Geotechnical Investigation Report

Sanitary Sewer and Watermain Replacement in Kirwin Avenue, John Street, Little John Lane and Jaguar Valley Drive, Mississauga, Ontario

Final Report

March 18, 2024 02111839.024-0100-GE-R-0001-00

englobe

Region of Peel 23-2126, 23-2129, 25-1310

Prepared by:

Reza Mahdavi, P.Eng.

Senior Geotechnical Engineer

Approved by:

Houshang Akbari, P.Eng.

Senior Project Manager - Geotechnical Engineering Soil and Materials Engineering - GTA Office

H. AKBARI

Production team

Region of Peel

Region of Peel	Sarah Lobo, P. Eng.
----------------	---------------------

Englobe Corp.

Project Manager	Houshang Akbari, P.Eng.
Project Engineer	Reza Mahdavi, P.Eng.
Drilling Supervisor	Syed Ahsan

Revisions and publications log

REVISION No.	DATE	DESCRIPTION
0A	January 18, 2024	Draft version published for comments
00	March 18, 2024	Final report

Distribution

1 PDF copy Sarah Lobo, P. Eng.	1 PDF copy	Sarah Lobo, P. Eng.
--------------------------------	------------	---------------------

Property and Confidentiality

This report can only be used for the purposes stated therein. Any use of the report must take into consideration the object and scope of the mandate by virtue of which the report was prepared, as well as the limitations and conditions specified therein and the state of scientific knowledge at the time the report was prepared. Englobe Corp. provides no warranty and makes no representations other than those expressly contained in the report.

This document is the work product of Englobe Corp. Any reproduction, distribution or adaptation, partial or total, is strictly forbidden without the prior written authorization of Englobe Corp. and its Client. For greater certainty, use of any and all extracts from the report is strictly forbidden without the written authorization of Englobe Corp. and its Client, given that the report must be read and considered in its entirety.

No information contained in this report can be used by any third party without the prior written authorization of Englobe Corp. and its Client. Englobe Corp. disclaims any responsibility or liability for any unauthorized reproduction, distribution, adaptation or use of the report.

If tests have been carried out, the results of these tests are valid only for the sample described in this report.

Table of Contents

1	Introduction	1
2	Project Methodology	2
2.1	Field Investigation	2
2.2	Geotechnical Laboratory Tests	3
3	Site and Subsurface Conditions	4
3.1	Kirwin Street	4
3.1.1	Pavement Conditