A	2022/05/12	CAM SOP-00447	EPA 6020B m
Alkalinity	1	N/A	2022/05/11	CAM SOP-00448	SM 23 2320 B m
Carbonate, Bicarbonate and Hydroxide	1	N/A	2022/05/12	CAM SOP-00102	APHA 4500-CO2 D
Biochemical Oxygen Demand (BOD)	1	2022/05/11	2022/05/16	CAM SOP-00427	SM 23 5210B m
Chloride by Automated Colourimetry	1	N/A	2022/05/11	CAM SOP-00463	SM 23 4500-Cl E m
Conductivity	1	N/A	2022/05/11	CAM SOP-00414	SM 23 2510 m
Dissolved Organic Carbon (DOC) (1)	1	N/A	2022/05/11	CAM SOP-00446	SM 23 5310 B m
Hardness (calculated as CaCO3)	1	N/A	2022/05/12	CAM SOP 00102/00408/00447	SM 2340 B
Dissolved Metals by ICPMS	1	N/A	2022/05/12	CAM SOP-00447	EPA 6020B m
Ion Balance (% Difference)	1	N/A	2022/05/13		
Anion and Cation Sum	1	N/A	2022/05/12		
Total Ammonia-N	1	N/A	2022/05/12	CAM SOP-00441	USGS I-2522-90 m
Nitrate & Nitrite as Nitrogen in Water (2)	1	N/A	2022/05/11	CAM SOP-00440	SM 23 4500-NO3I/NO2B
рН	1	2022/05/10	2022/05/11	CAM SOP-00413	SM 4500H+ B m
Orthophosphate	1	N/A	2022/05/12	CAM SOP-00461	EPA 365.1 m
Sat. pH and Langelier Index (@ 20C)	1	N/A	2022/05/13		Auto Calc
Sat. pH and Langelier Index (@ 4C)	1	N/A	2022/05/13		Auto Calc
Sulphate by Automated Colourimetry	1	N/A	2022/05/12	CAM SOP-00464	EPA 375.4 m
Total Dissolved Solids (TDS calc)	1	N/A	2022/05/13		Auto Calc
Total Suspended Solids	1	2022/05/11	2022/05/12	CAM SOP-00428	SM 23 2540D m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA. Where applicable, the analytical testing herein was performed in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. All methodologies comply with this document and are validated for use in the laboratory. The methods and techniques employed in this analysis conform to the performance criteria (detection limits, accuracy and precision) as outlined in the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. Bureau Veritas is accredited by SCC (Lab ID 97) for all specific parameters as required by Ontario Regulation 153/04.

Your Project #: 60646784

Site#: SITE 5

Site Location: PEEL REGION SNOW STORGAE

Your C.O.C. #: 877485-01-01

Attention: Brian Holden

AECOM Canada Ltd 50 Sportsworld Crossing Rd Suite 290 Kitchener, ON Canada N2P 0A4

Report Date: 2022/05/18

Report #: R7129673 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C2C4120 Received: 2022/05/09, 13:32

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.
- (2) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

Encryption Key

Marijane Cruz Senior Project Manager 18 May 2022 11:17:48

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

The wy

Marijane Cruz, Senior Project Manager Email: Marijane.Cruz@bureauveritas.com

Phone# (905)817-5756

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Site Location: PEEL REGION SNOW STORGAE

Sampler Initials: DP

RCAP - COMPREHENSIVE (WATER)

Bureau Veritas ID			SOL754		
Sampling Date			2022/05/09		
			10:00		
COC Number			877485-01-01		
	UNITS	Criteria	BH5-3/MW	RDL	QC Batch
Calculated Parameters					
Anion Sum	me/L	-	6.31	N/A	7984394
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	-	230	1.0	7983864
Calculated TDS	mg/L	-	340	1.0	7984402
Carb. Alkalinity (calc. as CaCO3)	mg/L	-	3.0	1.0	7983864
Cation Sum	me/L	-	6.47	N/A	7984394
Hardness (CaCO3)	mg/L	-	260	1.0	7984331
Ion Balance (% Difference)	%	-	1.25	N/A	7984393
Langelier Index (@ 20C)	N/A	-	0.736		7984400
Langelier Index (@ 4C)	N/A	-	0.487		7984401
Saturation pH (@ 20C)	N/A	-	7.42		7984400
Saturation pH (@ 4C)	N/A	-	7.67		7984401
Inorganics					
Total Ammonia-N	mg/L	-	0.32	0.050	7989684
Conductivity	umho/cm	-	600	1.0	7987545
Dissolved Organic Carbon	mg/L	-	0.69	0.40	7987154
Orthophosphate (P)	mg/L	-	<0.010	0.010	7987624
рН	рН	6.5:8.5	8.15		7987549
Dissolved Sulphate (SO4)	mg/L	-	81	1.0	7987622
Alkalinity (Total as CaCO3)	mg/L	-	230	1.0	7987543
Dissolved Chloride (Cl-)	mg/L	-	1.1	1.0	7987615
Nitrite (N)	mg/L	-	<0.010	0.010	7987643
Nitrate (N)	mg/L	-	<0.10	0.10	7987643
Nitrate + Nitrite (N)	mg/L	-	<0.10	0.10	7987643
Metals	•	•	•	•	•
Dissolved Aluminum (AI)	ug/L	-	<4.9	4.9	7989687
Dissolved Antimony (Sb)	ug/L	20	<0.50	0.50	7989687
Dissolved Arsenic (As)	ug/L	100	2.9	1.0	7989687
Dissolved Barium (Ba)	ug/L	-	57	2.0	7989687
Dissolved Beryllium (Be)	ug/L	11	<0.40	0.40	7989687
Dissolved Bismuth (Bi)	ug/L	-	<1.0	1.0	7989687
Dissolved Boron (B)	ug/L	200	72	10	7989687

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Provincial Water Quality Objectives

Ref. to MOEE Water Management document dated Feb.1999

N/A = Not Applicable

Site Location: PEEL REGION SNOW STORGAE

Sampler Initials: DP

RCAP - COMPREHENSIVE (WATER)

Bureau Veritas ID			SOL754		
Sampling Date			2022/05/09		
Sampling Date			10:00		
COC Number			877485-01-01		
	UNITS	Criteria	BH5-3/MW	RDL	QC Batch
Dissolved Cadmium (Cd)	ug/L	0.2	<0.090	0.090	7989687
Dissolved Calcium (Ca)	ug/L	-	45000	200	7989687
Dissolved Cesium (Cs)	ug/L	-	<0.20	0.20	7989687
Dissolved Chromium (Cr)	ug/L	-	<5.0	5.0	7989687
Dissolved Cobalt (Co)	ug/L	0.9	1.1	0.50	7989687
Dissolved Copper (Cu)	ug/L	5	0.92	0.90	7989687
Dissolved Iron (Fe)	ug/L	300	<100	100	7989687
Dissolved Lead (Pb)	ug/L	5	<0.50	0.50	7989687
Dissolved Lithium (Li)	ug/L	-	9.3	5.0	7989687
Dissolved Magnesium (Mg)	ug/L	-	37000	50	7989687
Dissolved Manganese (Mn)	ug/L	-	39	2.0	7989687
Dissolved Molybdenum (Mo)	ug/L	40	7.2	0.50	7989687
Dissolved Nickel (Ni)	ug/L	25	2.0	1.0	7989687
Dissolved Phosphorus (P)	ug/L	-	<100	100	7989687
Dissolved Potassium (K)	ug/L	-	2400	200	7989687
Dissolved Rubidium (Rb)	ug/L	-	0.90	0.20	7989687
Dissolved Selenium (Se)	ug/L	100	<2.0	2.0	7989687
Dissolved Silicon (Si)	ug/L	-	4900	50	7989687
Dissolved Silver (Ag)	ug/L	0.1	<0.090	0.090	7989687
Dissolved Sodium (Na)	ug/L	-	26000	100	7989687
Dissolved Strontium (Sr)	ug/L	-	1200	1.0	7989687
Dissolved Tellurium (Te)	ug/L	-	<1.0	1.0	7989687
Dissolved Thallium (TI)	ug/L	0.3	<0.050	0.050	7989687
Dissolved Thorium (Th)	ug/L	-	<2.0	2.0	7989687
Dissolved Tin (Sn)	ug/L	-	<1.0	1.0	7989687
Dissolved Titanium (Ti)	ug/L	-	<5.0	5.0	7989687
Dissolved Tungsten (W)	ug/L	30	1.1	1.0	7989687
Dissolved Uranium (U)	ug/L	5	0.70	0.10	7989687
Dissolved Vanadium (V)	ug/L	6	1.4	0.50	7989687
Dissolved Zinc (Zn)	ug/L	30	<5.0	5.0	7989687
Dissolved Zirconium (Zr)	ug/L	4	<1.0	1.0	7989687

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Provincial Water Quality Objectives

Ref. to MOEE Water Management document dated Feb.1999

Site Location: PEEL REGION SNOW STORGAE

Sampler Initials: DP

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		SOL754		
Sampling Date		2022/05/09 10:00		
COC Number		877485-01-01		
	UNITS	BH5-3/MW	RDL	QC Batch
Inorganics				
Total BOD	mg/L	<2	2	7988390
	mg/L mg/L	<2 57	2	7988390 7988366

Site Location: PEEL REGION SNOW STORGAE

Sampler Initials: DP

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

SOL754		
2022/05/09		
10:00		
877485-01-01		
BH5-3/MW	RDL	QC Batch
<5	5	7988893
	<5	<5 5

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Provincial Water Quality Objectives

Ref. to MOEE Water Management document dated Feb.1999

Bureau Veritas Job #: C2C4120 AECOM Canada Ltd
Report Date: 2022/05/18 Client Project #: 60646784

Site Location: PEEL REGION SNOW STORGAE

Sampler Initials: DP

TEST SUMMARY

Bureau Veritas ID: SOL754
Sample ID: BH5-3/MW
Matrix: Water

Collected: 2022/05/09

Shipped:

Received: 2022/05/09

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Dissolved Aluminum (0.2 u, clay free)	ICP/MS	7988893	N/A	2022/05/12	Nan Raykha
Alkalinity	AT	7987543	N/A	2022/05/11	Yogesh Patel
Carbonate, Bicarbonate and Hydroxide	CALC	7983864	N/A	2022/05/12	Automated Statchk
Biochemical Oxygen Demand (BOD)	DO	7988390	2022/05/11	2022/05/16	Frank Zhang
Chloride by Automated Colourimetry	KONE	7987615	N/A	2022/05/11	Alina Dobreanu
Conductivity	AT	7987545	N/A	2022/05/11	Yogesh Patel
Dissolved Organic Carbon (DOC)	TOCV/NDIR	7987154	N/A	2022/05/11	Anna-Kay Gooden
Hardness (calculated as CaCO3)		7984331	N/A	2022/05/12	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	7989687	N/A	2022/05/12	Arefa Dabhad
Ion Balance (% Difference)	CALC	7984393	N/A	2022/05/13	Automated Statchk
Anion and Cation Sum	CALC	7984394	N/A	2022/05/12	Automated Statchk
Total Ammonia-N	LACH/NH4	7989684	N/A	2022/05/12	Raiq Kashif
Nitrate & Nitrite as Nitrogen in Water	LACH	7987643	N/A	2022/05/11	Samuel Law
рН	AT	7987549	2022/05/10	2022/05/11	Yogesh Patel
Orthophosphate	KONE	7987624	N/A	2022/05/12	Chandra Nandlal
Sat. pH and Langelier Index (@ 20C)	CALC	7984400	N/A	2022/05/13	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	7984401	N/A	2022/05/13	Automated Statchk
Sulphate by Automated Colourimetry	KONE	7987622	N/A	2022/05/12	Chandra Nandlal
Total Dissolved Solids (TDS calc)	CALC	7984402	N/A	2022/05/13	Automated Statchk
Total Suspended Solids	BAL	7988366	2022/05/11	2022/05/12	Shaneil Hall

Site Location: PEEL REGION SNOW STORGAE

Sampler Initials: DP

GENERAL COMMENTS

Each te	emperature is the	average of up t	o three cooler temperatures taken at receipt					
	Package 1	7.0°C						
Revised	l Report (2022/05	/18) : Results ha	ave been split onto separate reports per client request.					
Cooler	ooler custody seal present and intact.							
Results	Results relate only to the items tested.							

QUALITY ASSURANCE REPORT

AECOM Canada Ltd

Client Project #: 60646784
Site Location: PEEL REGION SNOW STORGAE

Sampler Initials: DP

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RPI	D	QC Sta	ındard
QC Batch	Parameter	Date	% Recovery	-	% Recovery		Value	UNITS	Value (%)	t	% Recovery	1
7987154	Dissolved Organic Carbon	2022/05/11	97	80 - 120	98	80 - 120	<0.40	mg/L	0.79 (1)	20	,	-
7987543	Alkalinity (Total as CaCO3)	2022/05/12			93	85 - 115	<1.0	mg/L	0.66 (1)	20		
7987545	Conductivity	2022/05/11			103	85 - 115	<1.0	umho/c m	0.97 (1)	25		
7987549	рН	2022/05/11			101	98 - 103			0.78 (1)	N/A		
7987615	Dissolved Chloride (CI-)	2022/05/11	115	80 - 120	104	80 - 120	<1.0	mg/L	1.1 (1)	20		
7987622	Dissolved Sulphate (SO4)	2022/05/12	NC	75 - 125	103	80 - 120	<1.0	mg/L	0.89 (1)	20		
7987624	Orthophosphate (P)	2022/05/12	119	75 - 125	100	80 - 120	<0.010	mg/L	NC (1)	25		
7987643	Nitrate (N)	2022/05/11	102	80 - 120	100	80 - 120	<0.10	mg/L	0.092 (1)	20		
7987643	Nitrite (N)	2022/05/11	107	80 - 120	105	80 - 120	<0.010	mg/L	7.8 (1)	20		
7988366	Total Suspended Solids	2022/05/12					<10	mg/L	5.2 (1)	25	96	85 - 115
7988390	Total BOD	2022/05/16					<2	mg/L	NC (1)	30	99	80 - 120
7988893	Dissolved (0.2u) Aluminum (AI)	2022/05/12	97	80 - 120	99	80 - 120	<5	ug/L	1.5 (1)	20		
7989684	Total Ammonia-N	2022/05/12	96	75 - 125	102	80 - 120	<0.050	mg/L	8.4 (1)	20		
7989687	Dissolved Aluminum (Al)	2022/05/12	96	80 - 120	96	80 - 120	<4.9	ug/L				
7989687	Dissolved Antimony (Sb)	2022/05/12	105	80 - 120	100	80 - 120	<0.50	ug/L	NC (1)	20		
7989687	Dissolved Arsenic (As)	2022/05/12	99	80 - 120	99	80 - 120	<1.0	ug/L	NC (1)	20		
7989687	Dissolved Barium (Ba)	2022/05/12	102	80 - 120	99	80 - 120	<2.0	ug/L	0.13 (1)	20		
7989687	Dissolved Beryllium (Be)	2022/05/12	103	80 - 120	100	80 - 120	<0.40	ug/L	NC (1)	20		
7989687	Dissolved Bismuth (Bi)	2022/05/12	97	80 - 120	101	80 - 120	<1.0	ug/L				
7989687	Dissolved Boron (B)	2022/05/12	102	80 - 120	100	80 - 120	<10	ug/L	0.38 (1)	20		
7989687	Dissolved Cadmium (Cd)	2022/05/12	102	80 - 120	98	80 - 120	<0.090	ug/L	NC (1)	20		
7989687	Dissolved Calcium (Ca)	2022/05/12	NC	80 - 120	101	80 - 120	<200	ug/L				
7989687	Dissolved Cesium (Cs)	2022/05/12	97	80 - 120	94	80 - 120	<0.20	ug/L				
7989687	Dissolved Chromium (Cr)	2022/05/12	100	80 - 120	98	80 - 120	<5.0	ug/L	NC (1)	20		
7989687	Dissolved Cobalt (Co)	2022/05/12	99	80 - 120	98	80 - 120	<0.50	ug/L	0.77 (1)	20		
7989687	Dissolved Copper (Cu)	2022/05/12	105	80 - 120	97	80 - 120	<0.90	ug/L	0.66 (1)	20		
7989687	Dissolved Iron (Fe)	2022/05/12	96	80 - 120	99	80 - 120	<100	ug/L				
7989687	Dissolved Lead (Pb)	2022/05/12	101	80 - 120	100	80 - 120	<0.50	ug/L	NC (1)	20		
7989687	Dissolved Lithium (Li)	2022/05/12	110	80 - 120	112	80 - 120	<5.0	ug/L				
7989687	Dissolved Magnesium (Mg)	2022/05/12	97	80 - 120	102	80 - 120	<50	ug/L				

AECOM Canada Ltd Client Project #: 60646784

Site Location: PEEL REGION SNOW STORGAE

Sampler Initials: DP

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7989687	Dissolved Manganese (Mn)	2022/05/12	NC	80 - 120	95	80 - 120	<2.0	ug/L				
7989687	Dissolved Molybdenum (Mo)	2022/05/12	108	80 - 120	103	80 - 120	<0.50	ug/L	2.7 (1)	20		
7989687	Dissolved Nickel (Ni)	2022/05/12	95	80 - 120	93	80 - 120	<1.0	ug/L	3.1 (1)	20		
7989687	Dissolved Phosphorus (P)	2022/05/12	101	80 - 120	116	80 - 120	<100	ug/L				
7989687	Dissolved Potassium (K)	2022/05/12	100	80 - 120	101	80 - 120	<200	ug/L				
7989687	Dissolved Rubidium (Rb)	2022/05/12	99	80 - 120	98	80 - 120	<0.20	ug/L				
7989687	Dissolved Selenium (Se)	2022/05/12	100	80 - 120	101	80 - 120	<2.0	ug/L	NC (1)	20		
7989687	Dissolved Silicon (Si)	2022/05/12	99	80 - 120	99	80 - 120	<50	ug/L				
7989687	Dissolved Silver (Ag)	2022/05/12	90	80 - 120	95	80 - 120	<0.090	ug/L	NC (1)	20		
7989687	Dissolved Sodium (Na)	2022/05/12	NC	80 - 120	98	80 - 120	<100	ug/L	0.37 (1)	20		
7989687	Dissolved Strontium (Sr)	2022/05/12	93	80 - 120	93	80 - 120	<1.0	ug/L				
7989687	Dissolved Tellurium (Te)	2022/05/12	102	80 - 120	98	80 - 120	<1.0	ug/L				
7989687	Dissolved Thallium (TI)	2022/05/12	103	80 - 120	105	80 - 120	<0.050	ug/L	NC (1)	20		
7989687	Dissolved Thorium (Th)	2022/05/12	91	80 - 120	92	80 - 120	<2.0	ug/L				
7989687	Dissolved Tin (Sn)	2022/05/12	104	80 - 120	99	80 - 120	<1.0	ug/L				
7989687	Dissolved Titanium (Ti)	2022/05/12	98	80 - 120	98	80 - 120	<5.0	ug/L				
7989687	Dissolved Tungsten (W)	2022/05/12	107	80 - 120	101	80 - 120	<1.0	ug/L				
7989687	Dissolved Uranium (U)	2022/05/12	105	80 - 120	103	80 - 120	<0.10	ug/L	3.6 (1)	20	_	
7989687	Dissolved Vanadium (V)	2022/05/12	96	80 - 120	94	80 - 120	<0.50	ug/L	7.8 (1)	20		
7989687	Dissolved Zinc (Zn)	2022/05/12	97	80 - 120	97	80 - 120	<5.0	ug/L	1.9 (1)	20		

Bureau Veritas Job #: C2C4120 Report Date: 2022/05/18

QUALITY ASSURANCE REPORT(CONT'D)

AECOM Canada Ltd Client Project #: 60646784

Site Location: PEEL REGION SNOW STORGAE

Sampler Initials: DP

				Matrix Spike SPIKED BLANK		Method Blank		RPD		QC Standard		
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7989687	Dissolved Zirconium (Zr)	2022/05/12	101	80 - 120	96	80 - 120	<1.0	ug/L				

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Duplicate Parent ID

Site Location: PEEL REGION SNOW STORGAE

Sampler Initials: DP

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Charlene -
Anastassia Hamanov, Scientific Specialist
- Ell
Brad Newman, B.Sc., C.Chem., Scientific Service Specialist

0

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

U REAU ERITAS		VOICE TO:				REPO	RT TO:						PROJEC	TINFORM	IATION:		Marijar	9-May-22 13:	34	-
any Name		Contract of the Contract of th		Compa			ada Ud	. 0			Quotation	t de	C203	75				8		le Order#:
on: ss:	Accounts Payabl 50 Sportsworld C	e rossing Rd Suite	290	Attention Address	Brian	Sportswork	huanist	1 GV	Ch	Zan	P.O. #:		60646	3784	NIE C		C20	C4120		377485
33,	Kitchener ON N2	P 0A4	4 - 10 - 10		Kito	hener, on	N2P	GA4	SMIN	210	Project Na	ne:	Pcol	Region	n Snin	Stronge	CTN	ENV-765		ct Manager
	(519) 650-5313 CANSSC.E-billin		(519) 650-3422	100		340-1617 holden@aecon	Fax:		, 0	14/2	Site#:		Si	tes anoh	0	0				Marijane Cruz
IOE RE	GULATED DRINKING		TER INTENDED E	OR HUMAN	AND DESCRIPTION OF THE PERSONS ASSESSMENT	Laboratory of the explications	1.com, ah	wan ()	101		Sampled B							C#877485-01-01 Turnaround Tir	me (TAT) Required:	
	SUBMITTED ON T	HE BUREAU VER	ITAS DRINKING	VATER CHAI	N OF CUSTOD	Y	ä				m	ĉ.		(i)			Provident (St	Please provide advar		ects
18/23 T 00/1/25	tion 153 (2011)		Other Regulation		Special	Instructions	circle):	F4			S. P.	al Oxygen Demand (BOD)		clay fre			200000000000000000000000000000000000000	andard) TAT: I if Rush TAT is not specific	ed):	
	Res/Park Medium		Sanitary Sewer					Reg 153 VOCs by HS & F1-F4		- F	organi	amand		(0.2 u, c			10000 CONTRACTOR	= 5-7 Working days for mo tandard TAT for certain tes		
	Agri/Other For RS	C MISA	Municipality				P Hg	by H	1	(Wats	o 0 0 0	gen De	Solids	O) Wn	ensive		days - contact	your Project Manager for o	letails.	oxins/r-urans a
_		PWQO Other	Reg 406 Tabl	9			Field Filtered (please	VOCs	Reg 153 PAHs	O.Reg 153 PCBs (Water)	153 Metais	l Oxy	ended	Alumin	mpreh		Job Specific Date Required	Rush TAT (if applies to	entire submission) Time Require	d: ·
	Include Criteria	a on Certificate of A	Analysis (Y/N)?				Meld F	9 153	g 153	9 153	g 153	emica	Suspe	/ pevi	- Cor			ation Number.	(call lab for t	
Samp	le Barcode Label	Sample (Location	n) Identification	Date Sampled	Time Sample	d Matrix	Œ.	O.Re	O.Re	O.Re	O.Reg (Wtr)	Bioch	Total	Disso	RCAp		# of Bottles		Comments	7
	7%	Bh5-3/	mw n	199,22	1000	60	/	1	0	/	4	4	4	0	~		10			
																	10			
										-							-			
							lag et a		1											
									-	-										
							MILE P													
					+	+			-											
							120						×							
-	RELINQUISHED BY: (S	ionature/Print)	Date: (YY/	MM/DD)	Time	BECEIVED	BY: (Signature/	Print\		Date: (YY	MM/DD)		Time	# jare	used and		Laborat	ory Use Only		
anist	0. 11	and the same	22/05/	1	'w	ZVIT	1211/1	'n	-	101 V		15	232		submitted	Time Sensitive	Temperatu	. / 1	Custody Seal	Yes
	Col	1	001011	1 1.			1241 41	1	- 10	1	11/1	15	-				161	1916 -	Present Intact	

Bureau Veritas Canada (2019) Inc.

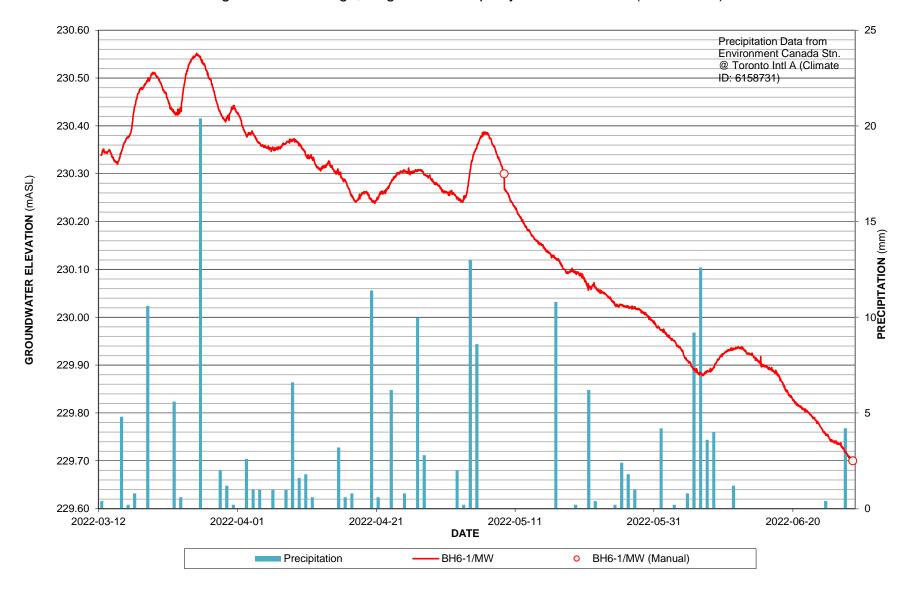
Site Location: PEEL REGION SNOW STORGAE

Sampler Initials: DP

Exceedance Summary Table – Prov. Water Quality Obj. Result Exceedances

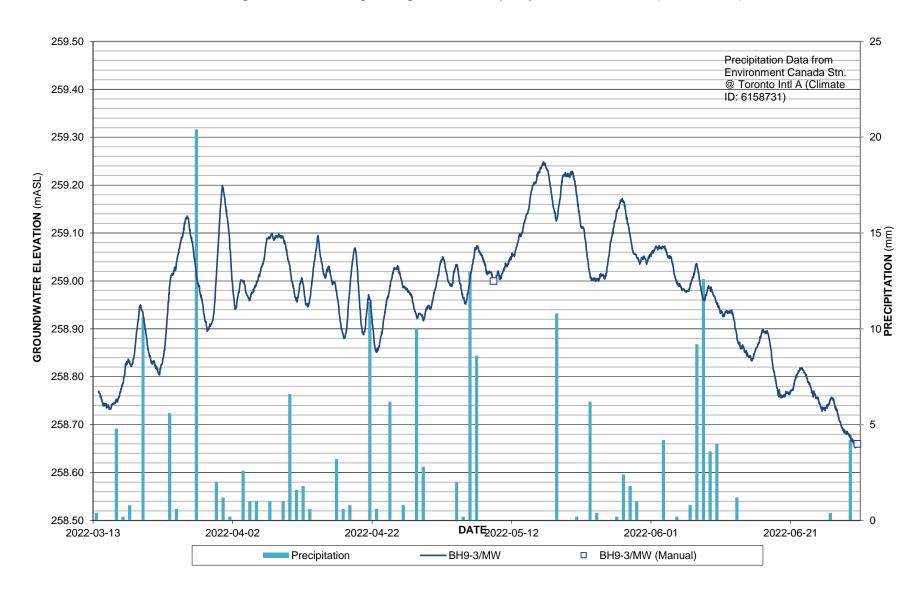
Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS			
BH5-3/MW	SOL754-06	Dissolved Cobalt (Co)	0.9	1.1	0.50	ug/L			
The exceedance summary table is far information numbers only and should not be considered a comprehensive listing or statement of conformance to									

The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to applicable regulatory guidelines.

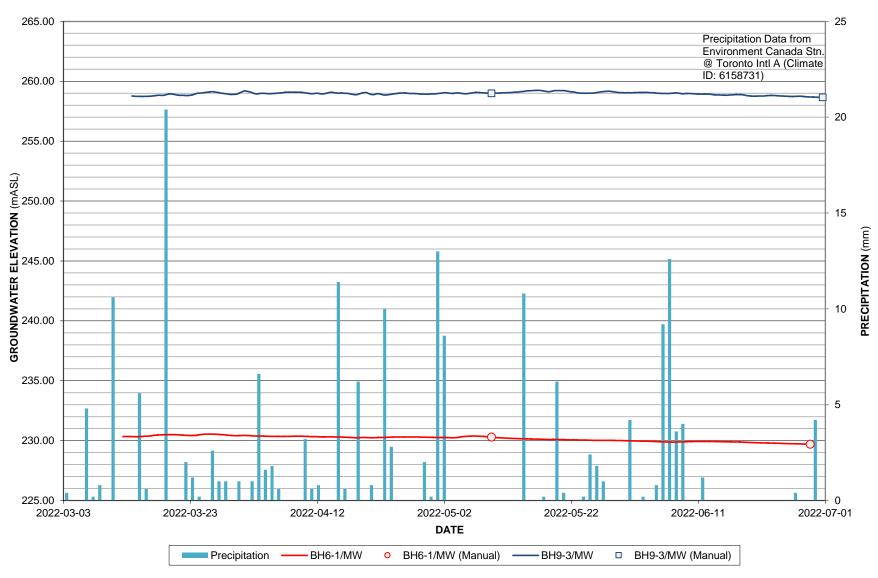


Appendix **E**

Groundwater Hydrographs


GROUNDWATER HYDROGRAPHS

Peel Region Snow Storage, Regional Municipality of Peel - Site#6 (BH6-1/MW)


GROUNDWATER HYDROGRAPHS

Peel Region Snow Storage, Regional Municipality of Peel - Site#9 (BH9-3/MW)

GROUNDWATER HYDROGRAPHS

Peel Region Snow Storage, Regional Municipality of Peel (BH6-1/MW and BH9-3/MW)

AECOM Canada Ltd. 50 Sportsworld Crossing Road, Suite 290 Kitchener, ON N2P 0A4 Canada

T: 519.650.5313 F: 519.650.3424 www.aecom.com

To: Region Of Peel Date: June 6, 2024

Project #: 60646784

From: Miln Harvey, Ph.D., P.Eng.

Brian Holden, M.Sc., P.Geo.

1

CC:

Memorandum

Subject: Hydrogeological Memorandum - Peel Region Snow Storage, 7120 Hurontario Street,

Region of Peel

1. Introduction

The Regional Municipality of Peel (the Region) retained AECOM Canada Ltd. (AECOM) to provide Detailed Design engineering services for the proposed snow disposal location at 7120 Hurontario Street, in the City of Mississauga, Ontario (the Site). The location of the site is shown in **Figure 1**.

This technical memorandum represents the geotechnical investigation undertaken by the AECOM team for Peel Region. The geotechnical scope of work includes the completion of a field investigation program and the snow storage design recommendations.


This technical memorandum also describes the hydrogeological conditions for the site including summarizing and characterizing the local physical and groundwater setting, estimating infiltration and movement of meltwater through the subsurface. A summary and interpretation, and discussion of the assessment results are provided in the report.

An environmental soil and groundwater sampling program was also completed as a part of the current geotechnical and hydrogeological investigation for evaluating the environmental quality of the fill material and the upper level of native subsurface soil as well as a baseline analysis of the groundwater for the future discharge options during the construction. This sampling/testing program was conducted for the future on-site waste management of excess soil for the waste disposal and re-use options during the construction. A summary, interpretation, and discussion of the environmental quality of soil and groundwater conditions of all the sites are provided in the report.

2. Field Investigation Methodology

This section describes the methods and specific procedures which were followed during the completion of geotechnical, hydrogeological and environmental assessment.

aecom.com Ref: 60646784

The borehole locations were established in the field on June 23, 2023 by AECOM staff. The public utility infrastructure owners were contracted through the Ontario One Call (On1Call) system to request marking of subsurface utilities in the investigation area. A private utility locating company, Altech Drilling and Investigative Services, located in Cambridge, Ontario, was subcontracted on June 30, 2023, to carry out private utility locating and borehole clearing.

2.1 Geotechnical Investigation Sampling Methodology and Monitoring Well Installation

The geotechnical investigation program was executed on June 30, 2023 under the full-time supervision of AECOM field staff. The geotechnical investigation program consisted of borehole drilling and monitoring well installation. To carry out the program, AECOM retained the drilling services from Altech Drilling & Investigation Services Ltd. (Altech) located in Cambridge, Ontario, a Ministry of the Environment, Conservation, and Parks (MECP) licensed drilling contractor.

The boreholes were advanced using a track-mounted D-50 drill rig using hollow stem augers. Upon completion of the drilling, a monitoring well was installed with stick-up protective casing and backfilled in accordance with Ontario Regulation 903, as amended. Excessive soil cuttings generated during the drilling were contained in steel drums with lids, sampled for Toxicity Characteristic Leachate Procedure (TCLP), and disposed of according to O.Reg. 406/19. Borehole and monitoring well installation locations are presented in **Appendix A**.

In general, the geotechnical field testing and sampling was carried out using ASTM standards modified based on site conditions. Standard Penetration Tests (SPT) were carried out at selected intervals to assess soil compactness/consistency to correlate its strength and to obtain samples for index (laboratory) testing purposes. SPTs were carried out in general accordance with ASTM D1586. The results of the geotechnical field testing and sampling are provided on the borehole logs in **Appendix B**.

2.2 Geotechnical Laboratory Testing

The soil samples were transported to the AECOM Laboratory in Etobicoke, ON for review and laboratory testing. Selected soil samples were tested for natural moisture content (ASTM D2216), particle size distribution of soils using sieve analysis (ASTM D6913), and Atterberg limit determination (ASTM D4318). The geotechnical laboratory test results are presented in **Appendix C**.

2.3 Groundwater Level Monitoring

The monitoring well was developed following installation for the purposes of removing sediment, rectifying possible damage caused to the target formation during the drilling process, and/or improving the hydraulic properties of the filter pack installed around the well screen. The well development process also ensures that collected groundwater samples are representative of in situ conditions of the screened aquifer formation surrounding the monitoring well.

In addition, groundwater level measurements were obtained at each monitoring well within a few weeks of their installation and following the completion of well development. Groundwater levels were subsequently monitored during each groundwater sampling event (where applicable) and at the time of single well response testing (SWRT).

Measured depth to groundwater and groundwater elevation are presented in **Table 1**. Additional groundwater level measurements were completed during subsequent groundwater level monitoring events.

aecom.com Ref: 60646784

June 6, 2024

Single Well Response Testing

Single Well Response Testing (SWRT) was carried out at monitoring wells to provide an estimate of the hydraulic conductivity of the screened geologic materials at each location.

Prior to SWRT the depth to water was measured within each monitoring well and used to determine the static water level for each well. The static water level represents the initial water levels for the single well response testing. The SWRT method involves causing a rapid change in the hydraulic head within a well and measuring the water level response back to a static water level condition. The SWRT method may include one or a combination of rising head or falling head tests, depending on the position of the static groundwater level within the monitoring well being tested. Prior to start of each test, a datalogger was installed within the target well and configured to obtain readings on a regular (i.e., 0.5 to 1 second) interval. Information collected by the datalogger was confirmed through the collection of manual groundwater level measurements using an electronic water level indicator.

Falling head tests were carried out using a solid slug, which was introduced into the well to a depth completely below the static water level causing the water level to initially rise and subsequently fall back to static, and rising head tests were carried out by completely removing the solid slug from the water column causing the water level to initially drop and subsequently rise back to static. Immediately following the introduction of the slug into the well, manual groundwater levels and elapsed time were measured as the water level recovered to its original static elevation. These measurements were supplemented with data collected by the installed datalogger. Each single well response test was concluded when the water level returned to its static elevation.

Analysis of the time-displacement data for confined aquifers is typically performed using the Hvorslev method (1951):

$$K = \frac{\pi r_c^2}{Ft} ln\left(\frac{h_0}{h_t}\right)$$

K = hydraulic conductivity of the tested material (m/s)Where:

F = a constant, referred to as the shape factor (m)

 r_c = effective casing radius (m)

 h_0 = water level displacement at time t_0 (m)

 h_t = water level displacement at time t (m)

t = time(s)

The shape factor (F) is defined using the following equation for wells $L \gg D$:

$$F = \frac{2\pi L}{\ln\left(\frac{2L}{D}\right)}$$

Where: D = casing diameter (m)

L = length of the screen interval (m)

Using the Hvorslev method, the time-displacement data are plotted on a semi-logarithmic scale. Values are then taken from the plot and input to the equation above to estimate the hydraulic conductivity (K) of the soil and/or rock formation(s) contacted along the well screen/sand pack length. SWRT results are summarized in Table 2 with individual analysis reports contained in **Appendix D**.

2.5 Groundwater Quality Sampling

Groundwater samples were collected from the monitoring well between in July 2023 and submitted to Bureau Veritas Laboratories for water quality analysis. The results of the analyses were compared to the Provincial Water Quality Objectives (PWQO) criteria limits.

The analytical results received from Bureau Veritas Laboratories indicate that the tested groundwater samples were generally below most of the criteria limits for the applicable standards, with the exception of those parameters summarized in **Table 3**. Certificates of Analysis provided by Bureau Veritas Laboratories are included in **Appendix E**.

2.6 Soil Sampling Methodology

Fifteen (15) soil samples were submitted to laboratories for chemical analysis. This soil sampling program was designed to cover the general environmental quality of the soil at the Site.

Soil samples were collected at selected intervals and screened for potential impacts, with the intent of the most impacted samples from both fill and native material being submitted for analysis as worst-case conservative assessments. Soil samples were screened for combustible organic vapours using an RKI GX-6000 photoionization detector (PID), which was calibrated using isobutylene. Soil vapours readings were in a range of 0 to less than 10 ppm in all soil samples across the Site. In addition, field observation of impacts of soil contamination including staining or soil odours during the selection of samples, however, none were observed in the samples. Therefore, representative samples from each stratigraphic unit were submitted for laboratory analysis for selected inorganic parameters and metals, polycyclic aromatic hydrocarbons (PAHs), petroleum hydrocarbons F1 to F4 (PHCs), volatile organic compounds (VOCs), and polychlorinated biphenyls (PCBs).

AECOM staff wore new nitrile gloves during the collection of each soil sample to reduce the potential for cross-contamination. Samples for PHC F1 and VOCs analyses were collected immediately by placing roughly 2 cubic centimeters (cm³) of soil material into an airtight vial containing 3 mL of methanol-based preservative. Samples for other parameters were transferred from the sample collection bag to appropriate laboratory-supplied jars once drilling was completed and PID vapour readings had been collected. All samples were placed on ice for preservation until received by the AGAT laboratories, which is certified to ISO 9001:2015 and accredited to ISO 17025:2005 UKAS ref 4028.

Chain-of-custody (COC) procedures were followed during the submission of samples to the laboratory. Sample packaging and submission procedures were followed per the project sampling procedures, to ensure sample integrity from the point of sampling up until submission to the analytical laboratory. Samples were packaged and submitted to the laboratory as outlined below:

- Sample name, project number, and date were written on each sample container.
- Caps on the sample containers were checked to ensure they are properly sealed.
- Chain-of-custody forms were completed with the required information and signed and dated to document the sample custody transfer.
- Sample containers were protected in bubble wrap in coolers.
- Sample containers were placed in a cooler with ice.
- All samples were delivered by field staff directly to AGAT Laboratories (Mississauga, ON) to be analyzed within the recommended hold times.
- Original chain-of-custody forms accompanied each submission, and copies were retained.

aecom.com Ref: 60646784

June 6, 2024

All analytical testing of soil samples was performed by AGAT Laboratory and the Certificates of Analysis are provided in **Appendix F**. The results of the analyses on the soil samples were compared with the Ministry of the Environment, Conservation and Parks (MECP) Table 2 Full Depth Generic Condition Standards (SCS) in a Potable Groundwater Conditions for Industrial/Commercial/Community (ICC) property use, for coarse-textured soil (Table 2 SCS). The SCS was selected based on the site location, the average thickness of the overburdened soil, groundwater conditions, the current property uses, and sieve and hydrometer test results carried out on soil samples.

3. 7120 Hurontario Street

The site is located at the intersection of Derrycrest Drive, Kingsway Drive, and Hurontario Street in the City of Mississauga, Ontario as shown in **Figure 1**. BH-1/MW was drilled on the east side of site through landscape areas while BH-2 and BH-3 were drilled through the asphalt in the parking areas. The site is developed with a large high-rise commercial building in the SW corner of site and an emergency service building in the SE corner of site.

3.1 Subsurface Conditions

The stratigraphic layers were inferred from non-continuous sampling and observation of drilling resistance and typically represents a transition from one soil type to another. These boundaries should not be interpreted to represent the actual planes of geological change. The subsurface conditions have been confirmed at the borehole locations only, and they may vary between and beyond the borehole locations. Refer to **Appendix B** for the borehole logs. Borehole locations are presented in **Appendix A**.

Generally, the subsurface conditions consist of surficial topsoil or asphalt overlying fill above the native clayey silt and silty clay till. The fill was variable in composition; sand and gravel fill was explored overlying gravelly sand fill in the parking lot and silty clay fill was explored in the landscaped area.

3.1.1 Asphalt

Asphalt was encountered at the ground surface in boreholes BH-2 and BH-3. The measured asphalt thickness was approximately 50 mm in BH-2 and 65 mm in BH-3.

3.1.2 Topsoil

Topsoil was encountered at the ground surface in borehole BH-1/MW. The measured topsoil thickness was approximately 50 mm.

Materials classified as topsoil were based on visual inspection only, as no organic content testing was conducted.

3.1.3 Sand and Gravel Fill (Parking Lot 'Base')

Sand and gravel fill, interpreted as parking lot 'base', was encountered beneath the asphalt in boreholes BH-2 and BH-3. The sand and gravel fill had some silt, some clay and had crushed granular material.

The sand and gravel fill was encountered from 0.5 to 0.6 mbgs and extended to 0.8 mbgs with an explored thickness of 0.7 m. SPT's carried out on this layer had N values of 11 and greater than 50 blows per 0.3 m, indicating this layer was compact to very dense. Moisture contents were 15.3% and 26.9%. A grain size

distribution analysis was carried out on the sand and gravel fill and indicated gravel size of 18%, sand size of 52%, and a fines portion (combined silt and clay) of 30%. Results of the laboratory testing are present in **Appendix C**.

3.1.4 Gravelly Sand (Parking Lot 'Subbase')

Gravelly sand fill, interpreted as parking lot 'subbase', was encountered beneath the sand and gravel fill in boreholes BH-2 and BH-3. The gravelly sand fill had some silt and trace clay.

The gravelly sand fill was encountered at 0.8 mbgs and extended to 1.5 mbgs with an explored thickness of 0.8 m. SPT's carried out on this layer had N values of 16 and 17 blows per 0.3 m, indicating this layer was compact. Moisture contents were 13.0% and 13.5%. Results of the laboratory testing are present in **Appendix C**.

3.1.5 Silty Clay Fill

Silty clay fill was encountered beneath the topsoil in borehole BH-1. The silty clay fill had trace gravel, trace sand and buried organics.

The silty clay fill was encountered from 0.1 to 0.8 mbgs with an explored thickness of 0.7 m. A SPT carried out on this layer had a N value of 6 blows per 0.3 m, indicating this layer was firm. A moisture content carried out on this layer was 15.7%. Results of the laboratory testing are present in **Appendix C**.

3.1.6 Clayey Silt

A layer of clayey silt was encountered beneath the fill in all three boreholes. The clayey silt had no to trace gravel, was sandy to having some sand, and was reddish/brown in colour.

The clayey silt was encountered from 0.8 to 1.5 mbgs to 3.1 mbgs with an explored thickness ranging from 1.5 to 2.3 m. SPT's carried out on this layer had N values ranging from 9 to 29 blows per 0.3 m, indicating this layer was stiff to very stiff. Moisture contents carried out on this layer ranged from 10.4% to 26.5%. A grain size distribution test conducted on the clayey silt had a gravel content of 0%, sand content of 28%, silt content of 45%, and a clay content of 27%. Results of the laboratory testing are present in **Appendix C**.

3.1.7 Silty Clay Till

A layer of silty clay till was encountered beneath the clayey silt till in all three boreholes. The silty clay till had trace gravel, sandy to having some sand and was reddish-brown to reddish-grey in colour.

The silty clay till was encountered at 3.1 mbgs to the borehole terminated depths of 5.2 mbgs for explored thicknesses of 2.1 m. SPT's carried out on this layer had N values ranging from 8 to 56 blows per 0.3 m, indicating this layer was stiff to hard, but generally vert stiff. Moisture contents carried out on this layer ranged from 9.3% to 16.2%. Three grain size distribution tests carried out on the silty clay till had gravel contents ranging from 2% to 4%, sand contents ranging from 33% to 40%, silty contents ranging from 36% to 41%, and clay contents ranging from 20% to 24%. One Atterberg limits test carried out on the silty clay till had a plastic limit of 14% and a liquid limit of 19%, indicating a low plasticity soil.

3.2 Groundwater Conditions

No groundwater levels were observed in the open hole upon the completion of the drilling.

A groundwater monitoring well (BH/MW-1) was constructed at the site on June 30th, 2023 as part of the geotechnical investigation. Groundwater level monitoring at BH/MW-1 was conducted by AECOM between July 4th to August 11th, 2023. **Table 1** provides a summary of BH/MW-1 including groundwater levels, elevation data, depths, and screen intervals (in mBGS and mASL).

As shown in **Table 1**, observed static groundwater level elevations at BH/MW-1 were ranged from approximately 201.36 mASL to 203.83 mASL. It is expected that the groundwater levels within the Site will be subjected to seasonal fluctuations including response to spring freshet and localized precipitation events.

Table 1: Construction Details and Groundwater Level Measurements (BH/MW-1)

Monitoring	Ground	Ground Surface Screen Interval Depth (mBGS)			Interval n (mASL)²	Groundwater Level Depth and Elevation				
Monitoring Well ID	Elevation (mASL) ²	Тор	Bottom	Тор	Bottom	Date	Depth to Groundwater (mBGS)	Groundwater Elevation (mASL)		
						July 4, 2023	DRY	DRY		
						July 10, 2023 ³	2.53	202.47		
						July 11, 2023 ⁴	3.13	201.87		
BH/MW-1	205.00	3.10	4.62	201.90	200.38	July 12, 2023 ⁴	3.64	201.36		
DI I/IVIVV-1	203.00	3.10	4.02	201.90	200.30	July 20, 2023	1.17	203.83		
						July 21, 2023 ⁵	1.44	203.56		
						July 27, 2023	1.22	203.78		
						Aug 11, 2023	1.51	203.49		

Notes: 1. mBGS = metres below ground surface

- 2. mASL = metres above mean sea level
- 3. Groundwater level data collected on July 10th, 2023 is pre-development.
- 4. Groundwater level data collected on July 11th and 12th are not static as the well was recovering from the following development and/or groundwater sampling.
- 5. Groundwater level data collected on July 21st are not static as the well was recovering from the following SWRT.

SWRT was conducted at BH/MW-1 on July 20th, 2023. Collected data were analyzed to provide an estimate of the hydraulic conductivity (K) of the stratum surrounding each respective monitoring well screen. SWRT results for BH/MW-1 are summarized in **Table 2**, with the individual analysis reports contained in **Appendix D**.

Table 2: Single Well Response Testing Results (BH/MW-1)

Monitoring Well ID	Test Date M	Analytical Method ¹	Top of Test Interval (mBGS) ²	Bottom of Test Interval (mBGS) ²	Test Type	Hydraulic Conductivity (m/s) ³	Geologic Formation
BH/MW-1	July 20th, 2023	Hvorslev	3.10	4.62	Rising Head	4.75 X 10 ⁻⁹	Silty Clay

Notes: 1: Hvorslev (1951)

2: mBGS = metres Below Ground Surface

3: m/s = metre per second

Groundwater samples were collected from BH/MW-1 on July 11th and 12th, 2023 and submitted to Bureau Veritas Laboratories for geochemical analysis. The results of the analysis were compared to Provincial Water Quality Standards (PWQO) criteria limits. As shown in **Table 1**, dissolved boron and dissolved uranium exceeded the PWQO guidelines limits. Given these exceedances, the use of water treatment prior to the discharge to the natural environment should be included as part of the dewatering plan. Certificates of Analysis provided by Bureau Veritas Laboratories are included in **Appendix E**.

Table 3: Summary of Parameters Exceeding PWQO Guidelines (BH/MW-1)

Parameter Group	Monitoring Well	Parameter	PWQO Guideline (μg/L)	Reported Value (μg/L)	
Metals	BH/MW-1	Dissolved Boron	200	260	
ivietais	DIT/IVIVV-I	Dissolved Uranium	5	17	

Notes: ug/L = micrograms per Litre

Based on the completed analysis it was determined that the field saturated vertical hydraulic conductivity of the surficial soils at the one (1) location of testing is 1.0 x 10⁻⁶ cm/sec (IFT2). The other two locations of test (IFT1 and IFT3) did not have any water level movement during the tests.

It was also determined that percolation rate is 13 mm/hour and percolation time is 44 min/cm at IFT2.

Analysis of field collected data was conducted using the Soil moisture Equipment Corporation Guelph Permeameter calculation worksheet and is provided in **Appendix G**. The testing and data analysis results are summarized in **Table 4**. If the measured steady state flow rate under the water head of 5 cm is lower than the steady state water flow rate under the water head of 10 cm, the single head method was used for data interpretation. Otherwise, the double head method was used for data interpretation. The normal average for the two methods was used in the calculations as shown in **Appendix G**.

The calculated infiltration rate for the site indicate that the local shallow soils generally are impermeable, as none locations meet the minimum 15 mm/hr percolation rate to consider multiple Low Impact Development (LID) technologies, as per guidance provided by Ministry of the Environment, Conservation and Parks (MECP) in their Stormwater Management Planning and Design Manual (Table 4.1, 2003), as well as by TRCA / Credit Valley Conservation Authority (CVC), within their Low Impact Development Stormwater Management Planning and Design Guide (Version 1.0, 2010, Table 3.4.1).

3.3 Environmental Sampling and Test Results

In total, five (5) soil samples were retrieved and submitted for chemical analysis of metals and inorganics, and PCBs.

All soil samples analyzed were either non-detect or detected with parameters well below the MECP Table 2 SCS for one or more contaminants of M&I and PCBs parameters at the borehole locations. Based on the review of the laboratory QA/QC program, sample results are considered acceptable.

Groundwater samples were collected from BH6-1/MW on March 7, 2022 and submitted to Bureau Veritas Laboratories for chemical analysis of metals, VOCs, PHCs F1 - F4, PAHs, and PCBs. The results of the analysis were compared to Table 2 SCS. The groundwater sample analyzed including metals, VOCs, PHCs F1 - F4, PAHs, and PCBs results indicated that the concentration of all analyzed parameters met the applicable MECP Table 2 SCS Standards.

aecom.com Ref: 60646784

June 6, 2024

Table 4: Infiltration Test Results

		Co-ordinat	tes – Zone 17	Donth of			Field Saturated	Calcu	lations
Site Name and Address	Test Location ID	Easting	Northing	Depth of Tested Borehole (mBGS) ¹	Dominant Soil Type	Interpretation Method	(K _{fs})	Percolation Rate ³ (X)	Percolation Time (T Time) ⁴
				, , , , ,			(cm/sec)	(mm/hour)	min/cm
Region of Peel Office (7120	IFT1	43.648125	-79.7100387	0.4	Clayey silt to silty clay, trace sand, trace gravel, occasional grass roots	Double Head	-	-	-
Hurontario Street, Mississauga, ON	IFT2	43.648145 9	-79.7101135	0.5	Silty clay, trace sand, trace gravel, occasional grass roots	Double Head	1.0 X 10 ⁻⁶	13	44
L5W 1N4)	IFT3	43.648054 7	-79.7100947	0.5	Silty clay, trace sand, trace gravel, occasional grass roots	Double Head	-	-	-

4. **Pavement Design Recommendations for Truck Route**

Based on the current investigation, the following recommendation is provided for site for 7120 Hurontario Street. It is assumed based on current site conditions that no pavement reconstruction or removal of existing pavements is proposed at this time. If new pavement construction is proposed in the green landscape area, then the placement of the light duty pavement structure in Table 5 as per the typical pavement structure requirements for the Peel Region is recommended.

Table 5: **Flexible Pavement Design Recommendations**

Pavement Structure	Light Duty Pavement Structure Layer ¹⁾ Thickness (mm)	Heavy Duty Pavement Structure Layer ¹⁾ Thickness (mm)	Compaction Minimum Requirement
HL3 or Superpave 12.5 mm Surface Course	50	50	92% MRD (OPSS 310)
HL8 or Superpave 19.0 Binder Course	70 (one lift)	110 (two lifts)	92% MRD (OPSS 310)
Granular Base: Granular 'A'	150	150	100% SPMDD (OPSS 501)
Granular Base: Granular 'B'	450	450	100% SPMDD (OPSS 501)
Total Thickness	720	760	

Pavement Design Notes:

- 1) Light Duty Pavement Structure shown in Table 2 is based on 15 years of service life
- 2) PGAC Grade 58-28
- 3) Superpave mix design traffic, category B

Geotechnical Design Considerations

Bearing Capacity 5.1

This section of the report provides geotechnical design recommendations for the proposed snow storage structures. The recommendations are based on the subsurface conditions encountered during the current geotechnical investigation. It is assumed that shallow foundations (e.g., square or spread footing) will be the proposed foundation design to support new snow storage structures for site. The calculation does not consider any eccentric loading cases.

The following design values presented in **Table 6** are provided for a variety of typical shallow foundation sizes. The founding depth is assumed to be 1.2 mbgs frost depth below the final grade.

Table 6: **Geotechnical Capacity of Shallow Foundation**

Footing Size (m)	Founding Soil	Factored Geotechnical Resistance at ULS (kPa)*	Geotechnical Reaction at SLS (kPa)**
1 x 1	Stiff to very stiff clayey silt	200	175
2 x 2	Very stiff to hard silty clay till	240	150
Strip 4x1	Very stiff to hard silty clay till	210	230

Notes: * - Factored Geotechnical Resistance at ULS uses a Geotechnical Resistance factor of 0.5.

** - The geotechnical resistance at SLS for 25 mm of settlement is considered.

5.2 Lateral Earth Pressure on Structures

The peat type snow storage system, retaining wall and temporary roadway protection, if any, should be designed to resist lateral earth pressure. Where the snow storage system can be drained effectively to eliminated hydrostatic pressure on the walls, earth pressures equation can be simplified in accordance with the CHBDC.

The expression for calculating lateral earth pressure is given by:

 $P = K(\gamma//h + q)$ for non-braced cut

Where: P = earth pressure intensity at depth h, kPa

K = earth pressure coefficient

 Υ = unit weight of retained soil, kN/m³

q = surcharge near wall, kPa H = depth of excavation (m)

The mobilization of full active or passive resistance requires a measurable and perhaps significant wall movement or rotation. Therefore, unless the structural element can tolerate these deflections, the at-rest earth pressure should be used in design.

The effect of compaction surcharge should be taken into account in the calculations of active and at- rest earth pressures. The lateral pressure due to compaction should be taken as at least 12 kPa at the surface, and its magnitude should be assumed to diminish linearly with depth to zero at the depth where the active (or at rest) pressure is equal to 12 kPa. This pressure distribution should be added to the calculated active (or at rest) pressure. Notwithstanding, lighter compaction equipment and smaller lifts should be used adjacent to walls to prevent overstressing.

For design purposes, the unfactored static earth pressure parameters given in **Table 7** can be used (assuming wall friction is neglected, the back wall is vertical and the ground surface is horizontal both on the retained side as well as in front of the toe):

Table 7: Material Types and Unfactored Earth Pressure Properties under Static Conditions

Material	Unfactored Friction Angle φ' (°)	Coefficient of Active Earth Pressure (K _a)	Coefficient of Passive Earth Pressure (K _p)	Coefficient of Earth Pressure at Rest (K ₀)	Unit Weight ४ (kN/m³)
Granular A	35	0.27	3.69	0.43	22
Granular B, Type II	32	0.31	3.25	0.47	21
Firm to stiff silty clay fill	27	0.38	2.67	0.55	20
Very stiff to hard silty clay till	29	0.35	2.88	0.52	21

6. Construction Considerations

6.1 Site Preparation and Engineered Fill Construction

The area within the limits of the proposed snow storage locations should be stripped and cleared of surface vegetation, topsoil and debris prior to construction. Any soil containing excessive organics or loose/disturbed materials are not suitable for the subgrade of structure foundations or engineered fill. Therefore, the areas with

those soils should be excavated and replaced with engineered fill comprised of Granular A or Granular B, Type I or Type II. In order to prevent migration of fine soil particles, a geotextile can be used placed underneath the granular material.

Engineered fill could be placed after stripping all topsoil, organic matter, fill and other compressible, weak and deleterious material within an area extending at least 1.0 m beyond the outside edge of the founding level of any footings, after stripping, the entire area should be heavily proof-rolled inspected and approved by a Geotechnical Engineer. Engineered fill should be placed in accordance with OPSS 501. The fill material should be placed in thin layers not exceeding approximately 300 mm when loose, oversize particles larger than 120 mm should be discarded, and each fill layer should be uniformly compacted with heavy compactors, suitable for the type of fill used, the engineered fill below the footing and floor slab should be compacted to 100% of its SPMDD, while within outside/exterior paved areas, the fill should be compacted to 98% of its SPMDD.

Full-time geotechnical inspection and quality control (by means of frequent field density of laboratory testing) should be provided by the Geotechnical Engineer. Every lift should be evaluated by a sufficient number of tests to ensure that the level of compaction is constantly achieved, and the compaction procedure is applied.

6.2 Subgrade Preparation for Pavement

After all removals of incompetent soils including vegetation, topsoil and debris, the contractor shall compact and/or proof roll the remaining existing subgrade/fill. This material shall be inspected by a qualified Geotechnical Engineer prior to adding base or subbase material placement. any earth fill material below granular base or subbase shall be placed and compacted in lifts no more than 300 mm thick. The Geotechnical Engineer shall identify any poorly performing areas (i.e., wet areas, areas of poor compactness, areas of unsuitable cohesive material) and direct the contractor to remove the poorly performing areas by sub-excavating and backfilling with Granular A.

6.2.1 Granular Base/Subbase Placement

The granular base / subbase course(s) shall conform to the OPSS.MUNI 1010 for select granular materials and shall be compacted to at least 100% of the SPMDD as indicated in **Table 2**. The material lifts shall not exceed 300 mm in thickness.

Compaction testing of the granular base / subbase lift(s) shall be conducted according to OPSS.MUNI 501 and required document (i.e., gradation of materials, proctor test results, compaction reports) should be submitted to the Contract Admin (CA) and the region.

6.2.2 Hot Mix Asphaltic Concrete Pavement

Hot Mix Asphaltic Concrete (HMAC) used for the new pavement construction (whether new material or recycled material) shall conform to the OPSS.MUNI 310 requirements. The asphaltic concrete courses shall use Performance Grade Asphalt Cement (PGAC) PG 58-28 and be designed to traffic category C in case of Superior Performance Asphalt Pavement (Superpave) to be used.

The asphaltic concrete shall conform to OPSS.MUNI 1050 and be placed and compacted to at least 92% MRD as indicated in **Table 2**. The asphalt mix design shall be submitted to the consultant for their review prior to the start of pavement construction.

6.3 Temporary Excavation

All excavations should be carried out in accordance with the Ontario Occupational Health and Safety Act (OHSA). The soils of the Site can be classified as Type 1, 2, 3 or 4 depending on the subsurface soil conditions and groundwater conditions.

According to Section 3, for stiff, the native very stiff to stiff soil indicates Type 2 soil at the proposed snow storage area so a side slope of 1H: 1V is recommended for excavation slopes. The slope will be adjusted based on the site experienced conditions and should be evaluated during construction in accordance with the OHSA.

Stockpiles of excavated materials should be kept at least 3.0 m or the length of 1 excavation depth, whichever is larger, away from the edge of the excavation to avoid slope instability. The slope stability of any excavations is subject to confirmation by the geotechnical engineer onsite. Care should also be taken to avoid the overloading of any underground services/structures by stockpiles, where applicable.

6.4 Dewatering

The groundwater level needs to be controlled to 0.5 m below the final excavation level to avoid adverse effect such basal heave, foundation disturbance and any surface or groundwater seepage should be controlled from the excavation prior to any material being placed. In general, pumping using properly filtered sumps, and/or filtered drains placed along the base of the excavation should provide sufficient groundwater control during the construction.

Based on current expected groundwater levels as provided in Section 3 and proposed construction schedule, dewatering may be required during construction.

6.5 Frost Protection

The frost penetration depth for the Peel Region is considered as 1.2 m in accordance with Ontario Provincial Standard Drawing (OPSD) 3090.101.

The existing subgrade soil, clayey silt and silty clay till, based on the sieve and hydrometer analyses and the MTO Frost Protection Criteria (**Table 8**), is considered a moderately to highly frost susceptible soil. Therefore, a relatively thick granular base has been recommended. The installation of a sub-drain system would reduce the potential for frost heave.

Table 8: Soil Frost Susceptibility (MTO)

Grain Size (Silt and Clay Portion)	Susceptibility to Frost heave
0 to 40%	Low
40 to 55%	Moderate
55 to 100%	High

6.6 Settlement Considerations

As the snow storage foundations will be founded on stiff to very stiff clayey silt, with the assumption of 10.0 m height snow piles last about 4 months storage period, the settlement will be minor (less than 25 mm) which will not be an issue. It is recommended to re-evaluate the potential for structure settlement during detailed design to account for an additional loading cases or property requirements.

6.7 Soil Storage and Disposal

Work included under this item shall be for the complete excavation, hauling, and disposal off-site of cut material as per the engineering plans. The material is to be tested and disposed of off-site at a suitable location based on the test results.

Quantities for all earth and topsoil items shall be calculated using the pre and post survey information and calculated using computer volume modelling software. The Contractor to ensure that CA is provided adequate notice a minimum of 48 hours, and ample time to conduct the required survey work.

The new Soil Storage Rules (Part I – the Rules for Soil Management and Part II – the Excess Soil Quality Standards) shall be followed. A procedure to manage soil that is encountered during excavation that is observed to be likely contaminated shall be applied. The excess soil generated shall follow transportation safety guidelines and transportation records shall be generated accurately to document the movement of the excess soil. The excess soil designated for reused must meet the Excess Soil Quality Standards or site-specific Soil Quality Standards and must be used for a Beneficial Purpose. Specific processing methods can be utilized to reduce concentrations of contaminates to levels that are suitable for reuse. All records generated under O. Reg. 406/19 must be kept on file for 7 years.

All excess earth excavation remaining after use as fill shall be removed from the site to locations arranged for and at the sole expense of the Contractor, all included in the unit price bid for these items.

The excess soil is to be disposed of off-site, at locations (reuse site, a Class 1 soil management site, a Class 2 soil management site or a local waste transfer facility) arranged for and at the sole expense of the Contractor. The unit price shall include excavation, loading, hauling, and disposing off-site at the sole expense of the Contractor, including any environmental or weigh ticket requirements.

Disposal locations will depend on the soil type as determined by the testing carried out as part of MOE O. Reg. 153/04 and MOE O. Reg. 406/19. Refer to the environmental report regarding the detailed requirements of contaminated and soil disposal.

As a part of this assignment, AECOM conducted the Toxicity Characteristics Leachate Procedure (TCLP) analysis results on composite soil sample (Com.SS-1, worst case scenario) as per O. Reg. 558 - Schedule IV Leachate Quality Criteria for all tested parameters. The TCLP on this composite soil sample were conducted on selected metals and inorganics, VOC, PCB and Benzo(a)pyrene for waste characterization prior to possible disposal soil off-site. The analytical results for the tested parameters met the Ontario Regulation 347 (as amended), Schedule 4 Leachate Quality Criteria for non-hazardous wastes.

6.8 Drainage and Meltwater Management

Site drainage and meltwater should be directed to a meltwater collection pond. Site meltwater should be directed away from the snow piles and dumping area to reduce ponding/rutting. The meltwater collection pond should be designed with an impermeable base, a forebay to collect litter and settle coarse sediments and a larger secondary area (polishing pond) to settle finer particles. The uncontaminated drainage should be isolated from the meltwater, the meltwater collection pond should be designed large enough to handle the expected meltwater volume, other site drainage and the periodic additional load from precipitation events. The outlet should be controlled to regulate the release to the receiving water body. The point of discharge should be protected to prevent scour. Adequate access to the pond needs to be provided to allow for periodic cleanout of

sediments. The polishing pond should be designed to encourage complete circulation to avoid salt stratification and the potential for higher releasees during wet weather flows.

7. Seismic Site Classification

Table 9 Site Classification for Seismic Site Response (CFEM 2006) summarizes the site classification based on the soil properties in the top 20 m of subsurface. Considering the undrained shear strength and SPT values of the stiff to very stiff clayey silt encountered, a seismic site classification of the building and proposed snow storage facilities at the site is Site Class D.

Table 9: Site Classification for Seismic Site Response (CFEM 2006)

	Average Properties in top 20 m												
Site Class	Ground Profile Name	Shear Wave Velocity $\overline{V_s}$ (m/s)	Standard Penetration Resistance \overline{N}_{60}	Soil Undrained Shear Strength s_u (kPa)									
Α	Hard Rock	$\overline{V}_{s} > 1500$	Not Applicable	Not Applicable									
В	Rock	$760 < \overline{V}_{S} \le 1500$	Not Applicable	Not Applicable									
С	Very Dense Soil and Soft Rock	$360 < \overline{V}_{\scriptscriptstyle S} \le 760$	$\bar{N}_{60} > 50$	$s_u > 100$									
D	Stiff Soil	$180 < \overline{V}_{S} \le 360$	$15 \le \overline{N}_{60} \le 50$	$50 < s_u \le 100$									
E	Soft Soil	$\overline{V_s} \le 180$	$\bar{N}_{60} < 15$	<i>s</i> _{<i>u</i>} < 50									
		 Plasticity Index PI > 2 Moisture Content w ≥ Undrained Shear Stre 	40% ; and ength $s_u < 25$ kPa	g characteristics:									
F	Other Soil	Site Specific Evaluation Re	equired										

The adjust of the spectral accelerations and PGA values should be referred to Tables 4.2 to 4.9 in CHBDC S6-14. Design PGA and Sa (T), and these should be selected based on project specific requirements as described in the minimum performance level in CHBDC S6-14. Seismic earth pressures acting on the structure may be estimated using Mononobe-Okabe or Wood methods depending on the rigidity or tolerable movement of the structures.

8. Liquefaction Considerations

The subsurface soil at the proposed snow storage locations from approximately 0.2 to 6.7 m below the ground surface at this site mainly comprises silty clay till with SPT N-values ranging from 8 to over 50. Based on the observed SPT values, the subsoil could potentially be susceptible to liquefaction.

In addition, the clayey silt is classified as a fine-grained soil. As shown in the grain size distribution analysis, they have a significant portion (over 70%) of fines passing through the #200 sieve. To delineate liquefaction susceptibility, this report adopted the empirical criteria recommended in the CFEM:

- $w/w_L \ge 0.85$ and $I_P \le 12$: Susceptible to liquefaction or cyclic mobility;
- $W/W_L \ge 0.80$ and $10 \le I_P \le 12$: Moderately susceptible to liquefaction;
- w/w_L < 0.85 and I_P ≥ 12: No liquefaction or cyclic mobility.

Where w is the in situ soil water content, w_L is the liquid limit of the soil and I_P is the plasticity index of the soil.

The results of the soil liquefaction susceptibility encountered within the proposed structure are shown in **Figure 2**. Based on the above criteria, the liquefaction potential for the silty clay till is 'no liquefaction'.

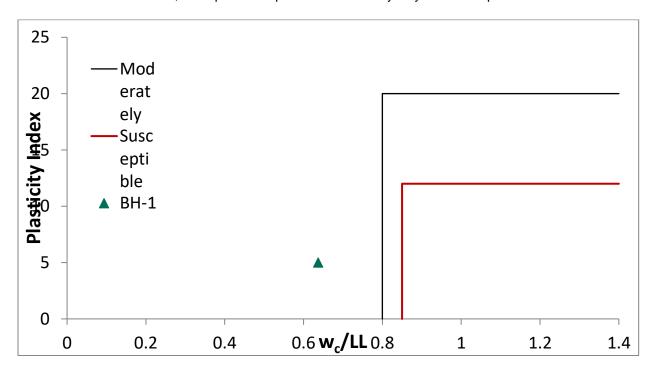


Figure 2: CFEM Recommended Criteria for Liquefaction Assessment of Fine-Grained Soils

9. Summary of Environmental Sampling

In total fifteen(15) soil samples were retrieved during Geotechnical and Hydrogeological Investigation to evaluate the general environmental quality of the fill material and the upper level of native subsurface soil as well as a baseline analysis of the groundwater for the future discharge options during the construction. This sampling/testing program was conducted for the future on-site waste management of excess soil for the waste disposal and re-use options during the construction.

Based on the background soil analytical results, all soil samples analyzed were either non-detect or detected with parameters well below the MECP Table 2 SCS for one or more contaminants of M&I, PAHs, PCBs, PHCs, and VOCs parameters, with some exceptions. Soil sample collected from borehole BH2 (BH2-SS2) was detected with elevated Electrical Conductivity (EC) and soil samples from BH3 (BH3-SS1 and BH3-SS3) were detected concentrations of benzo(a)pyrene and fluoranthene exceeded the MECP applicable Table 2 Standards, as well as elevated EC, respectively. However, laboratory results on composite soil sample Com.SS-1 (collected from soil samples from BH2 and BH3, worst case scenario) which was submitted for laboratory analysis of Toxicity Characteristic Leachate Procedure (TCLP) in accordance with O.Reg.347 (as amended) for soil waste classification and off-site possible disposal reviled that soil can be classified as non-hazardous waste material and could be disposal at off-site at the licensed facility which can accept this kind of waste.

Groundwater samples were collected from Sites #3, #5, #6, and #9, and submitted to Bureau Veritas Laboratories for chemical analysis. The results of the analysis were compared to Table 2 SCS. The groundwater

sample analyzed including metals, VOCs, PHCs F1 - F4, PAHs, and PCBs results indicated that the concentration of all analyzed parameters met the applicable MECP Table 2 SCS Standards.

Any monitoring wells that are not in use must be decommissioned as per applicable regulations.

As part of the project, construction activities may include excavation which may generate more soil than can be reused on the Site, material that is termed "excess soil". It is noted that the quantity of soil to be excavated and the quantity of excess soil to be removed from the Project Sites are not known at this time. If the volume of excess soil exceeds 2000 m³ a formal filing of a notice with MECP would be required.

Ontario Regulation 406/19 requires a project leader for a project to comply with specific requirements before removing excess soil from a project area. These obligations apply to the projects and in the circumstances set out in the regulation. Generally, the requirements include the following:

- Preparation of an assessment of past uses (APU);
- Preparation and implementation of a sampling and analysis plan (SAP);
- Preparation of a soil characterization report;
- Preparation of an excess soil destination assessment report; and
- Development and implementation of a tracking system, if client will require

10. References

AECOM, 2022:

Geotechnical investigation and design report, Peel Region Snow Storage. Peel Region. February 7, 2022.

Canadian council of Ministers of the Environment, 2010:

Canadian Water Quality guidelines for the Protection of Aquatic Life – Ammonia.

Florida Department of Environmental Protection, 2001:

Calculation of un-ionized ammonia in fresh water. February 12, 2001.

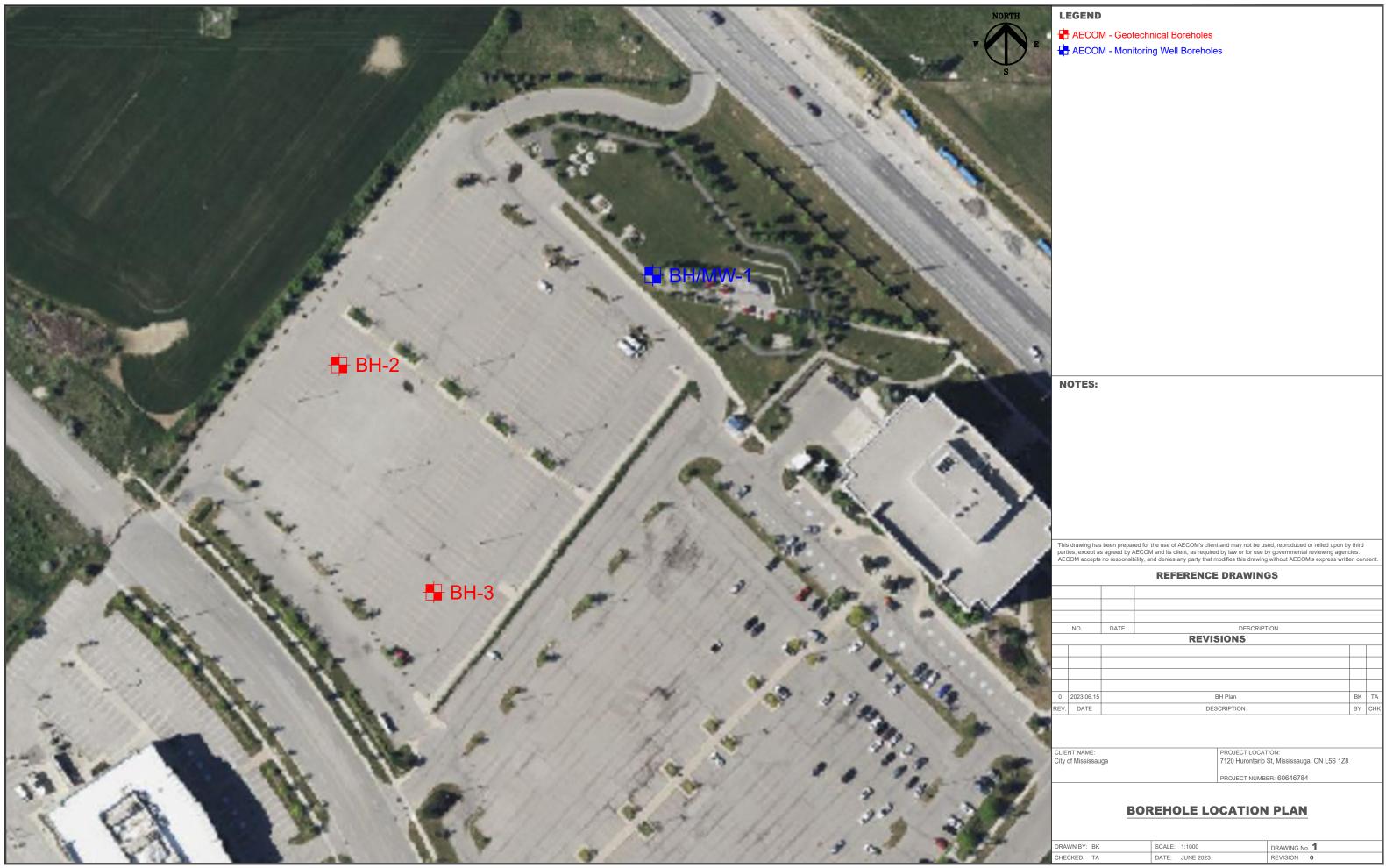
Ministry of the Environment, 1996:

Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario, May 1996 (MOE 1996 Guidance Manual)

Ministry of the Environment, Conservation, and Parks (MECP), 2011:

Environmental Protection Act – Ontario Regulation 153/04 (as amended) – Record of Site Condition regulation - Part XV.1 of the Environmental Protection Act

Ministry of the Environment, Conservation, and Parks (MECP), 2011:


Soil, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011

Ministry of the Environment, Conservation, and Parks (MECP), 2021:

Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality March 9, 2004 (PIBS 4696), amended as of July 1, 2011 and as of February 19, 2021 Version 3.1

AECOM

Appendix A

AECOM

Appendix **B**

PROJECT: Region of Peel - Snow Storage

RECORD OF BOREHOLE: BH/MW-1

LOCATION: 7120 Hurontario St, Mississauga, ON L5S 1Z8

COORDINATES: N 4833591.7; E 604027.6

DATUM: Geodetic

AECOM PROJECT#: 60646784 CLIENT: Region of Peel

START DATE: June 30, 2023 END DATE: June 30, 2023 BORING METHOD: Hollow Stem Auger

PENETRATION TEST HAMMER, 64kg; DROP, 760mm SAMPLER HAMMER, 64kg; DROP, 760mm

SHEET 1 OF 1

CONTRACTOR: Altech Drilling and Investigative Services

	_	\neg	SOIL PROFILE				MPLE		НΕΔΙ	DSPAC	E COM	and II IBUSTI	RIF							T	11, 0	ritg,	DITO	P, 760mm
DEPTH SCALE (METRES)	COUT METUDO	림		Ть					(PPN	DUR CO 11 ND = 20	ONCEN Not Dei 40	ITRAT ected 60	ONS 80		SHEAR STRENGTH Cu, kPa nat V + Q - ● rem V ⊕ U - △ 20 40 60 80		AI	DDI	TION	AL	WELL INSTALLATIO			
ETRE	2	<u>5</u>	DESCRIPTION	A PL(ELEV.	NUMBER	TYPE	N VALUE		DSPAC DUR CO						TER C		_	_	- & C	GRA STRI	TION ESTI AIN S IBUT	IZE ION	AND WATER LEVEL
j≥		2 2 2 3 1	BESSIAI TISIA	STRATA PLOT	DEPTH (m)	NUN	Ľ	> N	[PPM	1]	ONCEN ND	ITRAT = Not	ONS	미	Wp	-	—⊖ _W	'	- wı		(%)		
	- 0	_	TOPSOIL	S					Dete	200 0/2	200	300	400		1	10	20	30	40	GR	SΔ	\ SI	CI	
0		\dashv	TOPSOIL: 50 mm	 	205.0															- Oik		. 01		
			FILL: silty clay, trace gravel, trace sand, brown, moist, firm to hard	\bowtie	3	1	SS	6								0								
				\bowtie	3																			
		╽┠	CLAYEY SILT: sandy to some sand,	₩	204.2		H																	
1			grey to dark grey, moist, firm to very stiff		1	2	ss	13									0			0	28	45	27	
					1																			
					1	3	ss	9								0.								
2																	ļ.							
	illing	Auger			1											٠٠٠.								
	ıger Dr	Stem A	reddish brown, very stiff		1	4	SS	16								0								
	Power Auger Drilling	Hollow S										.	$\cdot \cdot$	•										
3	P	[±]	SILTY CLAY: sandy, trace gravel, grey,		201.9								.:											
			moist, very stiff to hard, low plasticity			5	SS	24]				0								
													ļ.,	٠										
															•••									
4			buried cobbles			6	ss	42		ļ		· ····	٠.	.		↓ ⊢	1			4	40	36	20	
										``.			•											
										:														
						7	şş.	·24 .			.					}								
5		Ц			199.8		· . ·	٠٠.	:				\perp											
			END OF BOREHOLE Notes:		5.2		 	$ \cdot $.:													
			1. This log is to be read with the subject report and project number as presented above.					:																
			2. Interpretation assistance by AECOM is required for projects excluding the above					٠٠.																
6			mentioned projects. 3. No abnormal odour or staining was		····.				•															
			observed unless otherwise indicated. 4. No groundwater was observed at the																					
			depth of 5.18mbgs in the open hole		ļ. ,	: .																		
7																								
,																								
8																								
9																								
10																								
// 00	\ T/	0.05																						
			READ IN CONJUNCTION WITH REPORT) CALE						Re	gion Peel				1	^ =				A				L	OGGED: BK
	50								of	Peel					1				/					ECKED: TA

PROJECT: Region of Peel - Snow Storage LOCATION: 7120 Hurontario St, Mississauga, ON L5S 1Z8 **RECORD OF BOREHOLE: BH-2**

COORDINATES: N 4833564.6; E 603932.9 START DATE: June 30, 2023

DATUM: Geodetic

AECOM PROJECT#: 60646784 CLIENT: Region of Peel

END DATE: June 30, 2023

BORING METHOD: Hollow Stem Auger CONTRACTOR: Altech Drilling and Investigative Services PENETRATION TEST HAMMER, 64kg; DROP, 760mm SAMPLER HAMMER, 64kg; DROP, 760mm

SHEET 1 OF 1

CLIF	EN ⁻	T:	Region of Peel			COI	NTR	ACT			Drilling								MMER, 64kg; DRO	P, 760mm
(METRES)	BORING METHOD		SOIL PROFILE	I ⊢	1	SA	AMPI	.ES	VAP	OUR CO	E COME ONCENT Not Dete 40	TRATIC	NS	SHE	AR STR	ENGTI nat V rem \	H Cu, I + / ⊕	√Pa Q - ● U - Δ	ADDITIONAL	
TRE	G ME			STRATA PLOT	ELEV.	3ER	٦	l iii			40 (L E ORGA		30	- 2	ZO 4	10	60	80	LAB. TESTING & GRAIN SIZE DISTRIBUTION	WELL INSTALLATION AND WATER LEVELS
E	N N		DESCRIPTION	RATA	DEPTH	NUMBER	TYPE	N VALUE	VAP	OUR CO	DNCEN' ND =	TRATIC	NS 🗆	Wp		OW		WI	(%)	
\dashv	ă	1	PAVEMENT SURFACE	ST	(m)	<u> </u>			Dete			00 4	00	<u> </u>	10 2	20	30	40	GR SA SI CL	
0	1	\dashv	ASPHALT: 50 mm	××××	203.3				-										GR SA SI CL	
			FILL: sand and gravel, brown, moist, very dense with crushed granulars	₩	0.1		000	50/ 25mn												
			very dense with crushed granulars	₩	3	1	55	25mn	1							"				
				₩	202.5															
			FILL: gravelly sand, some silt, trace clay, brown, moist, very stiff	\bowtie	0.8															
1			- ,,,,	₩		2	SS	17							0					
				₩	3				-											
		ŀ	CLAYEY SILT: trace gravel, some sand,	777	201.7 1.5										ļ.··.					
			reddish/brown, moist, very stiff			3	SS	28							0					
2					1											ļ				
	gu	iger			1											· ·	· .			
	Power Auger Drilling	Hollow Stem Auger	trace sand		1	,	00	20								···				
	er Aug	ow St		\mathbb{H}	1	4	58	29				.			۲					
3	Pow	로			200.2		\vdash		1					ŀ.,						
		Ī	SILTY CLAY: trace gravel, sandy, grey, moist to wet, hard to stiff, low plasticity		3.1									ŀ						
			TILL			5	ss	56				, ···	ļ. :	 	0					
													ļ ···.							
					\$					ļ.··.				'						
4			sandy, very stiff			6	SS	20				····.	.:	(\$					
										.		1								<u>∑</u> June 30, 2023
			stiff			7	ee								 				2 33 41 24	June 30, 2023
5					400.4	ľ.	SS	14											2 33 41 24	
f		\exists	END OF BOREHOLE	rax	198.1 5.2	H				• • • • • • • • • • • • • • • • • • • •	:							+		
			Notes: 1. This log is to be read with the subject report and project number as presented		:					·····										
			above.				···		·											
6			2. Interpretation assistance by AECOM is required for projects excluding the above	l				.												
			mentioned project. 3. No abnormal odour or staining was observed unless otherwise indicated. 4. Groundwater was observed at the			٠														
			observed unless otherwise indicated. 4. Groundwater was observed at the depth of 4.57mbgs in the open hole.																	
			depth of 4.57mbgs in the open hole		ļ	:	ŀ													
				٠٠.																
7						1														
8																				
9																				
- 1																				
J		- 1		I			1													
10												1		1			1	- 1		
	то) BE	READ IN CONJUNCTION WITH REPORT)																	
(LOG			READ IN CONJUNCTION WITH REPORT) CALE						Re	gion Peel				Δ:	EC			1	L	OGGED: BK

PROJECT: Region of Peel - Snow Storage

RECORD OF BOREHOLE: BH-3

SHEET 1 OF 1

LOCATION: 7120 Hurontario St, Mississauga, ON L5S 1Z8

COORDINATES: N 4833496.0; E 603961.5

DATUM: Geodetic
AECOM PROJECT #: 60646784

START DATE: June 30, 2023

END DATE: June 30, 2023
BORING METHOD: Hollow Stem Auger

CL	IEN	NT:	Region of Peel			CON	NTRA			ch Drillin	_								MER, 6	64kg; DRO	P, 760mm
ų	1	<u></u>	SOIL PROFILE			SA	MPLE	чІ١	/APOUR	PACE CO	NTRA	ATION	≣ IS ■	SHE	AR STR	ENGTH nat V.	l Cu, kF - +	a Q-●			
(METRES)	li	BORING METHOD		PLOT		~		[1	PPM] <i>NL</i> 20	D = Not Do 40	etected 60	d 80				rem V	⊕	U - △ 30	ADDI LAB. 7	ITIONAL TESTING AIN SIZE	WELL INSTALLATION
, E	:	∑ ບ	DECODIDATION	7	ELEV.	BER	<u>ا</u> پر ا	┇┝		PACE OR	_				TER CC				& GR	AIN SIZE	AND WATER LEVE
Įξ		〗	DESCRIPTION	STRATA	DEPTH	NUMBER	TYPE	\$ I \	/APOUR PPM]	R CONCE	NTRA) = No	ATION	is 🗆	Wp		OW		-l WI		RIBUTION (%)	
_	Ľ	BC		STR	(m)	Z	$\lceil \rceil$	<u>ا</u> ا ا	⊢rwij Dete çte d	NL 200	, – ivo 300	40	0					10			
0			PAVEMENT SURFACE		202.7														GR SA	A SI CL	
Ü			ASPHALT: 65 mm		0.1																
			FILL: sand, some gravel, some silt, some clay, brown/grey, moist, compact	\bowtie		1	ss	11							0				18 52	2 (30)	
				\bowtie																	
				\bowtie	201.9																
			FILL: gravelly sand, some silt, trace clay, brown, moist, very stiff	\bowtie	0.8																
1			, ,, ,	\bowtie		2	SS	16							0						
				\bowtie																	
			OLANEY OIL To transport and the	\bigotimes	201.1 1.5																
			CLAYEY SILT: trace gravel, sandy, reddish brown, moist, very stiff		1.5										. :						
						3	SS 2	24							0.						
2																ŀ					
	illing	nger			1		\vdash	\dashv									ł.,				
	jer Dr	em A	broken rock pieces		1	4	ee	26													
	r Aug	w St			1	4	SS :	26					· ;:		Р						
3	Powe	Hollow Stem Auger			400.0	_	\vdash	\dashv				$\cdot \mid$		·							
3			SILTY CLAY: trace gravel, sandy to		199.6 3.1		\vdash	\dashv			1.	\cdot									
	I		some sand, reddish brown, moist, hard to very stiff TILL			5	ss :	34				٠]			0						
													٠	٠٠.							
								-					•								
									ļ.·	٠٠.											
4			sandy			6	ss :	23				••••	٠.,		0				2 40	36 22	
									;		$\cdot \cdot$	٠٠٠.									
	1																				
	1					7A	ss	8		·.											
_	1					Ľ		···.		;					Ī						
5	L	\sqcup	grey		197.5	7B.	ss.	50.	:		\perp				0			<u></u>			
		Ţ	END OF BOREHOLE Notes:		5.2		ŀ T	. [: <u>.</u>			T									
	1		This log is to be read with the subject report and project number as presented		`:	·	`														
			above.					` ·													
6			2. Interpretation assistance by AECOM is required for projects excluding the above					`- .													
O			mentioned project.		٠٠٠٠.				`												
			3. No abnormal odour or staining was observed unless otherwise indicated.	1		٠.															
			4. No groundwater was observed at the depth of 5.18mbgs in the open hole.				:														
			deput of 3. formbys in the open note.																		
7	I					ŀ															
1	1				``•••																
	1																				
	I																				
	1																				
0	1																				
8	1																				
	1																				
	1																				
9	1																				
9																					
	I																				
40	I																				
10	1																				
(1.04	G T	OBE	READ IN CONJUNCTION WITH REPORT)														<u> </u>				
			CALE				1		Region	on				.	EC					1.0	OGGED: BK
	٠.		-						-4 D-	-1				7 N S							

AECOM

Appendix C

MOISTURE CONTENT DETERMINATION

			CLIENT	AECOM				DATE	June 7, 2023	
		PROJEC	T NUMBER	60646784				TESTED BY	Dharmik	
		PROJ	ECT NAME	Peel Snow Storag	де	REVIEWED BY	Ramana M			
			LOCATION	Normerica	Observations					
Borehole Name	Sample Id	Depth (feet)	Can Id	Weight of Empty Can (g) W ₁	Weight of Wet Soil + Can (g) W ₂	Weight of Dry Soil + Can (g) W ₃	Weight of Water (g) W _w = (W ₂ -W ₃)	Weight of Dry soil (g) W _s = (W ₃ -W ₁)	Moisture Content (%) w = (W _w /W _s)*100	
	SS1	0-2	171	13.60	90.10	79.70	10.40	66.10	15.73	
	SS2	2.5-4.5	55	13.90	57.80	48.60	9.20	34.70	26.51	
	SS3	5.7	173	13.40	72.80	66.20	6.60	52.80	12.50	
BH-1	SS4	7.5-9.5	190	13.70	62.90	57.70	5.20	44.00	11.82	
	SS5	10-12	124	13.80	65.70	60.10	5.60	46.30	12.10	
	SS6	12.5-14.5	146	13.50	74.10	68.50	5.60	55.00	10.18	
	SS7	15-17	78	13.90	67.80	63.20	4.60	49.30	9.33	
	SS1		147	13.90	42.20	36.20	6.00	22.30	26.91	
	SS2		60	13.70	41.50	38.30	3.20	24.60	13.01	
	SS3		76	14.10	79.50	72.10	7.40	58.00	12.76	
BH-2	SS4		66	13.70	78.30	72.20	6.10	58.50	10.43	
	SS5		144	13.80	73.80	66.90	6.90	53.10	12.99	
	SS6		168	13.70	62.50	58.20	4.30	44.50	9.66	
	SS7		106	13.70	64.00	57.00	7.00	43.30	16.17	
	SS1		80	13.90	66.70	59.70	7.00	45.80	15.28	
	SS2		135	13.90	75.30	68.00	7.30	54.10	13.49	
	SS3		164	13.70	60.00	54.60	5.40	40.90	13.20	
2 11.0	SS4		180	14.10	73.20	67.20	6.00	53.10	11.30	
BH-3	SS5		85	13.60	73.40	67.20	6.20	53.60	11.57	
	SS6		191	13.60	74.10	67.30	6.80	53.70	12.66	
	SS7A		84	14.40	61.80	57.10	4.70	42.70	11.01	
	SS7B		67	13.70	78.60	71.80	6.80	58.10	11.70	
								Total Samples	22	

Client	AECOM	Borehole No	BH-3	Lab No	202307006S
Project Number	60646784	Sample ID	SS1	Date	July 8, 2023
Project Name		Peel Snow Storage		Depth (Feet)	0.0'
Location		Peel Snow Storage		Tested by	SAM
Soil Classification		Silty Sand with Gravel(SM)		Reviewed by	Ramana M

Total Sample Mass (A) g 242.7 % Coarse Aggregate (D) 17.6 % Fine Aggregate (E) 82.	82.4	
--	------	--

Sieve (mm)	Individual Mass Retained (g)	Cumultive Mass Retained (g) [X]	Coarse Aggega	ate Portion Only	% Passing (Total Sample
Sieve (IIIII)	ilidividual mass Retailled (g)	Cumulive wass Retained (g) [A]	% Retained	% Passing	% Fassing (Total Sample
106				100.0	100.0
75.0				100.0	100.0
63.0				100.0	100.0
53.0				100.0	100.0
37.5				100.0	100.0
26.5				100.0	100.0
22.4				100.0	100.0
19.0				100.0	100.0
16.0				100.0	100.0
13.2				100.0	100.0
9.5	4.5	4.5	10.5	89.5	98.1
6.7	12.8	17.3	40.5	59.5	92.9
4.75	25.4	42.7	100.0		82.4
Pan	200.0	Pan + [B]	Mass Passing 4.7	5 mm (g) [C = A-B]	200

Sample Mass before washing (g) [F]	190.1	Mass passing 75 µm sieve by washing (g)	69.8	
Sample Mass after washing (g)	120.3	Mass passing 75 μm sieve by sieving (g)	0.1	

Sieve (mm)	Cumultive Mass Retained (g) [Y]	Fine Aggregat	% Passing (Total Sample	
Sieve (mm)	Cumultive wass Retained (g) [1]	% Retained	% Passing	% Passing (10tal Sample
4.75			100.0	82.41
2.36	26.9	14.2	85.8	70.75
1.18	53.3	28.0	72.0	59.30
0.600	75.4	39.7	60.3	49.72
0.425	85.1	44.8	55.2	45.52
0.300	94.6	49.8	50.2	41.40
0.150	110.2	58.0	42.0	34.64
0.075	120.2	63.2	36.8	30.30
Pan	0.1	Total Mass passing 75 µm sieve (q)	69.9	

Calculations:

D = (B/A) * 100 E= (C/A) * 100

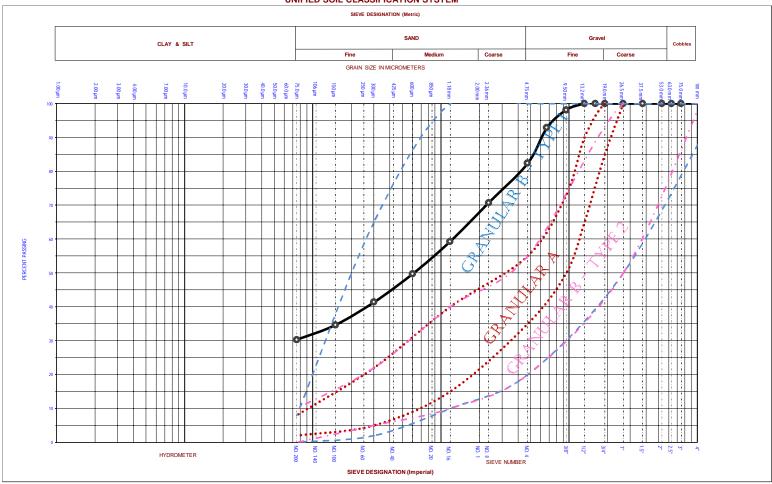
Coarse Aggregate Portion: % Retained =(X/B) * 100 % Passing = ((B-X) /B) * 100

Fine Aggregate Portion: % Retained =(Y/F) * 100 % Passing = ((F-Y) /F) * 100

Total Mass Calculations

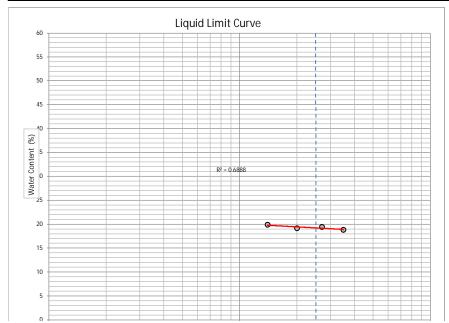
% Retained on Coarse Aggregate Sieves = (X/A) * 100

% Retained on Fine Aggregate Sieves = (Y/F) * E + % Ret. 4.75


% Passing Coarse Aggregate Sieves = ((A -X)/A)) * 100

% Passing on Fine Aggregate Sieves = ((F - Y)/F) * E

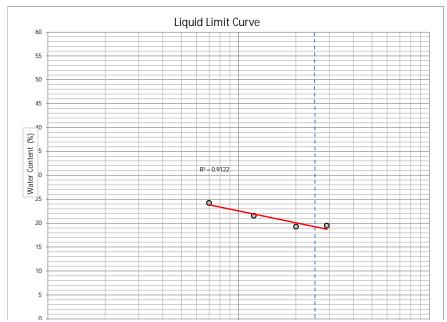
AECOM Canada Ltd.


UNIFIED SOIL CLASSIFICATION SYSTEM

GRAIN SIZE DISTRIBUTION CURVE (SIEVE AND HYDROMETER ANALYSIS)

AECOM CANADA LTD. 83 Galaxy Blvd, Unit 6 Toronto, Ontario		Client			AECOM		Date	July 8	, 2023	Project Numbe	r		60646784		
		Borehole No / S	Sample Id	BH -3	SS1		Depth (feet)	0.	0'	Lab No		202307006S			
	Project Name			Peel Snow Storage				Project Location		Peel Snow Storage					
			Soil Classificat	ion		Silty Sand with Gravel(SM)		Figure No:							
Gravel(%)	18	Sand(%)	52	Fines(%)	30	D ₆₀ (mm)	1.252	D ₃₀ (mm)	N/A	D ₁₀ (mm)	N/A	C _U	N/A	C _c	N/A

						A =/	2014	
		AECON	I CAN	ADA L	TD.	AEC	COM	
		DETERMINA	ATION OIT	LIQUID	LIMIT			
Client	AECOM	Project Number	60646784		Date	July 9, 2023		
Project Name	Peel Snow Storage		_		Tested By			
Location	Peel Snow Storage				Reviewed By			
Borehole Number	BH-1	Sample Id	SS6	Depth (feet)		Lab Number	202307004S	
Des	scription	Formula	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6
	Container Number		142	138	92	170		
Weight of	Empty Container (g) W ₁		13.84	13.66	13.52	13.54		
Weight of Con	tainer + Wet Soil (g) W ₂		22.10	21.68	22.86	22.02		
Weight of Con	tainer + Dry Soil(g) W ₃		20.73	20.41	21.36	20.64		
,	Weight of Water (g) W _w	W _w = W ₂ - W ₃	1.37	1.27	1.50	1.38		
W	eight of Dry Soil (g) W _s	W _s = W ₃ -W ₁	6.89	6.75	7.84	7.10		
	Water Content (%)	w = (W _w / W _s) * 100	19.88	18.81	19.13	19.44		
	Number of Blows		14	35	20	27		
Liqui	d Limit (%) From Graph				19	.2		



1 10 100 Number of Blows

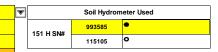
						AEC		
	_	AECO	II CAN	ADA L	.TD.	AEC	ON	
	DETERMINATION OF PLASTIC LIMIT							
Client	AECOM	Project Number	60646784		Date	July 9, 2023		
Project Name	Peel Snow Storage	-			Tested By	0		
Location	Peel Snow Storage				Reviewed By	0		
Borehole Number	BH-1	Sample Id	SS6	Depth (feet)	0	Lab Number	202307004S	
Desc	ription	Formula	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6
	Container Number		58	108	140			
Weight of E	mpty Container (g) W ₁		13.65	13.61	13.58			
Weight of Conta	ainer + Wet Soil (g) W ₂		20.38	18.99	21.15			
Weight of Cont	ainer + Dry Soil(g) W ₃		19.56	18.33	20.23			
v	Veight of Water (g) W _w	$W_w = W_2 - W_3$	0.82	0.66	0.92			
We	eight of Dry Soil (g) W _s	W _s = W ₃ -W ₁	5.91	4.72	6.65			
	Plastic Limit (%)	w = (W _w / W _s) * 100	13.87	13.98	13.83			
Avera	ge Plastic Limit (%) w _P				13	.90		

Result Summary				
Liquid Limit (%)	19			
Plastic Limit (%)	14			
Plasticity Index (%)	5			
Sample status	Plastic			

	1		Ī		Ī		-	1
	Į.	AECON	I CAN	ADA L	TD.	A=C	COM	
		DETERMINA	ATION OIT	LIQUID	LIMIT			
Client	AECOM	Project Number	60646784		Date	July 9, 2023		
Project Name	Peel Snow Storage				Tested By			
Location	Peel Snow Storage				Reviewed By			
Borehole Number	BH-2	Sample Id	SS7	Depth (feet)		Lab Number	202307004S	
Des	cription	Formula	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6
	Container Number		90	53	184	68		
Weight of I	Empty Container (g) W ₁		13.49	13.50	13.47	13.46		
Weight of Con	tainer + Wet Soil (g) W ₂		23.17	21.22	21.51	22.30		
Weight of Con	tainer + Dry Soil(g) W ₃		21.28	19.85	20.21	20.86		
,	Weight of Water (g) W _w	$W_w = W_2 - W_3$	1.89	1.37	1.30	1.44		
w	eight of Dry Soil (g) W _s	W _s = W ₃ -W ₁	7.79	6.35	6.74	7.40		
	Water Content (%)	w = (W _w / W _s) * 100	24.26	21.57	19.29	19.46		
	Number of Blows		7	12	20	29		
Liqui	d Limit (%) From Graph				19	.3		


1 10 100 Number of Blows


	ı	1				A = C	2014		
		AECO	M CAN	IADA L	.TD.	AEC	OM		
	DETERMINATION OF PLASTIC LIMIT								
Client	AECOM	Project Number	60646784		Date	July 9, 2023			
Project Name	Peel Snow Storage	-			Tested By	0			
Location	Peel Snow Storage				Reviewed By	0			
Borehole Number	BH-2	Sample Id	SS7	Depth (feet)	0	0 Lab Number 202307004S			
Desc	ription	Formula	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6	
	Container Number		131	163	88				
Weight of E	Empty Container (g) W ₁		13.77	13.60	13.56				
Weight of Cont	ainer + Wet Soil (g) W ₂		17.17	20.06	16.30				
Weight of Con	tainer + Dry Soil(g) W ₃		16.77	19.29	15.97				
٧	Veight of Water (g) W _w	$W_w = W_2 - W_3$	0.40	0.77	0.33				
W	eight of Dry Soil (g) W	W _s = W ₃ -W ₁	3.00	5.69	2.41				
	Plastic Limit (%)	w = (W _w / W _s) * 100	13.33	13.53	13.69				
Avera	ge Plastic Limit (%) w _P				13	.52			


Result Summary				
Liquid Limit (%)	19			
Plastic Limit (%)	14			
Plasticity Index (%)	5			
Sample status	Plastic			

Hydrometer Analysis

Soil Information

Liquid Limit	(LL)		
Plasticity Index	(PI)		
Specific Gravity of Soil	(Gs)	2.70	
Specific Gravity of Water	(Gw)	1	
Sg Correction Factor	(a)	0.989	
Total Mass of sample		481.5	g
Soil Particles Greater Than This Are E	xcluded From Graph	9.50	m

Hyd	drometer Detai	ls	
Volume of Bulb	(V _B)	63.1	cm ³
Length of Bulb	(L ₂)	14.15	cm
Length from '1.0' reading to top of Bull	(Ls)	10.5	cm
Scale Dimension	(hs)	0.27	cm/Div
Cross-sectional Area of Cylinder	(A)	28.1351	cm ²
Meniscus Correction	(Hm)	0.0005	Divisio

Calculation of Dry Soil Mass

0

Ramana M

07-Jul-23

Oven Dried Mass	(Wo)	35	g
Air Dried Mass	(Wa)	35.2	g
Hygroscopic Corr Factor	(F)	0.994	
Air Dried Mass in Analysis	(Ma)	50	g
Oven Dried Mass in Analysis	(Mo)	49.7	g
% Passing 2.0 mm Sieve	(P10)	92.1	
Sample Represented	(W)	54.0	g

Sieve Analysis of Retained on 2.0 mm Sieve (M2)

Sieve Analysis of Retained on 2.0 mm Sieve (W2)						
Sieve Size (mm)	Cummulative Mass Retained (g)	Mass Passing (g)	% Passing			
75.0						
63.0						
53.0						
37.5						
26.5						
19.0						
13.2						
9.5						
4.75	15.1	466.4	96.9			
2.0	38.2	443.3	92.1			

Sieve Analysis of Hydrometer Material (M7)						
Sieve Size (mm)	Comulative Mass Retained (g)	Mass Passing (g)	% Passing			
2.00	0.0	49.7	92.1			
0.850	3.6	46.1	85.3			
0.425	6.4	43.3	80.2			
0.25	9.3	40.4	74.8			
0.106	16.8	32.9	60.9			
0.075	19.3	30.4	56.3			
Page 0 075	0.4					

Percent In Suspension (P) as per Section 14.3 of ASTM D 422

P = [(100000/W) * (Gs/(Gs - Gw))] * (R - Gw) in percent (for Soil Hydrometer 151 H)

Where R = Corrected Hydrometer Reading = Hs - Hc

Hs = Actual Hydrometer Reading

Hc= Composite Correction to be determined as per Section 7 of ASTM D 422

Diameter of Soil Particles (D) as per Section 15 of ASTM D 422

 $D = SQRT \text{ of } \{[(30*\eta)/(980*(Gs-Gw)]*(L/T)\} \text{ in mm}$

Where η= Viscosity of suspending Medium (Water) in poises

L = Effective Depth = L1+0.5*[L_2 - V_B /A)] in cm L1 = distance from the top of the bulb to Recorded Hydrometer Reading in cm

T = Time in minutes

		Elaspsed Time									
Date	Time	(minutes)	Hs in Divisions	Hc in Divisions	Temp Tc in C	R=Hs-Hc	P in %	L in cm	η in Poise	K	D in mm
08-Jul-23	9:51:00 AM	1.0	1.0200	0.0030	20.7	1.0170	50.0	10.81	9.92007	0.01336576	0.0440
	9:52:00 AM	2.0	1.0185	0.0030	20.6	1.0155	45.6	11.22	9.94418	0.01338199	0.0317
	9:55:00 AM	5.0	1.0170	0.0030	20.6	1.0140	41.2	11.62	9.94418	0.01338199	0.0204
	10:05:00 AM	15.0	1.0150	0.0030	20.6	1.0120	35.3	12.16	9.94418	0.01338199	0.0121
	10:20:00 AM	30.0	1.0140	0.0030	20.7	1.0110	32.4	12.43	9.92007	0.01336576	0.0086
	10:50:00 AM	60.0	1.0120	0.0030	20.7	1.0090	26.5	12.97	9.92007	0.01336576	0.0062
	2:00:00 PM	250.0	1.0100	0.0030	20.8	1.0070	20.6	13.51	9.89606	0.01334957	0.0031
09-Jul-23	9:50:00 AM	1440.0	1.0095	0.0030	20.3	1.0065	19.1	13.65	10.01711	0.01343097	0.0013

	Viscosiity	К
L1 cm	С	(η/(Gs-1)
4.86	-0.398036	5.8353344
5.27	-0.395608	5.8495154
5.67	-0.395608	5.8495154
6.21	-0.395608	5.8495154
6.48	-0.398036	5.8353344
7.02	-0.398036	5.8353344
7.56	-0.400459	5.8212130
7.69	-0.388301	5.8924189

Mass Retained on Seive # 10	146.1
Mass Passed Seive # 10	335.4
Jar Number	

ata	Can Id	118
opic D	Empty Can Weight (g)	13.70
Hygroscopic Data	Can+ Air Dried Soil (g)	48.90
	Can + Oven Dried Soil (g)	48.70

AECOM Canada Ltd.

UNIFIED SOIL CLASSIFICATION SYSTEM

GRAIN SIZE DISTRIBUTION CURVE (SIEVE AND HYDROMETER ANALYSIS)

	CIGITAL CIENTIAL CONTROL CONTROL (CIETE TARB TIT BROWNET ER TARB T													
	Client	AECOM		Date July 7, 2023		Project Nun	nber	60646784				Gravel (%)	4	
AECOM CANADA LTD. 85 Galaxy Blvd, Unit 6 Toronto, Ontario Soil	Sample ID	BH -1	SS6	Depth ((feet)	0	Project Nam	oject Name Peel Snow Storage			Sand (%)	40		
	Lab Sample No:	202307004S Project Location Peel Snpow Storage S							Silt (%)	36				
	Soil Classification				\$	Sandy Lean Cla	trace grave	el (CL)					Clay (%)	20
	Figure No.				D10	N/A	D30	0.008	D60	0.100	Cu	N/A	Cc	N/A

Hydrometer Analysis

Liquid Limit	(LL)		
Plasticity Index	(PI)		
Specific Gravity of Soil	(Gs)	2.70	
Specific Gravity of Water	(Gw)	1	
Sg Correction Factor	(a)	0.989	
Total Mass of sample		456.5	g
Soil Particles Greater Than This Are Excluded From Graph		9.50	m

н	ydrometer Det	ails	
Volume of Bulb	(V _B)	63.1	cm ³
Length of Bulb	(L ₂)	14.15	cm
Length from '1.0' reading to top of B	ulb (Ls)	10.5	cm
Scale Dimension	(hs)	0.27	cm/Div
Cross-sectional Area of Cylinder	(A)	28.1351	cm ²
Meniscus Correction	(Hm)	0.0005	Division

Calculation of Dry Soil Mass

Oven Dried Mass	(Wo)	31.3	g
Air Dried Mass	(Wa)	31.4	g
Hygroscopic Corr Factor	(F)	0.997	
Air Dried Mass in Analysis	(Ma)	50	g
Oven Dried Mass in Analysis	(Mo)	49.8	g
% Passing 2.0 mm Sieve	(P10)	92.9	
Sample Represented	(W)	53.6	g

Sieve Analysis of Retained on 2.0 mm Sieve (M2)

Sieve Analysis of Retained on 2.0 min Sieve (W2)						
Sieve Size (mm)	Cummulative Mass Retained (g)	Mass Passing (g)	% Passing			
75.0						
63.0						
53.0						
37.5						
26.5						
19.0						
13.2						
9.5						
4.75	11.3	445.2	97.5			
2.0	32.2	424.3	92.9			

Sieve Analysis of Hydrometer Material (M7)								
Sieve Size (mm)	Comulative Mass Retained (g)	Mass Passing (g)	% Passing					
2.00	0.0	49.8	92.9					
0.850	3.5	46.4	86.5					
0.425	6.4	43.4	81.0					
0.25	9.6	40.2	75.0					
0.106	16.6	33.3	62.0					
0.075	18.9	30.9	57.6					
Page 0.075	0.6							

Percent In Suspension (P) as per Section 14.3 of ASTM D 422

P = [(100000/W) * (Gs/(Gs - Gw))] * (R - Gw) in percent (for Soil Hydrometer 151 H)

Where R = Corrected Hydrometer Reading = Hs - Hc

Hs = Actual Hydrometer Reading

Hc= Composite Correction to be determined as per Section 7 of ASTM D 422

Diameter of Soil Particles (D) as per Section 15 of ASTM D 422

 $D = SQRT \text{ of } \{[(30*\eta)/(980*(Gs-Gw)]*(L/T)\} \text{ in mm}$

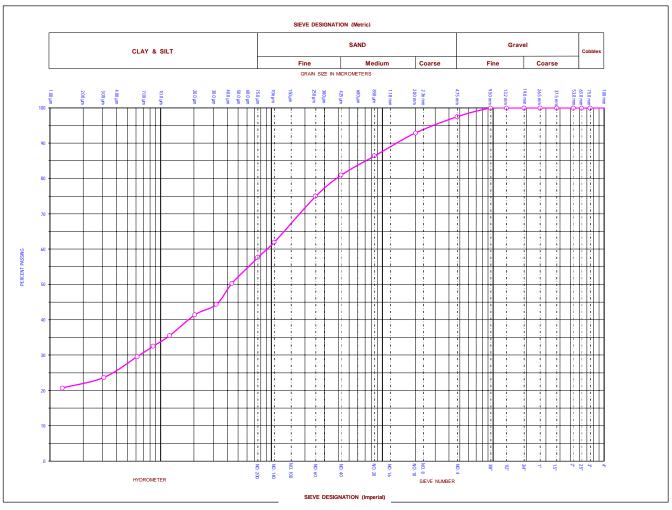
Where η= Viscosity of suspending Medium (Water) in poises

L = Effective Depth = L1+0.5*[L_2 - V_B /A)] in cm L1 = distance from the top of the bulb to Recorded Hydrometer Reading in cm

T = Time in minutes

P-4-		Elaspsed Time	He to District	He le Blodelese	Town To be O	B 11- 11-	D in 0/		a la Balan		D
Date	Time	(minutes)	Hs in Divisions	Hc in Divisions	Temp Tc in C	R=Hs-Hc	P in %	L in cm	η in Poise	К	D in mm
08-Jul-23	9:51:00 AM	1.0	1.0200	0.0030	20.8	1.0170	50.4	10.81	9.89606	0.01334957	0.0439
	9:52:00 AM	2.0	1.0180	0.0030	20.7	1.0150	44.4	11.35	9.92007	0.01336576	0.0318
	9:55:00 AM	5.0	1.0170	0.0030	20.7	1.0140	41.5	11.62	9.92007	0.01336576	0.0204
	10:05:00 AM	15.0	1.0150	0.0030	20.7	1.0120	35.5	12.16	9.92007	0.01336576	0.0120
	10:20:00 AM	30.0	1.0140	0.0030	20.7	1.0110	32.6	12.43	9.92007	0.01336576	0.0086
	10:50:00 AM	60.0	1.0130	0.0030	20.7	1.0100	29.6	12.70	9.92007	0.01336576	0.0062
	2:00:00 PM	250.0	1.0110	0.0030	20.8	1.0080	23.7	13.24	9.89606	0.01334957	0.0031
09-Jul-23	9:50:00 AM	1440.0	1.0100	0.0030	20.3	1.0070	20.7	13.51	10.01711	0.01343097	0.0013

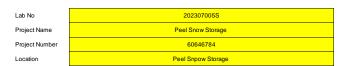
	Viscosiity	к
L1 cm	С	(η/(Gs-1)
4.86	-0.400459	5.8212130
5.40	-0.398036	5.8353344
5.67	-0.398036	5.8353344
6.21	-0.398036	5.8353344
6.48	-0.398036	5.8353344
6.75	-0.398036	5.8353344
7.29	-0.400459	5.8212130
7.56	-0.388301	5.8924189


Mass Retained on Seive # 10	123.1
Mass Passed Seive # 10	333.4
Jar Number	

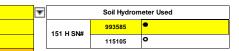
ata	Can Id	141
opic D	Empty Can Weight (g)	13.80
Hygroscopic Data	Can+ Air Dried Soil (g)	45.20
ž	Can + Oven Dried Soil (g)	45.10

AECOM Canada Ltd.

UNIFIED SOIL CLASSIFICATION SYSTEM



GRAIN SIZE DISTRIBUTION CURVE (SIEVE AND HYDROMETER ANALYSIS)


Signification of the first state (size that the first state of the fir														
Client		AECOM Da		Date J	Date July 7, 2023		Project Nun	nber	60646784				Gravel (%)	2
	Sample ID	BH -3	SS6	Depth ((feet)	0	Project Nam	пе	Peel Snow Storage			Sand (%)	40	
AECOM CANADA LTD. 83 Galaxy Blvd, Unit 6 Toronto, Ontario	Lab Sample No:	202307007S Project Location Peel Sn						Peel Snpc	w Storage		Silt (%)	36		
	Soil Classification	Sandy Lean Clay,trace gravel (CL)					Clay (%)	22						
	Figure No.				D10	N/A	D30	0.006	D60	0.092	Cu	N/A	Сс	N/A

Hydrometer Analysis

Liquid Limit	(LL)		
Plasticity Index	(PI)		
Specific Gravity of Soil	(Gs)	2.70	
Specific Gravity of Water	(Gw)	1	
Sg Correction Factor	(a)	0.989	
Total Mass of sample		393.3	g
Soil Particles Greater Than This Are Excluded From Graph		9.50	m

Hydrometer Details					
Volume of Bulb	(V _B)	63.1	cm ³		
Length of Bulb	(L ₂)	14.15	cm		
Length from '1.0' reading to top of Bulb	(Ls)	10.5	cm		
Scale Dimension	(hs)	0.27	cm/Div		
Cross-sectional Area of Cylinder	(A)	28.1351	cm ²		
Meniscus Correction	(Hm)	0.0005	Division		

	Calculation of Dry Soil Ma	ass
ss	(Wo)	41
	(Ma)	41 -

0

Ramana M

07-Jul-23

Oven Dried Mass	(Wo)	41	g
Air Dried Mass	(Wa)	41.1	g
Hygroscopic Corr Factor	(F)	0.998	
Air Dried Mass in Analysis	(Ma)	50	g
Oven Dried Mass in Analysis	(Mo)	49.9	g
% Passing 2.0 mm Sieve	(P10)	93.0	
Sample Represented	(W)	53.6	g

Sieve Analysis of Retained on 2.0 mm Sieve (M2)

Sieve Analysis of Retained on 2.0 mm Sieve (M2)							
Sieve Size (mm)	Cummulative Mass Retained (g)	Mass Passing (g)	% Passing				
75.0							
63.0							
53.0							
37.5							
26.5							
19.0							
13.2							
9.5							
4.75	11.2	382.1	97.2				
2.0	27.5	365.8	93.0				

	Sieve Analysis of Hydrometer Material (M7)										
Sieve Size (mm)	Comulative Mass Retained (g)	Mass Passing (g)	% Passing								
2.00	0.0	49.9	93.0								
0.850	2.9	47.0	87.7								
0.425	5.1	44.8	83.6								
0.25	7.4	42.4	79.2								
0.106	12.8	37.1	69.1								
0.075	14.9	35.0	65.3								
Pass 0.075	0.6										

Percent In Suspension (P) as per Section 14.3 of ASTM D 422

P = [(100000/W) * (Gs/(Gs - Gw))] * (R - Gw) in percent (for Soil Hydrometer 151 H)

Where R = Corrected Hydrometer Reading = Hs - Hc

Hs = Actual Hydrometer Reading

Hc= Composite Correction to be determined as per Section 7 of ASTM D 422

Diameter of Soil Particles (D) as per Section 15 of ASTM D 422

 $D = SQRT \text{ of } \{[(30*\eta)/(980*(Gs-Gw)]*(L/T)\} \text{ in mm}$

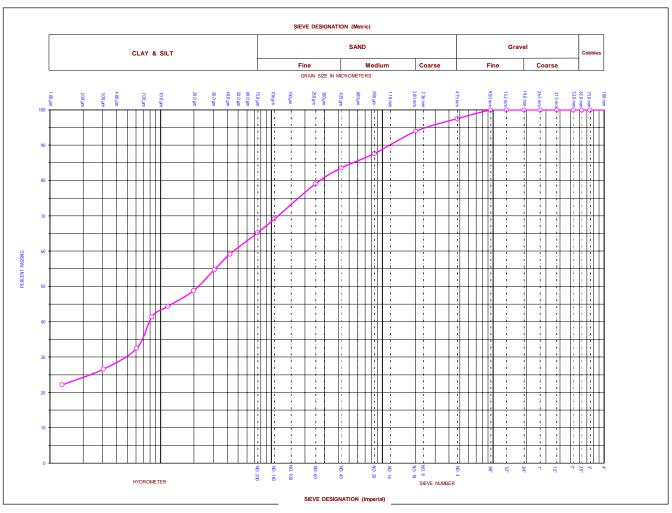
Where η= Viscosity of suspending Medium (Water) in poises

L = Effective Depth = L1+0.5*[L_2 - V_B /A)] in cm L1 = distance from the top of the bulb to Recorded Hydrometer Reading in cm

T = Time in minutes

Date	Time	Elaspsed Time (minutes)	Hs in Divisions	Hc in Divisions	Temp Tc in C	R=Hs-Hc	P in %	L in cm	η in Poise	к	D in mm
08-Jul-23	9:51:00 AM	1.0	1.0230	0.0030	20.7	1.0200	59.2	10.00	9.92007	0.01336576	0.0423
	9:52:00 AM	2.0	1.0215	0.0030	20.7	1.0185	54.8	10.41	9.92007	0.01336576	0.0305
	9:55:00 AM	5.0	1.0195	0.0030	20.6	1.0165	48.9	10.95	9.94418	0.01338199	0.0198
	10:05:00 AM	15.0	1.0180	0.0030	20.6	1.0150	44.4	11.35	9.94418	0.01338199	0.0116
	10:20:00 AM	30.0	1.0170	0.0030	20.6	1.0140	41.5	11.62	9.94418	0.01338199	0.0083
	10:50:00 AM	60.0	1.0140	0.0030	20.7	1.0110	32.6	12.43		0.01336576	
	2:00:00 PM	250.0	1.0120	0.0030	20.8	1.0090	26.7	12.97		0.01334957	0.0030
09-Jul-23	9:50:00 AM	1440.0	1.0105	0.0030	20.4	1.0075	22.2	13.38	9.99270	0.0134146	

	Viscosiity	к
L1 cm	С	(ŋ/(Gs-1)
4.05	-0.398036	5.8353344
4.45	-0.398036	5.8353344
4.99	-0.395608	5.84951548
5.40	-0.395608	5.84951548
5.67	-0.395608	5.84951548
6.48	-0.398036	5.8353344
7.02	-0.400459	5.82121303
7.43	-0.390741	5.8780574


Mass Retained on Seive # 10	68.6
Mass Passed Seive # 10	324.7
Jar Number	

ata	Can Id	99
opic D	Empty Can Weight (g)	14.10
Hygroscopic Data	Can+ Air Dried Soil (g)	55.20
Ę	Can + Oven Dried Soil (g)	55.10

AECOM Canada Ltd.

UNIFIED SOIL CLASSIFICATION SYSTEM

GRAIN SIZE DISTRIBUTION CURVE (SIEVE AND HYDROMETER ANALYSIS)

ON THE OTHER PROPERTY CONTRACTOR OF THE PROPERTY OF THE PROPER														
AECOM CANADA LTD. 83 Galaxy Blvd, Unit 6 Toronto, Ontario	Client	AECOM		Date Ju	Date July 7, 2023 Project Number		60646784			Gravel (%)	2			
	Sample ID	BH -2	SS7	Depth (fe	eet)	0	Project Nam	пе		Peel Snow Storage			Sand (%)	33
	Lab Sample No:		202307005S Project Location Peel Snpow Storage Si							Silt (%)	41			
	Soil Classification				\$	Sandy Lean Clay	,trace grave	el (CL)					Clay (%)	24
	Figure No.		D10 N/A D30 0.005 D60 0.046 Cu						Cu	N/A	Сс	N/A		

Hydrometer Analysis

Liquid Limit	(LL)		
Plasticity Index	(PI)		
Specific Gravity of Soil	(Gs)	2.70	
Specific Gravity of Water	(Gw)	1	
Sg Correction Factor	(a)	0.989	
Total Mass of sample		456.5	g
Soil Particles Greater Than This Are Excluded From Graph		9.50	m

н	ydrometer Det	ails	
Volume of Bulb	(V _B)	63.1	cm ³
Length of Bulb	(L ₂)	14.15	cm
Length from '1.0' reading to top of B	ulb (Ls)	10.5	cm
Scale Dimension	(hs)	0.27	cm/Div
Cross-sectional Area of Cylinder	(A)	28.1351	cm ²
Meniscus Correction	(Hm)	0.0005	Division

Calculation of Dry Soil Mass

Oven Dried Mass	(Wo)	31.3	g
Air Dried Mass	(Wa)	31.4	g
Hygroscopic Corr Factor	(F)	0.997	
Air Dried Mass in Analysis	(Ma)	50	g
Oven Dried Mass in Analysis	(Mo)	49.8	g
% Passing 2.0 mm Sieve	(P10)	92.9	
Sample Represented	(W)	53.6	g

Sieve Analysis of Retained on 2.0 mm Sieve (M2)

Sieve Analysis of Retained on 2.0 min Sieve (M2)									
Sieve Size (mm)	Cummulative Mass Retained (g)	Mass Passing (g)	% Passing						
75.0									
63.0									
53.0									
37.5									
26.5									
19.0									
13.2									
9.5									
4.75	11.3	445.2	97.5						
2.0	32.2	424.3	92.9						

	Sieve Analysis of Hydrometer Material (M7)										
Sieve Size (mm)	Comulative Mass Retained (g)	Mass Passing (g)	% Passing								
2.00	0.0	49.8	92.9								
0.850	3.5	46.4	86.5								
0.425	6.4	43.4	81.0								
0.25	9.6	40.2	75.0								
0.106	16.6	33.3	62.0								
0.075	18.9	30.9	57.6								
Page 0.075	0.6										

Percent In Suspension (P) as per Section 14.3 of ASTM D 422

P = [(100000/W) * (Gs/(Gs - Gw))] * (R - Gw) in percent (for Soil Hydrometer 151 H)

Where R = Corrected Hydrometer Reading = Hs - Hc

Hs = Actual Hydrometer Reading

Hc= Composite Correction to be determined as per Section 7 of ASTM D 422

Diameter of Soil Particles (D) as per Section 15 of ASTM D 422

 $D = SQRT \text{ of } \{[(30*\eta)/(980*(Gs-Gw)]*(L/T)\} \text{ in mm}$

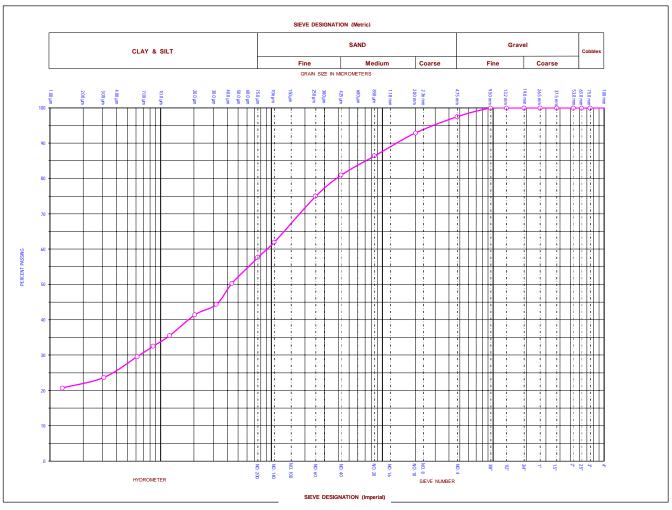
Where η= Viscosity of suspending Medium (Water) in poises

L = Effective Depth = L1+0.5*[L_2 - V_B /A)] in cm L1 = distance from the top of the bulb to Recorded Hydrometer Reading in cm

T = Time in minutes

P-4-		Elaspsed Time	He to District	He le Blodelese	Town To be O	B 11- 11-	D in 0/		a la Balan		D
Date	Time	(minutes)	Hs in Divisions	Hc in Divisions	Temp Tc in C	R=Hs-Hc	P in %	L in cm	η in Poise	К	D in mm
08-Jul-23	9:51:00 AM	1.0	1.0200	0.0030	20.8	1.0170	50.4	10.81	9.89606	0.01334957	0.0439
	9:52:00 AM	2.0	1.0180	0.0030	20.7	1.0150	44.4	11.35	9.92007	0.01336576	0.0318
	9:55:00 AM	5.0	1.0170	0.0030	20.7	1.0140	41.5	11.62	9.92007	0.01336576	0.0204
	10:05:00 AM	15.0	1.0150	0.0030	20.7	1.0120	35.5	12.16	9.92007	0.01336576	0.0120
	10:20:00 AM	30.0	1.0140	0.0030	20.7	1.0110	32.6	12.43	9.92007	0.01336576	0.0086
	10:50:00 AM	60.0	1.0130	0.0030	20.7	1.0100	29.6	12.70	9.92007	0.01336576	0.0062
	2:00:00 PM	250.0	1.0110	0.0030	20.8	1.0080	23.7	13.24	9.89606	0.01334957	0.0031
09-Jul-23	9:50:00 AM	1440.0	1.0100	0.0030	20.3	1.0070	20.7	13.51	10.01711	0.01343097	0.0013

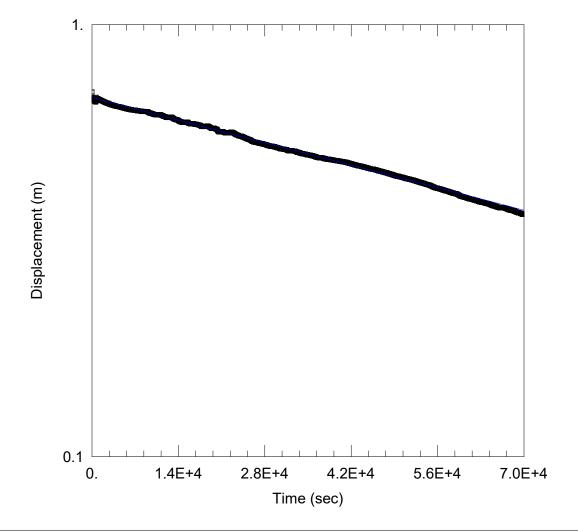
	Viscosiity	к
L1 cm	С	(η/(Gs-1)
4.86	-0.400459	5.8212130
5.40	-0.398036	5.8353344
5.67	-0.398036	5.8353344
6.21	-0.398036	5.8353344
6.48	-0.398036	5.8353344
6.75	-0.398036	5.8353344
7.29	-0.400459	5.8212130
7.56	-0.388301	5.8924189


Mass Retained on Seive # 10	123.1
Mass Passed Seive # 10	333.4
Jar Number	

ata	Can Id	141
opic D	Empty Can Weight (g)	13.80
Hygroscopic Data	Can+ Air Dried Soil (g)	45.20
H YS	Can + Oven Dried Soil (g)	45.10

AECOM Canada Ltd.

UNIFIED SOIL CLASSIFICATION SYSTEM



GRAIN SIZE DISTRIBUTION CURVE (SIEVE AND HYDROMETER ANALYSIS)

CHAINT CIZE BIOTH BOTTON CONTE (CIETETHIB TITBHOMETER THAINE														
	Client	AECOM Date July 7, 2023				Project Nun	nber	60646784			Gravel (%)	2		
	Sample ID	BH -3	SS6	Depth ((feet)	0	Project Nam	пе	Peel Snow Storage				Sand (%)	40
AECOM CANADA LTD. 83 Galaxy Blvd, Unit 6 Toronto, Ontario	Lab Sample No:	202307007S Project Location				ation	Peel Snpow Storage				Silt (%)	36		
	Soil Classification	Sandy Lean Clay,trace gravel (CL)				Sandy Lean Clay,trace gravel (CL)							Clay (%)	22
	Figure No.				D10	N/A	D30	0.006	D60	0.092	Cu	N/A	Cc	N/A

AECOM

Appendix D

7120 HURONTARIO ST., MISSISSAUGA - BH/MW-1 - RISING HEAD TEST

Data Set: C:\...\BHMW-1 RHT.aqt

Date: 07/24/23 Time: 16:43:15

PROJECT INFORMATION

Company: AECOM Canada Ltd.

Client: Peel Region
Project: 60646784
Test Well: BH/MW-1
Test Date: 2023-07-20

AQUIFER DATA

Saturated Thickness: 4.03 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (BH/MW-1)

Initial Displacement: 0.7 m

Total Well Penetration Depth: 3.45 m

Casing Radius: 0.025 m

Static Water Column Height: 3.45 m

Screen Length: 1.52 m Well Radius: 0.103 m

SOLUTION

Aquifer Model: Unconfined

Solution Method: Hvorslev

K = 4.746E-9 m/sec

y0 = 0.6771 m

AECOM

Appendix **E**

Your Project #: 60646784

Site Location: PEEL REGION SNOW STORAGE

Your C.O.C. #: 942407-01-01

Attention: Brian Holden

AECOM Canada Ltd 105 Commerce Valley Dr West 7th Floor Markham, ON CANADA L3T 7W3

Report Date: 2023/07/20

Report #: R7727197 Version: 3 - Revision

CERTIFICATE OF ANALYSIS - REVISED REPORT

BUREAU VERITAS JOB #: C3K5466 Received: 2023/07/12, 10:43

Sample Matrix: Water # Samples Received: 1

# Samples Neceived. 1		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Dissolved Aluminum (0.2 u, clay free)	1	N/A	2023/07/14	CAM SOP-00447	EPA 6020B m
Alkalinity	1	N/A	2023/07/14	CAM SOP-00448	SM 23 2320 B m
Carbonate, Bicarbonate and Hydroxide	1	N/A	2023/07/17	CAM SOP-00102	APHA 4500-CO2 D
Biochemical Oxygen Demand (BOD)	1	2023/07/14	2023/07/19	CAM SOP-00427	SM 23 5210B m
Chloride by Automated Colourimetry	1	N/A	2023/07/14	CAM SOP-00463	SM 23 4500-Cl E m
Conductivity	1	N/A	2023/07/14	CAM SOP-00414	SM 23 2510 m
Dissolved Organic Carbon (DOC) (1)	1	N/A	2023/07/14	CAM SOP-00446	SM 23 5310 B m
Hardness (calculated as CaCO3)	1	N/A	2023/07/18	CAM SOP 00102/00408/00447	SM 2340 B
Dissolved Metals by ICPMS	1	N/A	2023/07/18	CAM SOP-00447	EPA 6020B m
Ion Balance (% Difference)	1	N/A	2023/07/18		
Anion and Cation Sum	1	N/A	2023/07/18		
Total Ammonia-N	1	N/A	2023/07/17	CAM SOP-00441	USGS I-2522-90 m
Nitrate & Nitrite as Nitrogen in Water (2)	1	N/A	2023/07/14	CAM SOP-00440	SM 23 4500-NO3I/NO2B
рН	1	2023/07/13	2023/07/14	CAM SOP-00413	SM 4500H+ B m
Orthophosphate	1	N/A	2023/07/14	CAM SOP-00461	SM 23 4500-P E m
Sat. pH and Langelier Index (@ 20C)	1	N/A	2023/07/18		Auto Calc
Sat. pH and Langelier Index (@ 4C)	1	N/A	2023/07/18		Auto Calc
Sulphate by Automated Turbidimetry	1	N/A	2023/07/14	CAM SOP-00464	SM 23 4500-SO42- E m
Total Dissolved Solids (TDS calc)	1	N/A	2023/07/18		Auto Calc
Total Suspended Solids	1	2023/07/14	2023/07/17	CAM SOP-00428	SM 23 2540D m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA. Where applicable, the analytical testing herein was performed in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. All methodologies comply with this document and are validated for use in the laboratory. The methods and techniques employed in this analysis conform to the performance criteria (detection limits, accuracy and precision) as outlined in the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. Bureau Veritas is accredited by SCC (Lab ID 97) for all specific parameters as required by Ontario Regulation 153/04.

Your Project #: 60646784

Site Location: PEEL REGION SNOW STORAGE

Your C.O.C. #: 942407-01-01

Attention: Brian Holden

AECOM Canada Ltd 105 Commerce Valley Dr West 7th Floor Markham, ON CANADA L3T 7W3

Report Date: 2023/07/20

Report #: R7727197 Version: 3 - Revision

CERTIFICATE OF ANALYSIS - REVISED REPORT

BUREAU VERITAS JOB #: C3K5466 Received: 2023/07/12, 10:43

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.
- (2) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

Encryption Key

Marijane Cruz Senior Project Manager 20 Jul 2023 19:34:18

Please direct all questions regarding this Certificate of Analysis to:

Marijane Cruz, Senior Project Manager Email: Marijane.Cruz@bureauveritas.com

Phone# (905)817-5756

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

Site Location: PEEL REGION SNOW STORAGE

Sampler Initials: JC

RCAP - COMPREHENSIVE (WATER)

Bureau Veritas ID			WJA466		
Sampling Date			2023/07/11 12:00		
COC Number			942407-01-01		
	UNITS	Criteria	BH/MW-1	RDL	QC Batch
Calculated Parameters	W.: 43			e 10	
Anion Sum	me/L	-	18.4	N/A	8785388
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	- 1-	360	1.0	8783653
Calculated TDS	mg/L		1100	1.0	8784782
Carb. Alkalinity (calc. as CaCO3)	mg/L		3.9	1.0	8783653
Cation Sum	me/L	24	20.1	N/A	8785388
Hardness (CaCO3)	mg/L	- 14	810	1.0	8784331
Ion Balance (% Difference)	%		4.57	N/A	8785386
Langelier Index (@ 20C)	N/A		1.16		8784779
Langelier Index (@ 4C)	N/A	/8	0.918		8784780
Saturation pH (@ 20C)	N/A	14	6.90		8784779
Saturation pH (@ 4C)	N/A	- 1	7.15		8784780
Inorganics	in s			A 70	
Total Ammonia-N	mg/L		1.6	0.050	8790401
Conductivity	umho/cm	-55	1700	1.0	8788537
Dissolved Organic Carbon	mg/L		6.1	0.40	8789399
Orthophosphate (P)	mg/L	9	<0.010	0.010	8788516
pH	pН	6.5:8.5	8.06		8788539
Dissolved Sulphate (SO4)	mg/L	ŭ,	390	2.0	8788517
Alkalinity (Total as CaCO3)	mg/L	5.7	360	1.0	8788538
Nitrite (N)	mg/L		<0.010	0.010	8788424
Nitrate (N)	mg/L	19	<0.10	0.10	8788424
Nitrate + Nitrite (N)	mg/L		<0.10	0.10	8788424

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Provincial Water Quality Objectives

Ref. to MOEE Water Management document dated Feb.1999

N/A = Not Applicable

Site Location: PEEL REGION SNOW STORAGE

Sampler Initials: JC

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		WJA466		
Sampling Date		2023/07/11 12:00		
COC Number		942407-01-01		
	UNITS	BH/MW-1	RDL	QC Batch
Inorganics				
Total BOD	mg/L	<2	2	8788743
Total Suspended Solids	mg/L	23000	200	8789653

Site Location: PEEL REGION SNOW STORAGE

Sampler Initials: JC

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

				57.0
		WJA466		
		2023/07/11 12:00		
		942407-01-01		
UNITS	Criteria	BH/MW-1	RDL	QC Batch
		115		,
ug/L	15	<5	5	8787967
it				
h				
		/es		
		ug/L 15	2023/07/11 12:00 942407-01-01 UNITS Criteria BH/MW-1 ug/L 15 <5	2023/07/11 12:00 942407-01-01 UNITS Criteria BH/MW-1 RDL ug/L 15 <5 5

Site Location: PEEL REGION SNOW STORAGE

Sampler Initials: JC

O.REG 153 METALS & INORGANICS PKG (WTR)

Bureau Veritas ID			WJA466		
Sampling Date			2023/07/11 12:00		
COC Number			942407-01-01		
	UNITS	Criteria	BH/MW-1	RDL	QC Batc
Inorganics					
Dissolved Chloride (CI-)	mg/L		110	1.0	8788518
Metals					
Dissolved Aluminum (AI)	ug/L	+:	9.5	4.9	878900
Dissolved Antimony (Sb)	ug/L	20	<0.50	0.50	878900
Dissolved Arsenic (As)	ug/L	100	<1.0	1.0	878900
Dissolved Barium (Ba)	ug/L		75	2.0	878900
Dissolved Beryllium (Be)	ug/L	11	<0.40	0.40	878900
Dissolved Bismuth (Bi)	ug/L	-	<1.0	1.0	878900
Dissolved Boron (B)	ug/L	200	260	10	878900
Dissolved Cadmium (Cd)	ug/L	0.2	< 0.090	0.090	878900
Dissolved Calcium (Ca)	ug/L	- 2	130000	200	878900
Dissolved Cesium (Cs)	ug/L		<0.20	0.20	878900
Dissolved Chromium (Cr)	ug/L		<5.0	5.0	878900
Dissolved Cobalt (Co)	ug/L	0.9	0.78	0.50	878900
Dissolved Copper (Cu)	ug/L	5	0.99	0.90	878900
Dissolved Iron (Fe)	ug/L	300	<100	100	878900
Dissolved Lead (Pb)	ug/L	5	<0.50	0.50	878900
Dissolved Lithium (Li)	ug/L		140	5.0	878900
Dissolved Magnesium (Mg)	ug/L	50	120000	50	878900
Dissolved Manganese (Mn)	ug/L	•	330	2.0	878900
Dissolved Molybdenum (Mo)	ug/L	40	34	0.50	878900
Dissolved Nickel (Ni)	ug/L	25	1.9	1.0	878900
Dissolved Phosphorus (P)	ug/L	\$	<100	100	878900
Dissolved Potassium (K)	ug/L		53000	200	878900
Dissolved Rubidium (Rb)	ug/L	-	12	0.20	878900
Dissolved Selenium (Se)	ug/L	100	<2.0	2.0	878900
Dissolved Silicon (Si)	ug/L		8400	50	878900
Dissolved Silver (Ag)	ug/L	0.1	<0.090	0.090	878900
Dissolved Sodium (Na)	ug/L		55000	100	878900
Dissolved Strontium (Sr)	ug/L	_ 23	1000	1.0	878900
Dissolved Tellurium (Te)	ug/L	71	<1.0	1.0	878900
Dissolved Thallium (TI)	ug/L	0.3	< 0.050	0.050	878900

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Provincial Water Quality Objectives

Ref. to MOEE Water Management document dated Feb.1999

Site Location: PEEL REGION SNOW STORAGE

Sampler Initials: JC

O.REG 153 METALS & INORGANICS PKG (WTR)

Bureau Veritas ID			WJA466		
Sampling Date			2023/07/11 12:00		
COC Number			942407-01-01		
	UNITS	Criteria	BH/MW-1	RDL	QC Batch
Dissolved Thorium (Th)	ug/L	2	<2.0	2.0	8789008
Dissolved Tin (Sn)	ug/L	-	1.2	1.0	8789008
Dissolved Titanium (Ti)	ug/L	-	<5.0	5.0	8789008
Dissolved Tungsten (W)	ug/L	30	<1.0	1.0	8789008
Dissolved Uranium (U)	ug/L	5	17	0.10	8789008
Dissolved Vanadium (V)	ug/L	6	0.58	0.50	8789008
Dissolved Zinc (Zn)	ug/L	30	<5.0	5.0	8789008
Dissolved Zirconium (Zr)	ug/L	4	<1.0	1.0	8789008

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Provincial Water Quality Objectives

Ref. to MOEE Water Management document dated Feb.1999

Site Location: PEEL REGION SNOW STORAGE

Sampler Initials: JC

TEST SUMMARY

Bureau Veritas ID: WJA466 Sample ID: BH/MW-1 Matrix: Water Collected: 2023/07/11

Shipped: Received: 2023/07/12

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Dissolved Aluminum (0.2 u, clay free)	ICP/MS	8787967	N/A	2023/07/14	Arefa Dabhad
Alkalinity	AT	8788538	N/A	2023/07/14	Kien Tran
Carbonate, Bicarbonate and Hydroxide	CALC	8783653	N/A	2023/07/17	Automated Statchk
Biochemical Oxygen Demand (BOD)	DO	8788743	2023/07/14	2023/07/19	Gurjot Kaur
Chloride by Automated Colourimetry	KONE	8788518	N/A	2023/07/14	Alina Dobreanu
Conductivity	AT	8788537	N/A	2023/07/14	Kien Tran
Dissolved Organic Carbon (DOC)	TOCV/NDIR	8789399	N/A	2023/07/14	Gyulshen Idriz
Hardness (calculated as CaCO3)		8784331	N/A	2023/07/18	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	8789008	N/A	2023/07/18	Prempal Bhatti
Ion Balance (% Difference)	CALC	8785386	N/A	2023/07/18	Automated Statchk
Anion and Cation Sum	CALC	8785388	N/A	2023/07/18	Automated Statchk
Total Ammonia-N	LACH/NH4	8790401	N/A	2023/07/17	Prabhjot Kaur
Nitrate & Nitrite as Nitrogen in Water	LACH	8788424	N/A	2023/07/14	Viorica Rotaru
рН	AT	8788539	2023/07/13	2023/07/14	Kien Tran
Orthophosphate	KONE	8788516	N/A	2023/07/14	Alina Dobreanu
Sat. pH and Langelier Index (@ 20C)	CALC	8784779	N/A	2023/07/18	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	8784780	N/A	2023/07/18	Automated Statchk
Sulphate by Automated Turbidimetry	KONE	8788517	N/A	2023/07/14	Alina Dobreanu
Total Dissolved Solids (TDS calc)	CALC	8784782	N/A	2023/07/18	Automated Statchk
Total Suspended Solids	BAL	8789653	2023/07/14	2023/07/17	Tina Teng

Site Location: PEEL REGION SNOW STORAGE

Sampler Initials: JC

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 11.3°C

Revised Report (2023/07/20): Client sample ID corrected to BH/MW-1 per client request. Results have been split onto separate files per client request.

The sample was collected July11-12, 2023.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

AECOM Canada Ltd Client Project #: 60646784

Site Location: PEEL REGION SNOW STORAGE Sampler Initials: JC

			Matrix Spike	Spike	SPIKED BLANK	BLANK	Method Blank	Blank	RPD		QC Sta	QC Standard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery QC Limits	QC Limits
8787967	Dissolved (0.2u) Aluminum (Al)	2023/07/14	102	80 - 120	102	80 - 120	<5	ng/L	4.1 (1)	20		
8788424	Nitrate (N)	2023/07/14	88	80-120	92	80 - 120	<0.10	mg/L	NC (1)	20		
8788424	Nitrite (N)	2023/07/14	103	80-120	105	80 - 120	<0.010	mg/L	NC (1)	20		
8788516	Orthophosphate (P)	2023/07/14	89	75 - 125	90	80 - 120	<0.010	mg/L	1.0(1)	20		
8788517	Dissolved Sulphate (SO4)	2023/07/14	84	75 - 125	96	80 - 120	<1.0	mg/L	1.1(1)	20		
8788518	Dissolved Chloride (CI-)	2023/07/14	NC	80-120	93	80 - 120	<1.0	mg/L	0.35 (1)	20		
8788537	Conductivity	2023/07/14			102	85 - 115	<1.0	umho/c m	0.17 (1)	10		
8788538	Alkalinity (Total as CaCO3)	2023/07/14			97	85-115	<1.0	mg/L	0.34 (1)	20		
8788539	Н	2023/07/14			102	98 - 103			0.18(1)	N/A		
8788743	Total BOD	2023/07/19					<2	mg/L	9.6 (1)	30	26	80 - 120
8789008	Dissolved Aluminum (AI)	2023/07/18	116	80-120	100	80 - 120	<4.9	ng/L				
8789008	Dissolved Antimony (Sb)	2023/07/18	109	80-120	100	80 - 120	<0.50	ng/L	NC (1)	20		
8789008	Dissolved Arsenic (As)	2023/07/18	106	80 - 120	66	80 - 120	<1.0	ng/L	NC (1)	20		
8789008	Dissolved Barium (Ba)	2023/07/18	109	80 - 120	97	80 - 120	<2.0	ng/L	0.42(1)	20		
8789008	Dissolved Beryllium (Be)	2023/07/18	112	80 - 120	99	80 - 120	<0.40	ng/L	NC (1)	20		
8789008	Dissolved Bismuth (Bi)	2023/07/18	94	80-120	97	80 - 120	<1.0	ng/L				
8789008	Dissolved Boron (B)	2023/07/18	112	80-120	102	80 - 120	<10	ng/L	3.7 (1)	20		
8789008	Dissolved Cadmium (Cd)	2023/07/18	102	80 - 120	98	80 - 120	<0.090	ng/L	7.5 (1)	20		
8789008	Dissolved Calcium (Ca)	2023/07/18	NC	80-120	104	80 - 120	<200	ug/L				
8789008	Dissolved Cesium (Cs)	2023/07/18	107	80-120	98	80 - 120	<0.20	ng/L				
8789008	Dissolved Chromium (Cr)	2023/07/18	108	80-120	101	80 - 120	<5.0	ng/L	NC (1)	20		
8789008	Dissolved Cobait (Co)	2023/07/18	102	80-120	100	80 - 120	<0.50	ng/L	1.1(1)	20		
8789008	Dissolved Copper (Cu)	2023/07/18	111	80-120	102	80 - 120	<0.90	ng/L	6.3(1)	20		
8789008	Dissolved Iron (Fe)	2023/07/18	108	80-120	103	80 - 120	<100	ng/L	P			
8789008	Dissolved Lead (Pb)	2023/07/18	97	80-120	100	80 - 120	<0.50	ng/L	NC (1)	20		
8789008	Dissolved Lithium (Li)	2023/07/18	112	80-120	104	80 - 120	<5.0	ng/L				
8789008	Dissolved Magnesium (Mg)	2023/07/18	NC	80-120	103	80 - 120	<50	ng/L				
8789008	Dissolved Manganese (Mn)	2023/07/18	NC	80-120	99	80-120	<2.0	ng/L				
8789008	Dissolved Molybdenum (Mo)	2023/07/18	120	80-120	103	80 - 120	<0.50	ng/L	6.6(1)	20		
8789008	Dissolved Nickel (Ni)	2023/07/18	86	80 - 120	66	80 - 120	<1.0	ug/L	1.7 (1)	20		

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

QUALITY ASSURANCE REPORT(CONT'D)

AECOM Canada Ltd Client Project #: 60646784 Site Location: PEEL REGION SNOW STORAGE Sampler Initials: JC

		370	Adatric Cailes	Cnika	COLVED DI ANIV	DI ANIV	Jacia bodtoM	Juck	000		brebuch 3 JO	bacha
QC Batch	Parameter	Date	% Recovery	QCLimits	% Recovery	OCLimits	Value	UNITS	Value (%)	QC Limits	% Re	QC Limits
8789008	Dissolved Phosphorus (P)	2023/07/18	114	80 - 120	107	80-120	<100	ng/L				
8789008	Dissolved Potassium (K)	2023/07/18	124 (2)	80-120	104	80-120	<200	1/8n				
8789008	Dissolved Rubidium (Rb)	2023/07/18	106	80 - 120	66	80 - 120	<0.20	ng/L				
8789008	Dissolved Selenium (Se)	2023/07/18	6	80 - 120	100	80 - 120	<2.0	ng/L	NC (1)	20		
8789008	Dissolved Silicon (Si)	2023/07/18	118	80 - 120	101	80-120	<50	ng/L				
8789008	Dissolved Silver (Ag)	2023/07/18	100	80 - 120	100	80 - 120	<0.090	ng/L	NC (1)	20		
8789008	Dissolved Sodium (Na)	2023/07/18	NC	80 - 120	104	80 - 120	<100	ng/L	0.98 (1)	20		
8789008	Dissolved Strontium (Sr)	2023/07/18	NC	80 - 120	66	80 - 120	<1.0	ng/L				
8789008	Dissolved Tellurium (Te)	2023/07/18	102	80 - 120	66	80-120	<1.0	1/Bn				
8789008	Dissolved Thallium (TI)	2023/07/18	96	80 - 120	100	80 - 120	<0.050	ng/L	NC (1)	20		
8789008	Dissolved Thorium (Th)	2023/07/18	102	80-120	101	80 - 120	<2.0	ng/L				
8789008	Dissolved Tin (Sn)	2023/07/18	112	80 - 120	101	80 - 120	<1.0	ng/L				
8789008	Dissolved Titanium (Ti)	2023/07/18	112	80 - 120	97	80 - 120	<5.0	ng/L				
8789008	Dissolved Tungsten (W)	2023/07/18	107	80-120	105	80 - 120	<1.0	ng/L				
8789008	Dissolved Uranium (U)	2023/07/18	101	80 - 120	100	80 - 120	<0.10	ng/L	11 (1)	20		
8789008	Dissolved Vanadium (V)	2023/07/18	113	80 - 120	101	80 - 120	<0.50	ng/L	NC (1)	20		
8789008	Dissolved Zinc (Zn)	2023/07/18	6	80-120	66	80 - 120	<5.0	ng/L	NC (1)	20		
8789008	Dissolved Zirconium (Zr)	2023/07/18	127 (2)	80 - 120	105	80 - 120	<1.0	ng/L				
8789399	Dissolved Organic Carbon	2023/07/14	96	80-120	96	80 - 120	<0.40	mg/L	0.39 (1)	20		
8789653	Total Suspended Solids	2023/07/17			96	85 - 115	<10	mg/L	NC (1)	20		

QUALITY ASSURANCE REPORT(CONT'D)

Client Project #: 60646784 AECOM Canada Ltd

PEEL REGION SNOW STORAGE Site Location: PEE Sampler Initials: JC 22

			Matrix Spike	Spike	SPIKED BLANK	BLANK	Method Blank	lank	RPD	٥	QC Standard	ndard
QC Batch	Parameter	Date	% Recovery	Recovery QC Limits	% Recovery QC Limits	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	y QC Limits
8790401	Total Ammonia-N	2023/07/17	107	75 - 125	102	80 - 120	<0.050	mg/L	NC (1)	20		
* * * * * * * * * * * * * * * * * * * *												

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

- (1) Duplicate Parent ID
- Matrix spike exceedes acceptance limits. Probable matrix interference.

Site Location: PEEL REGION SNOW STORAGE

Sampler Initials: JC

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

Page 14 of 15

Site Location: PEEL REGION SNOW STORAGE

Sampler Initials: JC

Exceedance Summary Table – Prov. Water Quality Obj. Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
BH/MW-1	WJA466-08	Dissolved Boron (B)	200	260	10	ug/L
BH/MW-1	WJA466-08	Dissolved Uranium (U)	5	17	0.10	ug/L

The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to applicable regulatory guidelines.

Your Project #: 60646784

Site Location: PEEL REGION SNOW STORAGE

Your C.O.C. #: 942407-01-01

Attention: Brian Holden

AECOM Canada Ltd 105 Commerce Valley Dr West 7th Floor Markham, ON CANADA L3T 7W3

Report Date: 2023/07/20

Report #: R7727197 Version: 3 - Revision

CERTIFICATE OF ANALYSIS - REVISED REPORT

BUREAU VERITAS JOB #: C3K5466 Received: 2023/07/12, 10:43

Sample Matrix: Water # Samples Received: 1

# Samples Neceived. 1		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Dissolved Aluminum (0.2 u, clay free)	1	N/A	2023/07/14	CAM SOP-00447	EPA 6020B m
Alkalinity	1	N/A	2023/07/14	CAM SOP-00448	SM 23 2320 B m
Carbonate, Bicarbonate and Hydroxide	1	N/A	2023/07/17	CAM SOP-00102	APHA 4500-CO2 D
Biochemical Oxygen Demand (BOD)	1	2023/07/14	2023/07/19	CAM SOP-00427	SM 23 5210B m
Chloride by Automated Colourimetry	1	N/A	2023/07/14	CAM SOP-00463	SM 23 4500-Cl E m
Conductivity	1	N/A	2023/07/14	CAM SOP-00414	SM 23 2510 m
Dissolved Organic Carbon (DOC) (1)	1	N/A	2023/07/14	CAM SOP-00446	SM 23 5310 B m
Hardness (calculated as CaCO3)	1	N/A	2023/07/18	CAM SOP 00102/00408/00447	SM 2340 B
Dissolved Metals by ICPMS	1	N/A	2023/07/18	CAM SOP-00447	EPA 6020B m
Ion Balance (% Difference)	1	N/A	2023/07/18		
Anion and Cation Sum	1	N/A	2023/07/18		
Total Ammonia-N	1	N/A	2023/07/17	CAM SOP-00441	USGS I-2522-90 m
Nitrate & Nitrite as Nitrogen in Water (2)	1	N/A	2023/07/14	CAM SOP-00440	SM 23 4500-NO3I/NO2B
рН	1	2023/07/13	2023/07/14	CAM SOP-00413	SM 4500H+ B m
Orthophosphate	1	N/A	2023/07/14	CAM SOP-00461	SM 23 4500-P E m
Sat. pH and Langelier Index (@ 20C)	1	N/A	2023/07/18		Auto Calc
Sat. pH and Langelier Index (@ 4C)	1	N/A	2023/07/18		Auto Calc
Sulphate by Automated Turbidimetry	1	N/A	2023/07/14	CAM SOP-00464	SM 23 4500-SO42- E m
Total Dissolved Solids (TDS calc)	1	N/A	2023/07/18		Auto Calc
Total Suspended Solids	1	2023/07/14	2023/07/17	CAM SOP-00428	SM 23 2540D m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA. Where applicable, the analytical testing herein was performed in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. All methodologies comply with this document and are validated for use in the laboratory. The methods and techniques employed in this analysis conform to the performance criteria (detection limits, accuracy and precision) as outlined in the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. Bureau Veritas is accredited by SCC (Lab ID 97) for all specific parameters as required by Ontario Regulation 153/04.

Your Project #: 60646784

Site Location: PEEL REGION SNOW STORAGE

Your C.O.C. #: 942407-01-01

Attention: Brian Holden

AECOM Canada Ltd 105 Commerce Valley Dr West 7th Floor Markham, ON CANADA L3T 7W3

Report Date: 2023/07/20

Report #: R7727197 Version: 3 - Revision

CERTIFICATE OF ANALYSIS - REVISED REPORT

BUREAU VERITAS JOB #: C3K5466 Received: 2023/07/12, 10:43

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.
- (2) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

Encryption Key

Marijane Cruz Senior Project Manager 20 Jul 2023 19:34:18

Please direct all questions regarding this Certificate of Analysis to:

Marijane Cruz, Senior Project Manager Email: Marijane.Cruz@bureauveritas.com

Phone# (905)817-5756

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

Site Location: PEEL REGION SNOW STORAGE

Sampler Initials: JC

RCAP - COMPREHENSIVE (WATER)

Bureau Veritas ID			WJA466		
Sampling Date			2023/07/11 12:00		
COC Number			942407-01-01		
	UNITS	Criteria	BH/MW-1	RDL	QC Batch
Calculated Parameters	W.: 43			e 10	
Anion Sum	me/L	-	18.4	N/A	8785388
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	- 1-	360	1.0	8783653
Calculated TDS	mg/L		1100	1.0	8784782
Carb. Alkalinity (calc. as CaCO3)	mg/L		3.9	1.0	8783653
Cation Sum	me/L	94	20.1	N/A	8785388
Hardness (CaCO3)	mg/L	- 14	810	1.0	8784331
Ion Balance (% Difference)	%		4.57	N/A	8785386
Langelier Index (@ 20C)	N/A		1.16		8784779
Langelier Index (@ 4C)	N/A	/8	0.918		8784780
Saturation pH (@ 20C)	N/A	14	6.90		8784779
Saturation pH (@ 4C)	N/A	- 1	7.15		8784780
Inorganics	in s			A 70	
Total Ammonia-N	mg/L		1.6	0.050	8790401
Conductivity	umho/cm	-55	1700	1.0	8788537
Dissolved Organic Carbon	mg/L		6.1	0.40	8789399
Orthophosphate (P)	mg/L	9	<0.010	0.010	8788516
pH	pН	6.5:8.5	8.06		8788539
Dissolved Sulphate (SO4)	mg/L	ŭ,	390	2.0	8788517
Alkalinity (Total as CaCO3)	mg/L	5.7	360	1.0	8788538
Nitrite (N)	mg/L		<0.010	0.010	8788424
Nitrate (N)	mg/L	19	<0.10	0.10	8788424
Nitrate + Nitrite (N)	mg/L		<0.10	0.10	8788424

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Provincial Water Quality Objectives

Ref. to MOEE Water Management document dated Feb.1999

N/A = Not Applicable

Site Location: PEEL REGION SNOW STORAGE

Sampler Initials: JC

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		WJA466		
Sampling Date		2023/07/11 12:00		
COC Number		942407-01-01		
	UNITS	BH/MW-1	RDL	QC Batch
Inorganics				
Total BOD	mg/L	<2	2	8788743
Total Suspended Solids	mg/L	23000	200	8789653

Site Location: PEEL REGION SNOW STORAGE

Sampler Initials: JC

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

				57.0
		WJA466		
		2023/07/11 12:00		
		942407-01-01		
UNITS	Criteria	BH/MW-1	RDL	QC Batch
		115		,
ug/L	15	<5	5	8787967
it				
h				
		/es		
		ug/L 15	2023/07/11 12:00 942407-01-01 UNITS Criteria BH/MW-1 ug/L 15 <5	2023/07/11 12:00 942407-01-01 UNITS Criteria BH/MW-1 RDL ug/L 15 <5 5

Site Location: PEEL REGION SNOW STORAGE

Sampler Initials: JC

O.REG 153 METALS & INORGANICS PKG (WTR)

Bureau Veritas ID			WJA466		
Sampling Date			2023/07/11 12:00		
COC Number			942407-01-01		
	UNITS	Criteria	BH/MW-1	RDL	QC Batc
Inorganics					
Dissolved Chloride (CI-)	mg/L		110	1.0	8788518
Metals					
Dissolved Aluminum (AI)	ug/L	+:	9.5	4.9	878900
Dissolved Antimony (Sb)	ug/L	20	<0.50	0.50	878900
Dissolved Arsenic (As)	ug/L	100	<1.0	1.0	878900
Dissolved Barium (Ba)	ug/L		75	2.0	878900
Dissolved Beryllium (Be)	ug/L	11	<0.40	0.40	878900
Dissolved Bismuth (Bi)	ug/L	-	<1.0	1.0	878900
Dissolved Boron (B)	ug/L	200	260	10	878900
Dissolved Cadmium (Cd)	ug/L	0.2	<0.090	0.090	878900
Dissolved Calcium (Ca)	ug/L	- 2	130000	200	878900
Dissolved Cesium (Cs)	ug/L		<0.20	0.20	878900
Dissolved Chromium (Cr)	ug/L		<5.0	5.0	878900
Dissolved Cobalt (Co)	ug/L	0.9	0.78	0.50	878900
Dissolved Copper (Cu)	ug/L	5	0.99	0.90	878900
Dissolved Iron (Fe)	ug/L	300	<100	100	878900
Dissolved Lead (Pb)	ug/L	5	<0.50	0.50	878900
Dissolved Lithium (Li)	ug/L		140	5.0	878900
Dissolved Magnesium (Mg)	ug/L	50	120000	50	878900
Dissolved Manganese (Mn)	ug/L	•	330	2.0	878900
Dissolved Molybdenum (Mo)	ug/L	40	34	0.50	878900
Dissolved Nickel (Ni)	ug/L	25	1.9	1.0	878900
Dissolved Phosphorus (P)	ug/L	\$	<100	100	878900
Dissolved Potassium (K)	ug/L		53000	200	878900
Dissolved Rubidium (Rb)	ug/L	-	12	0.20	878900
Dissolved Selenium (Se)	ug/L	100	<2.0	2.0	878900
Dissolved Silicon (Si)	ug/L		8400	50	878900
Dissolved Silver (Ag)	ug/L	0.1	<0.090	0.090	878900
Dissolved Sodium (Na)	ug/L		55000	100	878900
Dissolved Strontium (Sr)	ug/L	_ 23	1000	1.0	878900
Dissolved Tellurium (Te)	ug/L	71	<1.0	1.0	878900
Dissolved Thallium (TI)	ug/L	0.3	< 0.050	0.050	878900

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Provincial Water Quality Objectives

Ref. to MOEE Water Management document dated Feb.1999

Site Location: PEEL REGION SNOW STORAGE

Sampler Initials: JC

O.REG 153 METALS & INORGANICS PKG (WTR)

Bureau Veritas ID			WJA466		
Sampling Date			2023/07/11 12:00		
COC Number			942407-01-01		
	UNITS	Criteria	BH/MW-1	RDL	QC Batch
Dissolved Thorium (Th)	ug/L	2	<2.0	2.0	8789008
Dissolved Tin (Sn)	ug/L	-	1.2	1.0	8789008
Dissolved Titanium (Ti)	ug/L	-	<5.0	5.0	8789008
Dissolved Tungsten (W)	ug/L	30	<1.0	1.0	8789008
Dissolved Uranium (U)	ug/L	5	17	0.10	8789008
Dissolved Vanadium (V)	ug/L	6	0.58	0.50	8789008
Dissolved Zinc (Zn)	ug/L	30	<5.0	5.0	8789008
Dissolved Zirconium (Zr)	ug/L	4	<1.0	1.0	8789008

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Provincial Water Quality Objectives

Ref. to MOEE Water Management document dated Feb.1999

Site Location: PEEL REGION SNOW STORAGE

Sampler Initials: JC

TEST SUMMARY

Bureau Veritas ID: WJA466 Sample ID: BH/MW-1 Matrix: Water Collected: 2023/07/11

Shipped: Received: 2023/07/12

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Dissolved Aluminum (0.2 u, clay free)	ICP/MS	8787967	N/A	2023/07/14	Arefa Dabhad
Alkalinity	AT	8788538	N/A	2023/07/14	Kien Tran
Carbonate, Bicarbonate and Hydroxide	CALC	8783653	N/A	2023/07/17	Automated Statchk
Biochemical Oxygen Demand (BOD)	DO	8788743	2023/07/14	2023/07/19	Gurjot Kaur
Chloride by Automated Colourimetry	KONE	8788518	N/A	2023/07/14	Alina Dobreanu
Conductivity	AT	8788537	N/A	2023/07/14	Kien Tran
Dissolved Organic Carbon (DOC)	TOCV/NDIR	8789399	N/A	2023/07/14	Gyulshen Idriz
Hardness (calculated as CaCO3)		8784331	N/A	2023/07/18	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	8789008	N/A	2023/07/18	Prempal Bhatti
Ion Balance (% Difference)	CALC	8785386	N/A	2023/07/18	Automated Statchk
Anion and Cation Sum	CALC	8785388	N/A	2023/07/18	Automated Statchk
Total Ammonia-N	LACH/NH4	8790401	N/A	2023/07/17	Prabhjot Kaur
Nitrate & Nitrite as Nitrogen in Water	LACH	8788424	N/A	2023/07/14	Viorica Rotaru
рН	AT	8788539	2023/07/13	2023/07/14	Kien Tran
Orthophosphate	KONE	8788516	N/A	2023/07/14	Alina Dobreanu
Sat. pH and Langelier Index (@ 20C)	CALC	8784779	N/A	2023/07/18	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	8784780	N/A	2023/07/18	Automated Statchk
Sulphate by Automated Turbidimetry	KONE	8788517	N/A	2023/07/14	Alina Dobreanu
Total Dissolved Solids (TDS calc)	CALC	8784782	N/A	2023/07/18	Automated Statchk
Total Suspended Solids	BAL	8789653	2023/07/14	2023/07/17	Tina Teng

Site Location: PEEL REGION SNOW STORAGE

Sampler Initials: JC

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 11.3°C

Revised Report (2023/07/20): Client sample ID corrected to BH/MW-1 per client request. Results have been split onto separate files per client request.

The sample was collected July11-12, 2023.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

AECOM Canada Ltd Client Project #: 60646784

Site Location: PEEL REGION SNOW STORAGE Sampler Initials: JC

			Matrix Spike	Spike	SPIKED BLANK	BLANK	Method Blank	Blank	RPD		QC Sta	QC Standard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery QC Limits	QC Limits
8787967	Dissolved (0.2u) Aluminum (Al)	2023/07/14	102	80 - 120	102	80 - 120	<5	ng/L	4.1 (1)	20		
8788424	Nitrate (N)	2023/07/14	88	80-120	92	80 - 120	<0.10	mg/L	NC (1)	20		
8788424	Nitrite (N)	2023/07/14	103	80-120	105	80 - 120	<0.010	mg/L	NC (1)	20		
8788516	Orthophosphate (P)	2023/07/14	89	75 - 125	90	80 - 120	<0.010	mg/L	1.0(1)	20		
8788517	Dissolved Sulphate (SO4)	2023/07/14	84	75 - 125	96	80 - 120	<1.0	mg/L	1.1(1)	20		
8788518	Dissolved Chloride (CI-)	2023/07/14	NC	80-120	93	80 - 120	<1.0	mg/L	0.35 (1)	20		
8788537	Conductivity	2023/07/14			102	85 - 115	<1.0	umho/c m	0.17 (1)	10		
8788538	Alkalinity (Total as CaCO3)	2023/07/14			97	85-115	<1.0	mg/L	0.34 (1)	20		
8788539	Н	2023/07/14			102	98 - 103			0.18(1)	N/A		
8788743	Total BOD	2023/07/19					<2	mg/L	9.6 (1)	30	26	80 - 120
8789008	Dissolved Aluminum (AI)	2023/07/18	116	80-120	100	80 - 120	<4.9	ng/L				
8789008	Dissolved Antimony (Sb)	2023/07/18	109	80-120	100	80 - 120	<0.50	ng/L	NC (1)	20		
8789008	Dissolved Arsenic (As)	2023/07/18	106	80 - 120	66	80 - 120	<1.0	ng/L	NC (1)	20		
8789008	Dissolved Barium (Ba)	2023/07/18	109	80-120	97	80 - 120	<2.0	ng/L	0.42(1)	20		
8789008	Dissolved Beryllium (Be)	2023/07/18	112	80 - 120	99	80 - 120	<0.40	ng/L	NC (1)	20		
8789008	Dissolved Bismuth (Bi)	2023/07/18	94	80-120	97	80 - 120	<1.0	ng/L				
8789008	Dissolved Boron (B)	2023/07/18	112	80-120	102	80 - 120	<10	ng/L	3.7 (1)	20		
8789008	Dissolved Cadmium (Cd)	2023/07/18	102	80 - 120	98	80 - 120	<0.090	ng/L	7.5 (1)	20		
8789008	Dissolved Calcium (Ca)	2023/07/18	NC	80 - 120	104	80 - 120	<200	ug/L				
8789008	Dissolved Cesium (Cs)	2023/07/18	107	80-120	98	80 - 120	<0.20	ng/L				
8789008	Dissolved Chromium (Cr)	2023/07/18	108	80-120	101	80 - 120	<5.0	ng/L	NC (1)	20		
8789008	Dissolved Cobait (Co)	2023/07/18	102	80-120	100	80 - 120	<0.50	ng/L	1.1(1)	20		
8789008	Dissolved Copper (Cu)	2023/07/18	111	80-120	102	80 - 120	<0.90	ng/L	6.3(1)	20		
8789008	Dissolved Iron (Fe)	2023/07/18	108	80-120	103	80 - 120	<100	ng/L	P			
8789008	Dissolved Lead (Pb)	2023/07/18	97	80-120	100	80 - 120	<0.50	ng/L	NC (1)	20		
8789008	Dissolved Lithium (Li)	2023/07/18	112	80-120	104	80 - 120	<5.0	ng/L				
8789008	Dissolved Magnesium (Mg)	2023/07/18	NC	80-120	103	80 - 120	<50	ng/L				
8789008	Dissolved Manganese (Mn)	2023/07/18	NC	80-120	99	80-120	<2.0	ng/L				
8789008	Dissolved Molybdenum (Mo)	2023/07/18	120	80-120	103	80 - 120	<0.50	ng/L	6.6(1)	20		
8789008	Dissolved Nickel (Ni)	2023/07/18	86	80 - 120	66	80 - 120	<1.0	ug/L	1.7 (1)	20		

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

QUALITY ASSURANCE REPORT(CONT'D)

AECOM Canada Ltd Client Project #: 60646784 Site Location: PEEL REGION SNOW STORAGE Sampler Initials: JC

		370	Adatric Cailes	Cnika	COLVED DI ANIV	DI ANIV	Jacia bodtoM	Juck	000		brebuch 3 JO	bacha
QC Batch	Parameter	Date	% Recovery	QCLimits	% Recovery	OCLimits	Value	UNITS	Value (%)	QC Limits	% Re	QC Limits
8789008	Dissolved Phosphorus (P)	2023/07/18	114	80 - 120	107	80-120	<100	ng/L				
8789008	Dissolved Potassium (K)	2023/07/18	124 (2)	80-120	104	80-120	<200	1/8n				
8789008	Dissolved Rubidium (Rb)	2023/07/18	106	80 - 120	66	80 - 120	<0.20	ng/L				
8789008	Dissolved Selenium (Se)	2023/07/18	6	80 - 120	100	80 - 120	<2.0	ng/L	NC (1)	20		
8789008	Dissolved Silicon (Si)	2023/07/18	118	80 - 120	101	80-120	<50	ng/L				
8789008	Dissolved Silver (Ag)	2023/07/18	100	80 - 120	100	80 - 120	<0.090	ng/L	NC (1)	20		
8789008	Dissolved Sodium (Na)	2023/07/18	NC	80 - 120	104	80 - 120	<100	ng/L	0.98 (1)	20		
8789008	Dissolved Strontium (Sr)	2023/07/18	NC	80 - 120	66	80 - 120	<1.0	ng/L				
8789008	Dissolved Tellurium (Te)	2023/07/18	102	80 - 120	66	80-120	<1.0	1/Bn				
8789008	Dissolved Thallium (TI)	2023/07/18	96	80 - 120	100	80 - 120	<0.050	ng/L	NC (1)	20		
8789008	Dissolved Thorium (Th)	2023/07/18	102	80-120	101	80 - 120	<2.0	ng/L				
8789008	Dissolved Tin (Sn)	2023/07/18	112	80 - 120	101	80 - 120	<1.0	ng/L				
8789008	Dissolved Titanium (Ti)	2023/07/18	112	80 - 120	97	80 - 120	<5.0	ng/L				
8789008	Dissolved Tungsten (W)	2023/07/18	107	80-120	105	80 - 120	<1.0	ng/L				
8789008	Dissolved Uranium (U)	2023/07/18	101	80 - 120	100	80 - 120	<0.10	ng/L	11 (1)	20		
8789008	Dissolved Vanadium (V)	2023/07/18	113	80 - 120	101	80 - 120	<0.50	ng/L	NC (1)	20		
8789008	Dissolved Zinc (Zn)	2023/07/18	6	80-120	66	80 - 120	<5.0	ng/L	NC (1)	20		
8789008	Dissolved Zirconium (Zr)	2023/07/18	127 (2)	80 - 120	105	80 - 120	<1.0	ng/L				
8789399	Dissolved Organic Carbon	2023/07/14	96	80-120	96	80 - 120	<0.40	mg/L	0.39 (1)	20		
8789653	Total Suspended Solids	2023/07/17			96	85 - 115	<10	mg/L	NC (1)	20		

QUALITY ASSURANCE REPORT(CONT'D)

Client Project #: 60646784 AECOM Canada Ltd

PEEL REGION SNOW STORAGE Site Location: PEE Sampler Initials: JC 22

			Matrix Spike	Spike	SPIKED BLANK	BLANK	Method Blank	lank	RPD	٥	QC Standard	ndard
QC Batch	Parameter	Date	% Recovery	Recovery QC Limits	% Recovery QC Limits	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	y QC Limits
8790401	Total Ammonia-N	2023/07/17	107	75 - 125	102	80 - 120	<0.050	mg/L	NC (1)	20		
* * * * * * * * * * * * * * * * * * * *												

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

- (1) Duplicate Parent ID
- Matrix spike exceedes acceptance limits. Probable matrix interference.

Site Location: PEEL REGION SNOW STORAGE

Sampler Initials: JC

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

Page 14 of 15

Site Location: PEEL REGION SNOW STORAGE

Sampler Initials: JC

Exceedance Summary Table – Prov. Water Quality Obj. Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
BH/MW-1	WJA466-08	Dissolved Boron (B)	200	260	10	ug/L
BH/MW-1	WJA466-08	Dissolved Uranium (U)	5	17	0.10	ug/L

The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to applicable regulatory guidelines.

AECOM

Appendix **F**

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: AECOM CANADA LTD

105 COMMERCE VALLEY DR.W 7TH FLOOR

MARKHAM, ON L3T7W3

(905) 886-7022

ATTENTION TO: Sergiy Tchernikov

PROJECT: 60646784

AGAT WORK ORDER: 23T043079

SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

DATE REPORTED: Jul 12, 2023

PAGES (INCLUDING COVER): 20 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes	
<u> </u>	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V1)

Page 1 of 20

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Certificate of Analysis

AGAT WORK ORDER: 23T043079

PROJECT: 60646784

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: AECOM CANADA LTD

SAMPLING SITE: Hurontario

ATTENTION TO: Sergiy Tchernikov

SAMPLING SITE: Hurontario							SAMPLE	D BY:K.M.	
			O. R	eg. 153(5	11) - Metal	s & Inorgan	ics (Soil)		
DATE RECEIVED: 2023-07-04									DATE REPORTED: 2023-07-12
			SAMPLE DE	SCRIPTION:	BH1-SS2	BH1-SS6	BH3-SS2	BH2-SS2	
				MPLE TYPE:	Soil	Soil	Soil	Soil	
				E SAMPLED:	2023-06-30	2023-06-30	2023-06-30	2023-06-30	
Parameter	Unit	G / S: A	G / S: B	RDL	5114690	5114692	5114693	5114696	
Antimony	μg/g	40	7.5	0.8	<0.8	<0.8	<0.8	<0.8	
Arsenic	μg/g	18	11	1	5[<b]< td=""><td>4[<b]< td=""><td>5[<b]< td=""><td>5[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	4[<b]< td=""><td>5[<b]< td=""><td>5[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	5[<b]< td=""><td>5[<b]< td=""><td></td></b]<></td></b]<>	5[<b]< td=""><td></td></b]<>	
Barium	μg/g	670	390	2.0	133[<b]< td=""><td>54.5[<b]< td=""><td>80.6[<b]< td=""><td>93.4[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	54.5[<b]< td=""><td>80.6[<b]< td=""><td>93.4[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	80.6[<b]< td=""><td>93.4[<b]< td=""><td></td></b]<></td></b]<>	93.4[<b]< td=""><td></td></b]<>	
Beryllium	μg/g	8	4	0.5	0.9[<b]< td=""><td>0.5[<b]< td=""><td>0.7[<b]< td=""><td>0.8[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	0.5[<b]< td=""><td>0.7[<b]< td=""><td>0.8[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	0.7[<b]< td=""><td>0.8[<b]< td=""><td></td></b]<></td></b]<>	0.8[<b]< td=""><td></td></b]<>	
Boron	μg/g	120	120	5	11[<a]< td=""><td>12[<a]< td=""><td>12[<a]< td=""><td>11[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	12[<a]< td=""><td>12[<a]< td=""><td>11[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	12[<a]< td=""><td>11[<a]< td=""><td></td></a]<></td></a]<>	11[<a]< td=""><td></td></a]<>	
Boron (Hot Water Soluble)	μg/g	2	1.5	0.10	0.50[<b]< td=""><td>0.17[<b]< td=""><td><0.10</td><td>0.18[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	0.17[<b]< td=""><td><0.10</td><td>0.18[<b]< td=""><td></td></b]<></td></b]<>	<0.10	0.18[<b]< td=""><td></td></b]<>	
Cadmium	μg/g	1.9	1	0.5	<0.5	<0.5	<0.5	<0.5	
Chromium	μg/g	160	160	5	29[<a]< td=""><td>16[<a]< td=""><td>22[<a]< td=""><td>25[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	16[<a]< td=""><td>22[<a]< td=""><td>25[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	22[<a]< td=""><td>25[<a]< td=""><td></td></a]<></td></a]<>	25[<a]< td=""><td></td></a]<>	
Cobalt	μg/g	80	22	0.8	11.9[<b]< td=""><td>9.1[<b]< td=""><td>10.7[<b]< td=""><td>11.0[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	9.1[<b]< td=""><td>10.7[<b]< td=""><td>11.0[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	10.7[<b]< td=""><td>11.0[<b]< td=""><td></td></b]<></td></b]<>	11.0[<b]< td=""><td></td></b]<>	
Copper	μg/g	230	140	1.0	27.5[<b]< td=""><td>22.6[<b]< td=""><td>24.6[<b]< td=""><td>26.9[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	22.6[<b]< td=""><td>24.6[<b]< td=""><td>26.9[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	24.6[<b]< td=""><td>26.9[<b]< td=""><td></td></b]<></td></b]<>	26.9[<b]< td=""><td></td></b]<>	
Lead	μg/g	120	45	1	17[<b]< td=""><td>6[<b]< td=""><td>7[<b]< td=""><td>10[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	6[<b]< td=""><td>7[<b]< td=""><td>10[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	7[<b]< td=""><td>10[<b]< td=""><td></td></b]<></td></b]<>	10[<b]< td=""><td></td></b]<>	
Molybdenum	μg/g	40	6.9	0.5	<0.5	<0.5	0.6[<b]< td=""><td><0.5</td><td></td></b]<>	<0.5	
Nickel	μg/g	270	100	1	27[<b]< td=""><td>20[<b]< td=""><td>25[<b]< td=""><td>34[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	20[<b]< td=""><td>25[<b]< td=""><td>34[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	25[<b]< td=""><td>34[<b]< td=""><td></td></b]<></td></b]<>	34[<b]< td=""><td></td></b]<>	
Selenium	μg/g	5.5	2.4	0.8	0.9[<b]< td=""><td><0.8</td><td><0.8</td><td><0.8</td><td></td></b]<>	<0.8	<0.8	<0.8	
Silver	μg/g	40	20	0.5	<0.5	<0.5	<0.5	<0.5	
Thallium	μg/g	3.3	1	0.5	<0.5	<0.5	<0.5	<0.5	
Uranium	μg/g	33	23	0.50	0.69[<b]< td=""><td>0.54[<b]< td=""><td>0.58[<b]< td=""><td>0.64[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	0.54[<b]< td=""><td>0.58[<b]< td=""><td>0.64[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	0.58[<b]< td=""><td>0.64[<b]< td=""><td></td></b]<></td></b]<>	0.64[<b]< td=""><td></td></b]<>	
Vanadium	μg/g	86	86	2.0	38.9[<a]< td=""><td>23.0[<a]< td=""><td>30.0[<a]< td=""><td>35.6[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	23.0[<a]< td=""><td>30.0[<a]< td=""><td>35.6[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	30.0[<a]< td=""><td>35.6[<a]< td=""><td></td></a]<></td></a]<>	35.6[<a]< td=""><td></td></a]<>	
Zinc	μg/g	340	340	5	87[<a]< td=""><td>42[<a]< td=""><td>51[<a]< td=""><td>61[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	42[<a]< td=""><td>51[<a]< td=""><td>61[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	51[<a]< td=""><td>61[<a]< td=""><td></td></a]<></td></a]<>	61[<a]< td=""><td></td></a]<>	
Chromium, Hexavalent	μg/g	8	8	0.2	<0.2	<0.2	<0.2	<0.2	
Cyanide, WAD	μg/g	0.051	0.051	0.040	<0.040	<0.040	< 0.040	< 0.040	
Mercury	μg/g	3.9	0.25	0.10	<0.10	<0.10	<0.10	<0.10	
Electrical Conductivity (2:1)	mS/cm	1.4	0.7	0.005	0.645[<b]< td=""><td>0.165[<b]< td=""><td>0.813[B-A]</td><td>0.755[B-A]</td><td></td></b]<></td></b]<>	0.165[<b]< td=""><td>0.813[B-A]</td><td>0.755[B-A]</td><td></td></b]<>	0.813[B-A]	0.755[B-A]	
Sodium Adsorption Ratio (2:1) (Calc.)	N/A	12	5	N/A	2.02[<b]< td=""><td>0.334[<b]< td=""><td>1.84[<b]< td=""><td>2.68[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	0.334[<b]< td=""><td>1.84[<b]< td=""><td>2.68[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	1.84[<b]< td=""><td>2.68[<b]< td=""><td></td></b]<></td></b]<>	2.68[<b]< td=""><td></td></b]<>	
pH, 2:1 CaCl2 Extraction	pH Units	5.0-9.0	5.0-9.0	NA	7.60	7.45	7.90	7.58	

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 23T043079

PROJECT: 60646784

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: AECOM CANADA LTD

SAMPLING SITE: Hurontario

ATTENTION TO: Sergiy Tchernikov SAMPLED BY: K.M.

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2023-07-04 DATE REPORTED: 2023-07-12

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: A Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil -

Industrial/Commercial/Community Property Use - Coarse Textured Soils, B Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil - Agricultural or Other

Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

5114690-5114696 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated parameter.

Analysis performed at AGAT Toronto (unless marked by *)

CHARTERED SO CHEMIST OF MANUEL SALES

CLIENT NAME: AECOM CANADA LTD

SAMPLING SITE: Hurontario

Certificate of Analysis

AGAT WORK ORDER: 23T043079

PROJECT: 60646784

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Sergiy Tchernikov

SAMPLED BY: K.M.

O. Reg. 153(511) - PAHs (Soil)

				O. Neg	1. 133(311)	- PANS (30	¹¹ /
DATE RECEIVED: 2023-07-04							DATE REPORTED: 2023-07-12
			SAMPLE DE	SCRIPTION:	BH1-SS2	BH3-SS1	
			SA	MPLE TYPE:	Soil	Soil	
			DATE	SAMPLED:	2023-06-30	2023-06-30	
Parameter	Unit	G / S: A	G / S: B	RDL	5114690	5114705	
Naphthalene	μg/g	9.6	0.6	0.05	< 0.05	< 0.05	
Acenaphthylene	μg/g	0.15	0.15	0.05	< 0.05	< 0.05	
Acenaphthene	μg/g	21	7.9	0.05	< 0.05	< 0.05	
Fluorene	μg/g	62	62	0.05	< 0.05	< 0.05	
Phenanthrene	μg/g	12	6.2	0.05	< 0.05	0.53[<b]< td=""><td></td></b]<>	
Anthracene	μg/g	0.67	0.67	0.05	< 0.05	0.10[<a]< td=""><td></td></a]<>	
Fluoranthene	μg/g	9.6	0.69	0.05	< 0.05	0.92[B-A]	
Pyrene	μg/g	96	78	0.05	< 0.05	0.68[<b]< td=""><td></td></b]<>	
Benz(a)anthracene	μg/g	0.96	0.5	0.05	< 0.05	0.28[<b]< td=""><td></td></b]<>	
Chrysene	μg/g	9.6	7	0.05	< 0.05	0.20[<b]< td=""><td></td></b]<>	
Benzo(b)fluoranthene	μg/g	0.96	0.78	0.05	< 0.05	0.21[<b]< td=""><td></td></b]<>	
Benzo(k)fluoranthene	μg/g	0.96	0.78	0.05	< 0.05	0.11[<b]< td=""><td></td></b]<>	
Benzo(a)pyrene	μg/g	0.3	0.078	0.05	< 0.05	0.11[B-A]	
Indeno(1,2,3-cd)pyrene	μg/g	0.76	0.38	0.05	< 0.05	0.05[<b]< td=""><td></td></b]<>	
Dibenz(a,h)anthracene	μg/g	0.1	0.1	0.05	< 0.05	< 0.05	
Benzo(g,h,i)perylene	μg/g	9.6	6.6	0.05	< 0.05	0.07[<b]< td=""><td></td></b]<>	
1 and 2 Methlynaphthalene	μg/g	30	0.99	0.05	< 0.05	< 0.05	
Moisture Content	%			0.1	22.2	11.1	
Surrogate	Unit	Ac	ceptable Limi	its			
Naphthalene-d8	%		50-140		100	75	
Acridine-d9	%		50-140		115	115	
Terphenyl-d14	%		50-140		95	110	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: A Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil -

Industrial/Commercial/Community Property Use - Coarse Textured Soils, B Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil - Agricultural or Other Property Use - Coarse Textured Soils

rioperty use - Coarse Textured Solis

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

5114690-5114705 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 23T043079

PROJECT: 60646784

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: AECOM CANADA LTD

SAMPLING SITE: Hurontario

ATTENTION TO: Sergiy Tchernikov SAMPLED BY:K.M.

O. Reg. 153(511) - PCBs (Soil)								
DATE RECEIVED: 2023-07-04							DATE REPORTED: 2023-07-12	
			SAMPLE DE	SCRIPTION:	BH2-SS2	BH1-SS1		
			SA	MPLE TYPE:	Soil	Soil		
			DATE	SAMPLED:	2023-06-30	2023-06-30		
Parameter	Unit	G / S: A	G / S: B	RDL	5114696	5114702		
Polychlorinated Biphenyls	μg/g	1.1	0.35	0.1	<0.1	<0.1		
Moisture Content	%			0.1	11.3	12.5		
Surrogate	Unit	Ad	cceptable Limi	ts				
Decachlorobiphenyl	%		50-140		92	80		

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: A Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil -

Industrial/Commercial/Community Property Use - Coarse Textured Soils, B Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil - Agricultural or Other Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

5114696-5114702 Results are based on the dry weight of soil extracted.

PCB total is a calculated parameter. The calculated value is the sum of Aroclor 1242, Aroclor 1248, Aroclor 1254 and Aroclor 1260.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 23T043079

PROJECT: 60646784

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: AECOM CANADA LTD

SAMPLING SITE: Hurontario

ATTENTION TO: Sergiy Tchernikov SAMPLED BY:K.M.

Or time Entro Off Entra officiano							0, EED D			
	O. Reg. 153(511) - PHCs F1 - F4 (Soil)									
DATE RECEIVED: 2023-07-04								DATE REPORTED: 2023-07-12		
			SA	SCRIPTION: MPLE TYPE: E SAMPLED:	BH3-SS4 Soil 2023-06-30 10:40	BH2-SS3 Soil 2023-06-30 10:40	BH1-SS4 Soil 2023-06-29 13:30			
Parameter	Unit	G / S: A	G / S: B	RDL	5114698	5114699	5114700			
Benzene	μg/g	0.32	0.21	0.02	<0.02	<0.02	<0.02			
Toluene	μg/g	6.4	2.3	0.05	< 0.05	< 0.05	< 0.05			
Ethylbenzene	μg/g	1.1	1.1	0.05	< 0.05	< 0.05	< 0.05			
m & p-Xylene	μg/g			0.05	< 0.05	< 0.05	< 0.05			
o-Xylene	μg/g			0.05	< 0.05	< 0.05	< 0.05			
Xylenes (Total)	μg/g	26	3.1	0.05	< 0.05	< 0.05	< 0.05			
F1 (C6 - C10)	μg/g	55	55	5	<5	<5	<5			
F1 (C6 to C10) minus BTEX	μg/g	55	55	5	<5	<5	<5			
F2 (C10 to C16)	μg/g	230	98	10	<10	<10	<10			
F3 (C16 to C34)	μg/g	1700	300	50	<50	<50	<50			
F4 (C34 to C50)	μg/g	3300	2800	50	<50	<50	<50			
Gravimetric Heavy Hydrocarbons	μg/g	3300	2800	50	NA	NA	NA			
Moisture Content	%			0.1	11.8	12.0	12.0			
Surrogate	Unit	А	cceptable Limi	ts						
Toluene-d8	% Recovery		60-140		96	82	78			
Terphenyl	%		60-140		88	83	90			

AGAT WORK ORDER: 23T043079

PROJECT: 60646784

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: AECOM CANADA LTD

SAMPLING SITE: Hurontario

ATTENTION TO: Sergiy Tchernikov SAMPLED BY:K.M.

O. Reg. 153(511) - PHCs F1 - F4 (Soil)

DATE RECEIVED: 2023-07-04 DATE REPORTED: 2023-07-12

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: A Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil -

Industrial/Commercial/Community Property Use - Coarse Textured Soils, B Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil - Agricultural or Other

Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

5114698-5114700 Results are based on sample dry weight.

The C6-C10 fraction is calculated using Toluene response factor.

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX contribution.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Quality Control Data is available upon request.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolof

AGAT WORK ORDER: 23T043079

PROJECT: 60646784

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: AECOM CANADA LTD

SAMPLING SITE: Hurontario

ATTENTION TO: Sergiy Tchernikov SAMPLED BY:K.M.

				O. Reg	. 153(511)	- VOCs (So	il)		
DATE RECEIVED: 2023-07-04						<u> </u>	,		DATE REPORTED: 2023-07-12
			_	SCRIPTION: MPLE TYPE: SAMPLED:	BH2-SS4 Soil 2023-06-30 11:40	BH3-SS3 Soil 2023-06-30 10:30	BH1-SS3 Soil 2023-06-30 13:10	BH2-SS7 Soil 2023-06-30 12:20	
Parameter	Unit	G / S: A	G / S: B	RDL	5114712	5114713	5114714	5114715	
Dichlorodifluoromethane	μg/g	16	16	0.05	<0.05	<0.05	<0.05	<0.05	
Vinyl Chloride	ug/g	0.032	0.02	0.02	<0.02	<0.02	<0.02	< 0.02	
Bromomethane	ug/g	0.05	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Trichlorofluoromethane	ug/g	4	4	0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Acetone	ug/g	16	16	0.50	<0.50	<0.50	<0.50	<0.50	
1,1-Dichloroethylene	ug/g	0.064	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Methylene Chloride	ug/g	1.6	0.1	0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Trans- 1,2-Dichloroethylene	ug/g	1.3	0.084	0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Methyl tert-butyl Ether	ug/g	1.6	0.75	0.05	< 0.05	< 0.05	< 0.05	< 0.05	
1,1-Dichloroethane	ug/g	0.47	0.47	0.02	<0.02	<0.02	<0.02	< 0.02	
Methyl Ethyl Ketone	ug/g	70	16	0.50	<0.50	<0.50	<0.50	<0.50	
Cis- 1,2-Dichloroethylene	ug/g	1.9	1.9	0.02	<0.02	<0.02	<0.02	< 0.02	
Chloroform	ug/g	0.47	0.05	0.04	<0.04	<0.04	<0.04	< 0.04	
1,2-Dichloroethane	ug/g	0.05	0.05	0.03	< 0.03	< 0.03	< 0.03	< 0.03	
1,1,1-Trichloroethane	ug/g	6.1	0.38	0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Carbon Tetrachloride	ug/g	0.21	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Benzene	ug/g	0.32	0.21	0.02	< 0.02	< 0.02	<0.02	< 0.02	
1,2-Dichloropropane	ug/g	0.16	0.05	0.03	< 0.03	< 0.03	< 0.03	< 0.03	
Trichloroethylene	ug/g	0.55	0.061	0.03	< 0.03	< 0.03	< 0.03	< 0.03	
Bromodichloromethane	ug/g	1.5	1.5	0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Methyl Isobutyl Ketone	ug/g	31	1.7	0.50	<0.50	<0.50	<0.50	<0.50	
1,1,2-Trichloroethane	ug/g	0.05	0.05	0.04	< 0.04	< 0.04	< 0.04	< 0.04	
Toluene	ug/g	6.4	2.3	0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Dibromochloromethane	ug/g	2.3	2.3	0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Ethylene Dibromide	ug/g	0.05	0.05	0.04	<0.04	<0.04	<0.04	<0.04	
Tetrachloroethylene	ug/g	1.9	0.28	0.05	< 0.05	< 0.05	<0.05	< 0.05	
1,1,1,2-Tetrachloroethane	ug/g	0.087	0.058	0.04	<0.04	<0.04	<0.04	<0.04	
Chlorobenzene	ug/g	2.4	2.4	0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Ethylbenzene	ug/g	1.1	1.1	0.05	< 0.05	< 0.05	< 0.05	< 0.05	

AGAT WORK ORDER: 23T043079

PROJECT: 60646784

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: AECOM CANADA LTD

SAMPLING SITE: Hurontario

ATTENTION TO: Sergiy Tchernikov SAMPLED BY:K.M.

SAMI LING SITE. Haromano		GAINI ELD DT.IX.IVI.											
				O. Reg	. 153(511)	- VOCs (So	il)						
DATE RECEIVED: 2023-07-04									DATE REPORTED: 2023-07-12				
			SAMPLE DE	SCRIPTION:	BH2-SS4	BH3-SS3	BH1-SS3	BH2-SS7					
			SAI	MPLE TYPE:	Soil	Soil	Soil	Soil					
			DATE	SAMPLED:	2023-06-30 11:40	2023-06-30 10:30	2023-06-30 13:10	2023-06-30 12:20					
Parameter	Unit	G / S: A	G / S: B	RDL	5114712	5114713	5114714	5114715					
m & p-Xylene	ug/g			0.05	< 0.05	<0.05	< 0.05	< 0.05					
Bromoform	ug/g	0.61	0.27	0.05	< 0.05	< 0.05	< 0.05	< 0.05					
Styrene	ug/g	34	0.7	0.05	< 0.05	< 0.05	< 0.05	< 0.05					
,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05					
o-Xylene	ug/g			0.05	< 0.05	< 0.05	< 0.05	< 0.05					
,3-Dichlorobenzene	ug/g	9.6	4.8	0.05	< 0.05	<0.05	< 0.05	< 0.05					
,4-Dichlorobenzene	ug/g	0.2	0.083	0.05	< 0.05	<0.05	< 0.05	< 0.05					
,2-Dichlorobenzene	ug/g	1.2	1.2	0.05	< 0.05	< 0.05	< 0.05	< 0.05					
(ylenes (Total)	ug/g	26	3.1	0.05	< 0.05	< 0.05	< 0.05	< 0.05					
,3-Dichloropropene (Cis + Trans)	μg/g	0.059	0.05	0.04	< 0.04	< 0.04	< 0.04	< 0.04					
n-Hexane	μg/g	46	2.8	0.05	< 0.05	< 0.05	<0.05	<0.05					
Moisture Content	%			0.1	10.7	10.7	18.6	9.5					
Surrogate	Unit	A	cceptable Limi	ts									
Toluene-d8	% Recovery		50-140		94	95	95	94					
1-Bromofluorobenzene	% Recovery		50-140		89	88	90	89					

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: A Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil -

Industrial/Commercial/Community Property Use - Coarse Textured Soils, B Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil - Agricultural or Other Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

5114712-5114715 The sample was analyzed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Exceedance Summary

AGAT WORK ORDER: 23T043079

PROJECT: 60646784

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: AECOM CANADA LTD ATTENTION TO: Sergiy Tchernikov

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
5114693	BH3-SS2	ON T2 S AG CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	0.813
5114696	BH2-SS2	ON T2 S AG CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	0.755
5114705	BH3-SS1	ON T2 S AG CT	O. Reg. 153(511) - PAHs (Soil)	Benzo(a)pyrene	μg/g	0.078	0.11
5114705	BH3-SS1	ON T2 S AG CT	O. Reg. 153(511) - PAHs (Soil)	Fluoranthene	μg/g	0.69	0.92

Quality Assurance

CLIENT NAME: AECOM CANADA LTD

PROJECT: 60646784

ATTEN SAMPI

AGAT WORK ORDER: 23T043079
ATTENTION TO: Sergiy Tchernikov

SAMPLING SITE: Hurontario

SAMPLED BY:K.M.

SAMPLING SITE: Hurontario	SAMPLING SITE: HUTORITATIO SAMPLED BY: K.M.													
	Soil Analysis													
RPT Date: Jul 12, 2023			DUPLICATE			REFERENCE MATERIAL		METHOD BLANK SPIKE			MATRIX SPIK		KE	
PARAMETER	Batch Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable	Recovery		ptable	Recovery		ptable nits
	Batch Id	''				Value	Lower	Upper	,	Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals & Inor	ganics (Soil)						•	•			•			
Antimony	5119106	<0.8	<0.8	NA	< 0.8	100%	70%	130%	102%	80%	120%	96%	70%	130%
Arsenic	5119106	6	6	0.0%	< 1	109%	70%	130%	102%	80%	120%	117%	70%	130%
Barium	5119106	18.5	18.8	1.6%	< 2.0	92%	70%	130%	101%	80%	120%	118%	70%	130%
Beryllium	5119106	<0.5	<0.5	NA	< 0.5	78%	70%	130%	106%	80%	120%	113%	70%	130%
Boron	5119106	9	10	NA	< 5	88%	70%	130%	111%	80%	120%	123%	70%	130%
Boron (Hot Water Soluble)	5114690 5114690	0.50	0.49	NA	< 0.10	92%	60%	140%	95%	70%	130%	103%	60%	140%
Cadmium	5119106	<0.5	< 0.5	NA	< 0.5	112%	70%	130%	103%	80%	120%	104%	70%	130%
Chromium	5119106	7	7	NA	< 5	110%	70%	130%	105%	80%	120%	129%	70%	130%
Cobalt	5119106	3.8	4.3	NA	< 0.8	103%	70%	130%	99%	80%	120%	119%	70%	130%
Copper	5119106	9.6	10.5	9.0%	< 1.0	93%	70%	130%	102%	80%	120%	114%	70%	130%
Lead	5119106	10	10	0.0%	< 1	101%	70%	130%	99%	80%	120%	89%	70%	130%
Molybdenum	5119106	0.7	0.7	NA	< 0.5	104%	70%	130%	109%	80%	120%	116%	70%	130%
Nickel	5119106	14	16	13.3%	< 1	104%	70%	130%	108%	80%	120%	121%	70%	130%
Selenium	5119106	<0.8	<0.8	NA	< 0.8	132%	70%	130%	103%	80%	120%	98%	70%	130%
Silver	5119106	<0.5	<0.5	NA	< 0.5	104%	70%	130%	115%	80%	120%	96%	70%	130%
Thallium	5119106	<0.5	<0.5	NA	< 0.5	104%	70%	130%	106%	80%	120%	92%	70%	130%
Uranium	5119106	< 0.50	< 0.50	NA	< 0.50	113%	70%	130%	97%	80%	120%	91%	70%	130%
Vanadium	5119106	10.7	11.3	5.5%	< 2.0	114%	70%	130%	102%	80%	120%	130%	70%	130%
Zinc	5119106	79	66	17.9%	< 5	101%	70%	130%	104%	80%	120%	110%	70%	130%
Chromium, Hexavalent	5110045	<0.2	<0.2	NA	< 0.2	89%	70%	130%	90%	80%	120%	84%	70%	130%
Cyanide, WAD	5123005	<0.040	<0.040	NA	< 0.040	100%	70%	130%	97%	80%	120%	100%	70%	130%
Mercury	5119106	<0.10	<0.10	NA	< 0.10	101%	70%	130%	97%	80%	120%	98%	70%	130%
Electrical Conductivity (2:1)	5114690 5114690	0.645	0.649	0.6%	< 0.005	109%	80%	120%						
Sodium Adsorption Ratio (2:1) (Calc.)	5114690 5114690	2.02	1.98	2.0%	NA									
pH, 2:1 CaCl2 Extraction	5124295	7.77	7.59	2.3%	NA	100%	80%	120%						

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

More than 90% of the elements met acceptance limits and overall data quality is acceptable for use. For a multi-element scan up to 10% of analytes may exceed the quoted limits by up to 10% absolute.

Quality Assurance

CLIENT NAME: AECOM CANADA LTD

PROJECT: 60646784

ATTENTION TO: Sergiy Tchernikov

AGAT WORK ORDER: 23T043079

SAMPLED BY: K.M.

SAMPLING SITE: Hurontario Trace Organics Analysis DUPLICATE REFERENCE MATERIAL METHOD BLANK SPIKE RPT Date: Jul 12, 2023 MATRIX SPIKE Method Acceptable Acceptable Acceptable Sample Massurad Blank Limits **PARAMETER** Batch Dup #1 Dup #2 RPD Recovery Recovery Value Lower Upper Lower Upper Lower Upper O. Reg. 153(511) - PAHs (Soil) Naphthalene < 0.05 108% 115% 140% < 0.05 < 0.05 NA 50% 140% 98% 140% 50% 5119146 50% Acenaphthylene 75% 140% 5119146 < 0.05 < 0.05 NA < 0.05 83% 50% 140% 50% 140% 75% 50% Acenaphthene 5119146 < 0.05 < 0.05 NΑ < 0.05 105% 50% 140% 78% 50% 140% 73% 50% 140% Fluorene 5119146 < 0.05 < 0.05 NΑ < 0.05 106% 50% 140% 80% 50% 140% 80% 50% 140% 5119146 < 0.05 < 0.05 < 0.05 87% 50% 140% 90% 50% 140% 78% 50% 140% Phenanthrene NA Anthracene 5119146 < 0.05 < 0.05 < 0.05 69% 50% 140% 83% 140% 83% 50% 140% NA 50% Fluoranthene 5119146 < 0.05 < 0.05 NA < 0.05 96% 50% 140% 78% 50% 140% 88% 50% 140% Pyrene 5119146 < 0.05 < 0.05 NA < 0.05 92% 50% 140% 80% 50% 140% 85% 50% 140% 50% Benz(a)anthracene 5119146 < 0.05 < 0.05 NA < 0.05 93% 50% 140% 88% 140% 80% 50% 140% 102% 50% 140% 75% 140% 140% 5119146 < 0.05 < 0.05 NA < 0.05 50% 83% 50% Chrysene Benzo(b)fluoranthene < 0.05 < 0.05 140% 73% 140% 108% 50% 140% 5119146 NA < 0.05117% 50% 50% Benzo(k)fluoranthene < 0.05 NA < 0.05 111% 50% 140% 90% 140% 85% 50% 140% 5119146 < 0.05 50% 140% Benzo(a)pyrene 5119146 < 0.05 < 0.05 NA < 0.05 95% 50% 140% 83% 50% 140% 85% 50% Indeno(1,2,3-cd)pyrene 5119146 < 0.05 < 0.05 NA < 0.05 86% 50% 140% 80% 50% 140% 85% 50% 140% Dibenz(a,h)anthracene 5119146 < 0.05 < 0.05 NA < 0.05 77% 50% 140% 83% 50% 140% 75% 50% 140% Benzo(g,h,i)perylene 5119146 < 0.05 < 0.05 NA < 0.05 67% 50% 140% 78% 50% 140% 85% 50% 140% O. Reg. 153(511) - PHCs F1 - F4 (Soil) Benzene 5114700 5114700 < 0.02 < 0.02 NA < 0.02 100% 60% 140% 103% 60% 140% 108% 60% 140% 5114700 5114700 < 0.05 < 0.05 < 0.05 87% 60% 140% 105% 140% 103% 60% 140% Toluene NA 60% Ethylbenzene 140% 5114700 5114700 < 0.05 < 0.05 NA < 0.05 108% 60% 140% 103% 60% 140% 106% 60% m & p-Xylene 5114700 5114700 < 0.05 < 0.05 NA < 0.05 110% 60% 140% 118% 60% 140% 105% 60% 140% o-Xylene 5114700 5114700 < 0.05 < 0.05 113% 60% 140% 102% 60% 140% 85% 60% 140% NA < 0.05 F1 (C6 - C10) 5114700 5114700 <5 <5 NA < 5 89% 60% 140% 99% 60% 140% 99% 60% 140% F2 (C10 to C16) 5110256 < 10 < 10 NA < 10 104% 60% 140% 103% 60% 140% 104% 60% 140% F3 (C16 to C34) 5110256 < 50 < 50 NA < 50 108% 60% 140% 97% 60% 140% 92% 60% 140% F4 (C34 to C50) 5110256 < 50 < 50 NA < 50 91% 60% 140% 104% 60% 140% 103% 60% 140% O. Reg. 153(511) - VOCs (Soil) < 0.05 105% Dichlorodifluoromethane 5106140 < 0.05 NA < 0.05 50% 140% 104% 140% 113% 50% 140% 50% Vinyl Chloride 140% 5106140 < 0.02 < 0.02 NA < 0.02 88% 50% 140% 110% 50% 140% 83% 50% Bromomethane 5106140 < 0.05 < 0.05 NA < 0.05 87% 50% 140% 72% 50% 140% 92% 50% 140% Trichlorofluoromethane 5106140 < 0.05 < 0.05 NA < 0.05 105% 50% 140% 85% 50% 140% 84% 50% 140% 5106140 83% 50% 140% 87% 140% 78% 50% 140% Acetone < 0.50 < 0.50 NA < 0.50 50% 1,1-Dichloroethylene 5106140 140% < 0.05 < 0.05 NA < 0.0589% 50% 140% 91% 60% 130% 99% 50% Methylene Chloride 5106140 < 0.05 < 0.05 NA < 0.05 75% 50% 140% 84% 60% 130% 83% 50% 140% Trans- 1,2-Dichloroethylene 5106140 < 0.05 < 0.05 NA < 0.05 107% 50% 140% 81% 60% 130% 84% 50% 140% Methyl tert-butyl Ether 5106140 < 0.05 76% 75% 140% < 0.05 NA < 0.05 92% 50% 140% 60% 130% 50% 1,1-Dichloroethane 5106140 < 0.02 140% 89% 130% 81% 50% 140% < 0.02 NA < 0.02 119% 50% 60%

AGAT QUALITY ASSURANCE REPORT (V1)

5106140

< 0.50

< 0.50

Methyl Ethyl Ketone

Page 12 of 20

50% 140%

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

NA

< 0.50

85%

50% 140%

76%

50% 140%

75%

Quality Assurance

CLIENT NAME: AECOM CANADA LTD

AGAT WORK ORDER: 23T043079 PROJECT: 60646784 ATTENTION TO: Sergiy Tchernikov

SAMPLING SITE: Hurontario SAMPLED BY: K.M.

Trace Organics Analysis (Continued)															
RPT Date: Jul 12, 2023			Г	DUPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Lir	eptable mits	Recovery	Lir	eptable mits	Recovery	Lin	eptable mits
								Lower	Upper		Lower	Upper		Lower	Upper
Cis- 1,2-Dichloroethylene	5106140		<0.02	< 0.02	NA	< 0.02	96%	50%	140%	71%	60%	130%	73%	50%	140%
Chloroform	5106140		<0.04	<0.04	NA	< 0.04	98%	50%	140%	73%	60%	130%	103%	50%	140%
1,2-Dichloroethane	5106140		<0.03	< 0.03	NA	< 0.03	91%	50%	140%	87%	60%	130%	89%	50%	140%
1,1,1-Trichloroethane	5106140		<0.05	<0.05	NA	< 0.05	78%	50%	140%	72%	60%	130%	98%	50%	140%
Carbon Tetrachloride	5106140		<0.05	<0.05	NA	< 0.05	78%	50%	140%	75%	60%	130%	103%	50%	140%
Benzene	5106140		< 0.02	< 0.02	NA	< 0.02	91%	50%	140%	70%	60%	130%	73%	50%	140%
1,2-Dichloropropane	5106140		< 0.03	< 0.03	NA	< 0.03	87%	50%	140%	75%	60%	130%	81%	50%	140%
Trichloroethylene	5106140		< 0.03	< 0.03	NA	< 0.03	92%	50%	140%	93%	60%	130%	90%	50%	140%
Bromodichloromethane	5106140		<0.05	<0.05	NA	< 0.05	78%	50%	140%	104%	60%	130%	90%	50%	140%
Methyl Isobutyl Ketone	5106140		<0.50	<0.50	NA	< 0.50	89%	50%	140%	95%	50%	140%	81%	50%	140%
1,1,2-Trichloroethane	5106140		< 0.04	< 0.04	NA	< 0.04	118%	50%	140%	108%	60%	130%	119%	50%	140%
Toluene	5106140		< 0.05	< 0.05	NA	< 0.05	118%	50%	140%	101%	60%	130%	92%	50%	140%
Dibromochloromethane	5106140		< 0.05	< 0.05	NA	< 0.05	100%	50%	140%	74%	60%	130%	95%	50%	140%
Ethylene Dibromide	5106140		<0.04	<0.04	NA	< 0.04	114%	50%	140%	94%	60%	130%	85%	50%	140%
Tetrachloroethylene	5106140		<0.05	<0.05	NA	< 0.05	100%	50%	140%	95%	60%	130%	92%	50%	140%
1,1,1,2-Tetrachloroethane	5106140		< 0.04	< 0.04	NA	< 0.04	112%	50%	140%	79%	60%	130%	71%	50%	140%
Chlorobenzene	5106140		< 0.05	< 0.05	NA	< 0.05	113%	50%	140%	102%	60%	130%	95%	50%	140%
Ethylbenzene	5106140		< 0.05	< 0.05	NA	< 0.05	111%	50%	140%	97%	60%	130%	95%	50%	140%
m & p-Xylene	5106140		<0.05	<0.05	NA	< 0.05	114%	50%	140%	102%	60%	130%	94%	50%	140%
Bromoform	5106140		<0.05	<0.05	NA	< 0.05	88%	50%	140%	72%	60%	130%	102%	50%	140%
Styrene	5106140		< 0.05	< 0.05	NA	< 0.05	115%	50%	140%	84%	60%	130%	90%	50%	140%
1,1,2,2-Tetrachloroethane	5106140		< 0.05	< 0.05	NA	< 0.05	100%	50%	140%	104%	60%	130%	82%	50%	140%
o-Xylene	5106140		< 0.05	< 0.05	NA	< 0.05	106%	50%	140%	102%	60%	130%	94%	50%	140%
1,3-Dichlorobenzene	5106140		<0.05	<0.05	NA	< 0.05	101%	50%	140%	108%	60%	130%	100%	50%	140%
1,4-Dichlorobenzene	5106140		<0.05	<0.05	NA	< 0.05	91%	50%	140%	107%	60%	130%	99%	50%	140%
1,2-Dichlorobenzene	5106140		< 0.05	< 0.05	NA	< 0.05	110%	50%	140%	103%	60%	130%	100%	50%	140%
n-Hexane	5106140		<0.05	<0.05	NA	< 0.05	112%	50%	140%	73%	60%	130%	77%	50%	140%
Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).															
O. Reg. 153(511) - PCBs (Soil))														
Polychlorinated Biphenyls	5112608		< 0.1	< 0.1	NA	< 0.1	99%	50%	140%	93%	50%	140%	96%	50%	140%

Certified By:

AGAT QUALITY ASSURANCE REPORT (V1)

Page 13 of 20

QC Exceedance

CLIENT NAME: AECOM CANADA LTD AGAT WORK ORDER: 23T043079
PROJECT: 60646784 ATTENTION TO: Sergiy Tchernikov

RPT Date: Jul 12, 2023		REFERENC	E MATERIA	AL METHO	D BLAN	(SPIKE	MAT	RIX SPI	KE
PARAMETER	Sample Id	Measured	Acceptat Limits		1.6	eptable mits	Recovery	Lin	ptable nits
		Value	Lower Up		<i>,</i>	Upper	, ,		Upper

O. Reg. 153(511) - Metals & Inorganics (Soil)

Selenium 132% 70% 130% 103% 80% 120% 98% 70% 130%

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

More than 90% of the elements met acceptance limits and overall data quality is acceptable for use. For a multi-element scan up to 10% of analytes may exceed the quoted limits by up to 10% absolute.

Method Summary

CLIENT NAME: AECOM CANADA LTD

AGAT WORK ORDER: 23T043079 ATTENTION TO: Sergiy Tchernikov PROJECT: 60646784 SAMPLED BY:K.M.

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron (Hot Water Soluble)	MET-93-6104	modified from EPA 6010D and MSA PART 3, CH 21	ICP/OES
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Zinc	MET 93 -6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium, Hexavalent	INOR-93-6068	modified from EPA 3060 and EPA 7196	SPECTROPHOTOMETER
Cyanide, WAD	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	SEGMENTED FLOW ANALYSIS
Mercury	MET-93-6103	modified from EPA 7471B and SM 3112 B	ICP-MS
Electrical Conductivity (2:1)	INOR-93-6075	modified from MSA PART 3, CH 14 and SM 2510 B	PC TITRATE
Sodium Adsorption Ratio (2:1) (Calc.)	INOR-93-6007	modified from EPA 6010D & Analytical Protocol	ICP/OES
pH, 2:1 CaCl2 Extraction	INOR-93-6075	modified from EPA 9045D, MCKEAGUE 3.11 E3137	PC TITRATE

Method Summary

CLIENT NAME: AECOM CANADA LTD

AGAT WORK ORDER: 23T043079 ATTENTION TO: Sergiy Tchernikov PROJECT: 60646784 SAMPLED BY:K.M.

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis	<u>'</u>	-	
Naphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acenaphthylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acenaphthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Fluorene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Phenanthrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benz(a)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Chrysene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(b)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(k)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(a)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Dibenz(a,h)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(g,h,i)perylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
1 and 2 Methlynaphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Naphthalene-d8	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acridine-d9	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Terphenyl-d14	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Moisture Content	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
Polychlorinated Biphenyls	ORG-91-5113	modified from EPA SW-846 3570 & 8082A	GC/ECD
Decachlorobiphenyl	ORG-91-5113	modified from EPA SW-846 3541 & 8082A	GC/ECD
Benzene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
Toluene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
Ethylbenzene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
m & p-Xylene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
o-Xylene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
Xylenes (Total)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
F1 (C6 - C10)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method	P&T GC/FID

Method Summary

CLIENT NAME: AECOM CANADA LTD

AGAT WORK ORDER: 23T043079 PROJECT: 60646784 ATTENTION TO: Sergiy Tchernikov SAMPLED BY: K.M.

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Toluene-d8	VOL-91-5009	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
F2 (C10 to C16)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F4 (C34 to C50)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
Terphenyl	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Dichlorodifluoromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Vinyl Chloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Acetone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trans- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methyl tert-butyl Ether	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Cis- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Chloroform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Benzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Toluene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: AECOM CANADA LTD

AGAT WORK ORDER: 23T043079 PROJECT: 60646784 ATTENTION TO: Sergiy Tchernikov SAMPLED BY:K.M.

SAMI LING SITE. Haromano		SAMI LLD DT.N.	IVI.
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Ethylene Dibromide	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
m & p-Xylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromoform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene (Cis + Trans)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS

Chain of Custody Record

Have feedback? Scan here for a quick survey!

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122 webearth.agatlabs.com

Laboratory Use Onl	042079
Work Order #:	11
Cooler Quantity:	large
Arrival Temperatures:	8-6 9-4 4.4
50.0	

Report Information: Company: AECON Cay	oda			Reg	gulatory Requirements:	tole water	consume	o by no	nana)	1	Custody Seal Intact: Tyes Cocce Cocce					□No	, ,	□N/A		
Contact: Kotje Malki / S Address: 105 Connecce	37 1010111110					Regulation 153/04 Regulation 406 Table 2 Indicate One Region Sewer Use Sanitary Storm Table 2 Indicate One Region					Turnaround Time (TAT) Required:									
Phone: Reports to be sent to: 1. Email: Fax: Addie Hakk Odecom Com				Soil To	Ind/Com Res/Park Agriculture Regulation 55 exture (Check One) COME	8						Regular TAT S to 7 Business Days Rush TAT (Rush Surchargos Apply) 3 Business Days Days Day Next Busines							ısines	
	Kovwoec	m, Com		= -	Sthis submission for a	D.	eport (Indicate				OR Date Required (Rush Surcharges Ma				ay Apply):	Apply):			
Project: 6064678 Site Location: Sampled By:	1 	twontown	100	Red	cord of Site Condition? Yes No	Ce	rtifica Yes	te of		sls		Fo	*TAT	is exc	clusive	of week		nd statut	rush TAT tory holiday ur AGAT CF	
AGAT Quote #: Please note: If quotation number	PO:ris not provided, client will l	be billed full price for	analysis.	470	nple Matrix Legend	Crvi, DOC	0.	Reg 15	3				Reg 558	O. Reg	Backage Package	a a				W/W
Invoice Information: Company: AECAN Canad Contact: Katie Mala Address: as above Email: as above	da Ine.	II To Same: Ye	s□ No □	GW O P S SD SW	Ground Water Oil Paint (Soil) Sediment Surface Water	Field Filtered - Metals, Hg, C	& Inorganics	Metals - □ CrVI, □ Hg, □ HWSB	F1.F4 PHCs			PCBs: Aroclors andfill Disnosal Characterization TCLP	U □VOCS □ ABNS □ B(a)P	Metals □ Vocs □ SVocs	406 Characterization Metals, BTEX, F1-F4	ity: ☐ Moisture ☐ Sulphide				Calculate On Calculate
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y/N	Metals	Metals	BTEX, F	PAHS	PCBs	PCBs: A	TCLP: DM&	SPLP:	Regulation pH, ICPMS	Corrosivity:			ш	100
1 BH1 - SS 2	June 30	AM PM		30-1	M&I,PAH	2.	V		41	/		#5		112		12				
2. BHI - SSG	Dan I	AM PM	1		MAI		V		III					Ust,				- 3	0 1	
3. BH 3-SS2	en Jan Henri	AM PM			MEZ	1,3	V													
4. BH2 - SSZ		AM		10 111	MAJ, PCB		1				1							- 18		
5. BH3 - 354		10:40			PHC				/		-	(30) (2)								
6. BH2-SS3		10.40			PHC	11-19									-					
7. BH1-559		1:30 PM			PHC			1	/	100										
8. BHI _ SS I		AM			PCB	1 15														
9. BH3 -SS 1		AM			PAH	1 73	162		10	1		DA.		bu.						1.1
10. BH2 -SSA		11:40			Voc				1	1		09		UIII						
11. BH3-SS3		10:30 AM		200	VOC				V			8477		03				×	- 11	H

Samples Relinquished By (Print Name and Sign):

Samples Relinquished By (Print Name and Sign):

Samples Received By (Print Name and Sign

Date

Time

Time

Laboratories

Have feedback? Scan here for a

quick survey!

S

5835 Coopers Avenue Mississauga, Ontario L4Z-1Y2 Ph: 905.712.5100 Fax: 905.712.5122 webearth.agatlabs.com

Work Order #:	7104	30.74		
Cooler Quantity:	B **-	1		
Arrival Temperatures:		See	por	V
Custody Seal Intact:	□Yes		Vo.	□N/A

5 to 7 Business Days

Next Business

Day

2 Business

OR Date Required (Rush Surcharges May Apply):

Laboratory Use Only

Turnaround Time (TAT) Required:

Regular TAT

Rush TAT (Rush Surcharges Apply)

3 Business

Days

Chain of Custody Record If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water consumed by humans) Report Information: Company: Contact: Address: Phone: Reports to be sent to: 1 Email: 2. Email:

Z. EIIIdii.	Jedy I Courte Party account ou	
Project Info	rmation:	
Project:	60646784	
Site Location:	Hurontanio	
Sampled By:	K M	

P0:

Please note: If quotation number is not provided, client will be billed full price for analysis.

mation:	Bill To Same: Yes ☐ No ☐
AECOM Canada	
Katle Moleki	
as abore	- T

Fine Indicate One

Record of Site Condition? ☐ Yes ☑ No	Cei	Yes		f An		sis lo		n		AT is ex	clusive	of we	ekends	and s	for rush tatutory l	nolidays
THE COURT OF SHEET	7 o	0	Reg 1	.53					0. Reg 558	0. Re	eg 406					- 037
Sample Matrix Legend GW Ground Water O Oil P Paint Soil SD Sediment SW Surface Water	Field Filtered - Metals, Hg. CrVI, DOC	ils & Inorganics	ıls · □ CrVI, □ Hg, □ HWSB	, F1-F4 PHCs		La Carte		: Aractors 🗆	fill Disposal Characterization TCLP: □ M&I □ Vocs □ ABNs □ R(a)P□ PCBs	lation 406 SPLP Rainwater Leach : ☐ Metals ☐ VoCs ☐ SVoCs	ulation 406 Characterization Package ICPMS Metals, BTEX, F1-F4	Corrosivity: ☐ Moisture ☐ Sulphide				
nple Comments/ atrix Special Instructions	Y/N	Metals	Metals	BTEX	VOC	PAHS	PCBs	PCBs:	Landfill TCLP:	Regula SPLP:	Regula pH, IC	Corros	Į.		omi	

Line St. Co.	0.07				IISAWA JUL	Field	S In	İ	F1-F4			roctor	Dispo M&I	ion 4	ion 4 MS M	vity: [lly Haz
Sample Identification	Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y/N	Metals	Metals	5	VOC	PCBs	PCBs: A	Landfill TCLP:	Regulat SPLP: C	Regulation pH, ICPMS	Corrosivity: [om		Potentia
1 BHI - SS3	June 30	1:10	2	301	VO C				-	1			-	L.						
2. BH2-SS7	V	12:20 PM		Soil	Yoc	12 70	1.11		1											
3.		AM PM										100	-	- HTV		4-6	-			4
4.		AM PM		-		187														
5.		AN PM		7-E			Total S		-					70					10	
6,		AM PM																		
7,	III II IVII II II II II II	AM PM		PRAISE I	Name of the Proof of the		12	1941	100			dia 1		2001		10	-			
8.		AM PM												6 13				510		
9.	-	AM PM	= 7/= =			1.00	1916		30		Ĭ	18		PAL						MIT
10.		AM PM							796			18		76						10
11.		AM PM		2.1	in the second second				91			-8,0		Pal			- 1	400		
Samples Relinquished By (Print Name and Sign):		Date	Time	JUST UV	Samples Received By (Print Name and Sign):	7				I	a19	140	Tim	101	- 1					

Sampled By: AGAT Quote #:

Invoice Info

Company:

Contact:

Address:

Email:

Samples Relinquished By (Print Name and Sign) Samples Relinquished By (Print Name and Sign)

CLIENT NAME: AECOM CANADA LTD

105 COMMERCE VALLEY DR.W 7TH FLOOR

MARKHAM, ON L3T7W3

(905) 886-7022

ATTENTION TO: Sergiy Tchernikov

PROJECT: 60646784 AGAT WORK ORDER: 23T074610

SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer

TRACE ORGANICS REVIEWED BY: Oksana Gushyla, Trace Organics Lab Supervisor

DATE REPORTED: Oct 03, 2023

PAGES (INCLUDING COVER): 10 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V1)

Page 1 of 10

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

AGAT WORK ORDER: 23T074610

PROJECT: 60646784

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: AECOM CANADA LTD

SAMPLING SITE:

ATTENTION TO: Sergiy Tchernikov SAMPLED BY:

					S 22 2
				O. Reg. 5	58 - Metals & Inorganics
DATE RECEIVED: 2023-09-28					DATE REPORTED: 2023-10-03
	S	SAMPLE DES	CRIPTION:	Com.SS-1	
		SAM	PLE TYPE:	Soil	
		DATE	SAMPLED:	2023-06-30	
Parameter	Unit	G/S	RDL	5324963	
Arsenic Leachate	mg/L	2.5	0.010	<0.010	
Barium Leachate	mg/L	100	0.020	0.475	
Boron Leachate	mg/L	500	0.050	0.062	
Cadmium Leachate	mg/L	0.5	0.010	<0.010	
Chromium Leachate	mg/L	5	0.050	<0.050	
Lead Leachate	mg/L	5	0.010	0.013	
Mercury Leachate	mg/L	0.1	0.01	<0.01	
Selenium Leachate	mg/L	1	0.020	<0.020	
Silver Leachate	mg/L	5	0.010	<0.010	
Uranium Leachate	mg/L	10	0.050	<0.050	
Fluoride Leachate	mg/L	150	0.10	<0.10	
Cyanide Leachate	mg/L	20	0.05	<0.05	
(Nitrate + Nitrite) as N Leachate	mg/L	1000	0.70	< 0.70	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to O. Reg. 558 - Schedule IV Leachate Quality Criteria Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Analysis performed at AGAT Toronto (unless marked by *)

OHEMIST ON THE POSSION OF THE POSSIO

AGAT WORK ORDER: 23T074610

PROJECT: 60646784

O. Reg. 558 - Benzo(a) pyrene

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: AECOM CANADA LTD

ATTENTION TO: Sergiy Tchernikov

SAMPLED BY:

	 . , . ,	
DATE RECEIVED: 2023-09-28		DATE REPORTED: 2023-10-03

2,112,120211221202002				27=	
	S	AMPLE DESCRIPTION	ON: Com.SS-1		
		SAMPLE TY	PE: Soil		
		DATE SAMPLI	ED: 2023-06-30		
Parameter	Unit	G/S RDL	5324963		
Benzo(a)pyrene Leachate	mg/L	0.001 0.00	1 <0.001		
Surrogate	Unit	Acceptable Limit	S		
Acridine-d9	%	50-140	85		
Naphthalene-d8	%	50-140	65		
Terphenyl-d14	%	50-140	78		

Comments:

SAMPLING SITE:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to O. Reg. 558 - Schedule IV Leachate Quality Criteria

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

The sample was leached according to Regulation 558 protocol. Analysis was performed on the leachate. 5324963

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 23T074610

PROJECT: 60646784

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Sergiy Tchernikov

SAMPLED BY:

					O. Reg. 558 - PCBs
DATE RECEIVED: 2023-09-28					DATE REPORTED: 2023-10-03
		SAMPLE DES	CRIPTION:	Com.SS-1	
		SAM	PLE TYPE:	Soil	
		DATE	SAMPLED:	2023-06-30	
Parameter	Unit	G/S	RDL	5324963	
PCB's Leachate	mg/L	0.3	0.005	< 0.005	
Surrogate	Unit	Acceptab	le Limits		

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to O. Reg. 558 - Schedule IV Leachate Quality Criteria

50-140

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

5324963 The soil sample was leached using the Regulation 558 procedure. Analysis was performed on the leachate.

PCB total is a calculated parameter. The calculated value is the sum of Aroclor 1242, Aroclor 1248, Aroclor 1254 and Aroclor 1260.

92

Analysis performed at AGAT Toronto (unless marked by *)

CLIENT NAME: AECOM CANADA LTD

SAMPLING SITE:

Decachlorobiphenyl

CLIENT NAME: AECOM CANADA LTD

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 23T074610

PROJECT: 60646784

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Sergiy Tchernikov

SAMPLED BY:

				DATE REPORTED: 2023-10-03
SA	AMPLE DES	CRIPTION:	Com.SS-1	
	SAM	PLE TYPE:	Soil	
	DATE	SAMPLED:	2023-06-30	
Unit	G/S	RDL	5324963	
mg/L	0.2	0.030	< 0.030	
mg/L	1.4	0.020	<0.020	
mg/L	5.0	0.030	< 0.030	
mg/L	200	0.090	< 0.090	
mg/L	10.0	0.020	<0.020	
mg/L	0.5	0.020	<0.020	
mg/L	0.5	0.020	<0.020	
mg/L	0.5	0.020	<0.020	
mg/L	5.0	0.020	<0.020	
mg/L	3.0	0.050	<0.050	
mg/L	8.0	0.010	<0.010	
mg/L	20.0	0.010	<0.010	
mg/L	0.5	0.010	<0.010	
Unit	Acceptab	le Limits		
% Recovery	50-	140	106	
% Recovery	50-	140	78	
	Unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	SAM DATE: Unit G/S mg/L 0.2 mg/L 1.4 mg/L 5.0 mg/L 200 mg/L 10.0 mg/L 0.5 mg/L 0.5 mg/L 0.5 mg/L 3.0 mg/L 3.0 mg/L 8.0 mg/L 20.0 mg/L 0.5 Mg/L 3.0 Mg/	mg/L 0.2 0.030 mg/L 1.4 0.020 mg/L 5.0 0.030 mg/L 200 0.090 mg/L 10.0 0.020 mg/L 0.5 0.020 mg/L 0.5 0.020 mg/L 5.0 0.020 mg/L 3.0 0.050 mg/L 8.0 0.010 mg/L 0.5 0.010 Unit Acceptable Limits % Recovery 50-140	SAMPLE TYPE: Soil DATE SAMPLED: 2023-06-30 Unit G / S RDL 5324963 mg/L 0.2 0.030 <0.030

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to O. Reg. 558 - Schedule IV Leachate Quality Criteria

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

5324963 Sample was prepared using Regulation 558 protocol and a zero headspace extractor.

Analysis performed at AGAT Toronto (unless marked by *)

Quality Assurance

CLIENT NAME: AECOM CANADA LTD

AGAT WORK ORDER: 23T074610 PROJECT: 60646784 ATTENTION TO: Sergiy Tchernikov

SAMPLING SITE: SAMPLED BY:

Soil Analysis															
RPT Date: Oct 03, 2023			С	UPLICATI	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	Acceptable Limits		Recovery	1:0	ptable
		ld	·				value	Lower	Upper	·	Lower Upper			Lower	Upper
O. Reg. 558 - Metals & Inorganic	S														
Arsenic Leachate	5313576		<0.010	<0.010	NA	< 0.010	102%	70%	130%	106%	80%	120%	102%	70%	130%
Barium Leachate	5313576		0.495	0.563	12.9%	< 0.020	100%	70%	130%	107%	80%	120%	112%	70%	130%
Boron Leachate	5313576		0.077	0.075	NA	< 0.050	100%	70%	130%	105%	80%	120%	110%	70%	130%
Cadmium Leachate	5313576		<0.010	<0.010	NA	< 0.010	101%	70%	130%	115%	80%	120%	115%	70%	130%
Chromium Leachate	5313576		<0.050	<0.050	NA	< 0.050	99%	70%	130%	110%	80%	120%	111%	70%	130%
Lead Leachate	5313576		0.010	0.011	NA	< 0.010	96%	70%	130%	99%	80%	120%	105%	70%	130%
Mercury Leachate	5313576		<0.01	<0.01	NA	< 0.01	98%	70%	130%	83%	80%	120%	95%	70%	130%
Selenium Leachate	5313576		<0.020	< 0.020	NA	< 0.020	101%	70%	130%	112%	80%	120%	127%	70%	130%
Silver Leachate	5313576		<0.010	<0.010	NA	< 0.010	101%	70%	130%	116%	80%	120%	109%	70%	130%
Uranium Leachate	5313576		<0.050	<0.050	NA	< 0.050	95%	70%	130%	111%	80%	120%	115%	70%	130%
Fluoride Leachate	5313576		0.16	0.17	NA	< 0.10	109%	90%	110%	101%	90%	110%	100%	70%	130%
Cyanide Leachate	5313576		< 0.05	< 0.05	NA	< 0.05	92%	70%	130%	92%	80%	120%	108%	70%	130%
(Nitrate + Nitrite) as N Leachate	5313576		<0.70	<0.70	NA	< 0.70	97%	80%	120%	101%	80%	120%	104%	70%	130%

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Quality Assurance

CLIENT NAME: AECOM CANADA LTD

AGAT WORK ORDER: 23T074610 PROJECT: 60646784 ATTENTION TO: Sergiy Tchernikov

SAMPLING SITE: SAMPLED BY:

	Trace Organics Analysis																				
RPT Date: Oct 03, 2023				UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE						
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		Acceptable Limits		Limita		Limita		Limito		Acceptable Limits		Recovery	1 :-	ptable nits
		ld		.			Value	Lower	Upper		Lower	Upper		Lower	Upper						
O. Reg. 558 - Benzo(a) pyrene																					
Benzo(a)pyrene Leachate	5315874		< 0.001	< 0.001	NA	< 0.001	104%	50%	140%	93%	50%	140%	88%	50%	140%						
O. Reg. 558 - PCBs																					
PCB's Leachate	5327171		< 0.005	< 0.005	NA	< 0.005	106%	50%	140%	107%	50%	140%	102%	50%	140%						
O. Reg. 558 - VOCs																					
Vinyl Chloride Leachate	5325620		< 0.030	< 0.030	NA	< 0.030	107%	50%	140%	99%	50%	140%	110%	50%	140%						
1,1 Dichloroethene Leachate	5325620		< 0.020	< 0.020	NA	< 0.020	98%	50%	140%	125%	60%	130%	110%	50%	140%						
Dichloromethane Leachate	5325620		< 0.030	< 0.030	NA	< 0.030	117%	50%	140%	107%	60%	130%	103%	50%	140%						
Methyl Ethyl Ketone Leachate	5325620		< 0.090	< 0.090	NA	< 0.090	118%	50%	140%	111%	50%	140%	102%	50%	140%						
Chloroform Leachate	5325620		<0.020	<0.020	NA	< 0.020	101%	50%	140%	107%	60%	130%	97%	50%	140%						
1,2-Dichloroethane Leachate	5325620		<0.020	<0.020	NA	< 0.020	84%	50%	140%	114%	60%	130%	108%	50%	140%						
Carbon Tetrachloride Leachate	5325620		< 0.020	< 0.020	NA	< 0.020	76%	50%	140%	78%	60%	130%	80%	50%	140%						
Benzene Leachate	5325620		< 0.020	< 0.020	NA	< 0.020	103%	50%	140%	100%	60%	130%	118%	50%	140%						
Trichloroethene Leachate	5325620		< 0.020	< 0.020	NA	< 0.020	105%	50%	140%	117%	60%	130%	107%	50%	140%						
Tetrachloroethene Leachate	5325620		<0.050	<0.050	NA	< 0.050	111%	50%	140%	102%	60%	130%	108%	50%	140%						
Chlorobenzene Leachate	5325620		<0.010	<0.010	NA	< 0.010	113%	50%	140%	109%	60%	130%	103%	50%	140%						
1,2-Dichlorobenzene Leachate	5325620		<0.010	<0.010	NA	< 0.010	114%	50%	140%	111%	60%	130%	100%	50%	140%						
1,4-Dichlorobenzene Leachate	5325620		<0.010	<0.010	NA	< 0.010	111%	50%	140%	101%	60%	130%	92%	50%	140%						

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Method Summary

CLIENT NAME: AECOM CANADA LTD AGAT WORK ORDER: 23T074610
PROJECT: 60646784 ATTENTION TO: Sergiy Tchernikov

SAMPLING SITE: SAMPLED BY:

O/ tivii Eii to oi i E.		O/ (IVII EED D1.	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Arsenic Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020	3 ICP-MS
Barium Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020I	3 ICP-MS
Boron Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020	3 ICP-MS
Cadmium Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020	3 ICP-MS
Chromium Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020	B ICP-MS
Lead Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020	3 ICP-MS
Mercury Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020	3 ICP-MS
Selenium Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020	B ICP-MS
Silver Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020	B ICP-MS
Uranium Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020	3 ICP-MS
Fluoride Leachate	INOR-93-6000	EPA SW 846-1311; SM 4500F-C	ION SELECTIVE ELECTRODE
Cyanide Leachate	INOR-93-6052	EPA 1311 modified from MOE 3015 SM 4500 CN-I,G387	SEGMENTED FLOW ANALYSIS
(Nitrate + Nitrite) as N Leachate	INOR-93-6053	EPA SW 846-1311 & modified from SM 4500 - NO3- I	LACHAT FIA

Method Summary

CLIENT NAME: AECOM CANADA LTD

AGAT WORK ORDER: 23T074610 ATTENTION TO: Sergiy Tchernikov PROJECT: 60646784

SAMPLING SITE: SAMPLED BY:

SAIVII LING SITE.		SAIVII LLD D1.	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Benzo(a)pyrene Leachate	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Acridine-d9	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Naphthalene-d8	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Terphenyl-d14	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
PCB's Leachate	ORG-91-5112	Regulation 558, EPA SW846 3510C/8082	GC/ECD
Decachlorobiphenyl	ORG-91-5112	EPA SW846 3510C/8082	GC/ECD
Vinyl Chloride Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
1,1 Dichloroethene Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
Dichloromethane Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
Chloroform Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
Benzene Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
Trichloroethene Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
Tetrachloroethene Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
Chlorobenzene Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

AGAT Laboratories

Please note: If guidation number is not provided, client will be billed full price for analysis

Bill To Same: Yes ✓ No □

Chain of Custody Record

Report Information;

Project Information:

Invoice Information:

Samples Relinquished By (Print Name and Sign):

Company:

Contact:

Address:

Phone:

1. Email:

2 Email:

Project:

Site Location:

Sampled By:

AGAT Quote #:

Company:

AGAT I White Copy- AGAT

Client | Yellow Copy

Copy

Reports to be sent to

Have feedback? Scan here for a quick survey!

Regulatory Requirements:

Is this submission for a

Record of Site Condition?

Sample Matrix Legend

Ground Water

NO No

Regulation 406

Regulation 558

CCME

If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water consumed by humans)

(Please check all applicable boxes)

Regulation 153/04

Table Indicate One ☐Ind/Com Res/Park

Agriculture

Coarse

☐ Yes

Oil

Paint

0

Fine

Soil Texture (Check One)

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122 webearth.agatlabs.com

Sewer Use

Other

VZ Yes

DOC

CrVI,

He

Sanitary Storm

Prov. Water Quality

Report Guideline on

Certificate of Analysis

O. Reg 153

□ No

Objectives (PWQO)

Laboratory Use Only Work Order #: 23T074610

005C 1

Turnaround Time (TAT) Required:

Cooler Quantity:	- 1	large	
Arrival Temperatures:	2.3	12.91	3.0
Custody Seal Intact:	□Ves	□No	Øħ/A

Regul	ar TAT	(O	5 to 7 Busine	ss Days	3
Rush	TAT (Rush Surchar	ges App			
\checkmark	3 Business Days		2 Business Days		Next Business Day
	OR Date Requ	ired (Rush Surcharg	es May	Apply):
	NIVEL	2			

Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays

For 'Same Day' analysis, please contact your AGAT CPM

00

PC

00

o

Sulphide

O. Reg 406

□ SVOCs

□ B(a)P□PCBs

zation TCLP:

Contact: Address:				SD	Soil Sediment	red - Met	nics	□ Hg □	3			Chamadan	naracteri >> □ABNs	SPLP Rain	Characteriz Is, BTEX, F1	Moisture [4I, V				deil
Email:	0 7 7			sw	Surface Water	Field Filtered	& Inorganics	- CrVI, -				roclors	M&I C	ion 406 S Metals	ion 406 Ch MS Metals,		Pon H	enzo(a	C1 -		of control of
	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y/N	Metals	Metals	200	PAHS	PCBs	PCBs: A	TCLP:	Regulat SPLP: C	Regulat pH, ICPI	Corrosivity:	7	\$ \$		Lyle	Patrontial
1. Com. SS-1 J.	une30	AM PM	4	3001	TCLP		1					ri .		(65)			V			and a	
2.		AM PM			THE REST. ST. TAX TO THE	90	1840							- Dr				1811		11111	9
3. 1000 100 100 100 100 100 100 100 100 1	No. III	AM PM	12 70 10		District	122	2							SHOP!							
4.	-	AM PM		1	committee of the commit																
5.	7.75	AM PM		PIL TOO										OR ALL							
6.		AM PM				160	1700							- Valle							
7,		AM PM		-3-121	- In-		II Res							W							
8,		AM PM			V- II							-0		rin a s					100		
9.		AM PM					35		8					DUL							
10.		AM PM					1111							35							
11.		AM PM			THE REL									-Gb		8			100	100	7
Samples Relinguished By (Print Name and Sign): Samples Relinguished By (Print Name and Sign):		Sep.28		err	Samples Received By (Print Name and Sign):	100	núz		5	Date	12	-8	Time	1:2	8,	1-				6	

Samples Received By (Print Name and Sign)

Samples Received By (Print Name and Sign):

Any and all products and/or services provided by AGAT Labs are pursuant to the terms and conditions as set forth at www.agatlabs.com/termsandconditions unless otherwise agreed in a current written contractual document.

AECOM

Appendix **G**

IFT2

Site: 7120 Hurontario Street, Mississauga, ON L5W 1N4

(enter "35.22" for Combined and "2.16" for Inner reservoir):

Enter water Head Height ("H" in cm):

Enter the Borehole Radius ("a" in cm):

35.22

Enter the soil texture-structure category (enter one of the below numbers): 1

1. Compacted. Structure-less, clayer or silty materials such as

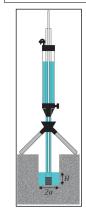
- $land fill\ caps\ and\ liners,\ lacustrine\ or\ marine\ sediments,\ etc.$
- 2. Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.
- Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.
- 4. Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macropors, etc

	,,,		
0.0100	ady State Rate of Water Level Change ("R" in cm/min):	Sto	
		35.22	Res Type
		15	Н
0.01 cm ⁻¹	α *=	3	а
		5	H/a
1.518269	C =	0.01	a*
0.00587	Q =	1.518	C0.01
		1.629	C0.04
8.19E-07 cm/sec	K _{fs} =	1.667	C0.12
4.91E-05 cm/min		1.667	C0.36
8.19E-09 m/sec		1.518	C
1.93E-05 inch/mir		0.010	R
3.22E-07 inch/sec		0.006	Q
		3.142	pi
8.19E-05 cm ² /mir	Φ _m =		

Single Head Method (2)

Reservoir Cross-sectional area in cm² (enter "35.22" for Combined and "2.16" for Inner reservoir). Enter water Head Height ("H" in cm): Enter the Borehole Radius ("a" in cm): 3

Enter the soil texture-structure category (enter one of the below numbers):


- 1. Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc.
- 2. Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.
- Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.
- Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macropors, etc

Steady State Rate of Water Level Change ("R" in cm/min): 0.0200

ype	35.22
Н	24.5
а	3
H/a	8.16667
a*	0.01
0.01	1.93026
0.04	2.1109
0.12	2.22142
0.36	2.22142
C	1.93026
R	0.020
0	0.01174
pi	3.1415

Average

 $K_{fs} = \frac{9.99E-07}{5.99E-05} cm/sec$ $\frac{5.99E-05}{9.99E-09} m/s$ $\frac{2.36E-05}{3.93E-07} inch/sec$ $\Phi_{m} = \frac{9.99E-05}{9.99E-05} cm^{2}/min$

Calculation formulas related to shape factor (C). Where H_i is the first water head height (cm), H_2 is the second water head height (cm), a is borethole radius (cm) and a^* is microscopic capillary height factor which is decided according to the soil texture-introtuce category. For one-head method, or h of h care alculated H_1 and h is the factor h in h is the h in

Soil Texture-Structure Category	α*(cm-1)	Shape Factor
Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc.	0.01	$C_1 = \left(\frac{H_2/a}{2.081 + 0.121 \left(\frac{H_2/a}{a}\right)}\right)^{0.672}$
Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.	0.04	$C_1 = \left(\frac{H_1/a}{1.992 + 0.091 \binom{H_1}{a}}\right)^{0.683}$ $C_2 = \left(\frac{H_2/a}{1.992 + 0.091 \binom{H_2}{a}}\right)^{0.683}$
Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.	0.12	$C_1 = \left(\frac{H_1/a}{2.074 + 0.093 (^{H_2}/a)}\right)^{0.754}$ $C_2 = \left(\frac{H_2/a}{2.074 + 0.093 (^{H_2}/a)}\right)^{0.754}$
Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macro pores, etc.	0.36	$C_1 = \left(\frac{H_1/a}{2.074 + 0.093 (^{H_2}/a)}\right)^{0.754}$ $C_2 = \left(\frac{H_2/a}{2.074 + 0.093 (^{H_2}/a)}\right)^{0.754}$

Calculation formulas related to one-head and two-head methods. Where R is steady-state rate of fall of water in reservoir (cm/s), R_p , is Soil saturated hydraulic conductivity (cm/s), θ_m is Soil matric flux potential (cm/s), α^* is Macroscopic capillary length parameter (from Table 2), α is Borehole radius (cm), H_1 is the first head of water established in borehole (cm), H_2 is the second head of water established in borehole (cm) and C is Shape factor (from Table 2).

One Head, Combined Reservoir	$Q_1 = \bar{R}_1 \times 35.22$	$K_{fs} = \frac{C_1 \times Q_1}{2\pi H_1^2 + \pi a^2 C_1 + 2\pi \left(\frac{H_1}{a^2}\right)}$		
One Head, Inner Reservoir	$Q_1 = \bar{R}_1 \times 2.16$	$\Phi_m = \frac{C_1 \times Q_1}{(2\pi H_1^2 + \pi \alpha^2 C_1)\alpha^* + 2\pi H_1}$		
		$G_1 = \frac{H_2C_1}{\pi(2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))}$		
Two Head,	$Q_1 = \bar{R}_1 \times 35.22$	$G_2 = \frac{H_1 C_2}{\pi \left(2H_1 H_2 (H_2 - H_1) + a^2 (H_1 C_2 - H_2 C_1) \right)}$		
Combined Reservoir	$Q_2 = \bar{R}_2 \times 35.22$	$K_{fs} = G_2Q_2 - G_1Q_1$		
		$G_3 = \frac{(2H_2^2 + a^2C_2)C_1}{2\pi(2H_1H_2(H_2 - H_3) + a^2(H_1C_2 - H_2C_3))}$		
Two Head,	$Q_1 = \bar{R}_1 \times 2.16$	$G_4 = \frac{(2H_1^2 + a^2C_1)C_2}{2\pi(2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))}$		
Inner Reservoir	$Q_2 = \bar{R}_2 \times 2.16$	$\phi_m = G_3 Q_1 - G_4 Q_2$		

Double Head Method

(enter "35.22" for Combined and "2.16" for Inner reservoir): 35.22

Enter the first water Head Height ("H1" in cm): 15

Enter the second water Head Height ("H2" in cm): 24.5

Enter the Borehole Radius ("a" in cm): 3

Enter the soil texture-structure category (enter one of the below numbers):

- Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc.
- Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.
- Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.
- 4. Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macropors, etc

 $\alpha^* = 0.01 cm^{-1}$ $\alpha = 0.7012$

Steady State Rate of Water Level Change ("R1" in cm/min):
Steady State Rate of Water Level Change ("R2" in cm/min):
0.02

 $Q_1 = 0.00587$ $Q_2 = 0.01174$

Res Type: 35.22 H1/a: 5 H2/a: 8.166667 C1-0.01: 1.518269 C2-0.01: 1.930262 C1-0.04: 1.629144 C2-0.04: 2.110895 C1-0.12: 1.666893 C2-0.12: 2.221417 C1-0.36: 1.666893

C2-0.36: 2.221417

 $C_1 = 1.518269$ $C_2 = 1.930262$ $G_1 = 0.001714$

 $G_2 = 0.001334$ $G_3 = 0.0426$

> G₄ = 0.02062 K_{fs} = 5.60E-06 cm/sec 3.36E-04 cm/min 5.60E-08 m/sec 1.32E-04 inch/min 2.21E-06 inch/sec

 $\Phi_{\rm m} = \frac{7.99\text{E} \cdot 06}{\text{cm}^2/\text{min}}$

 $\Theta_{fs} = N/A cm^3/cm^3$ $\Theta_{is} = N/A cm^3/cm^3$

Sorptivity #VALUE! (cm min -1/2)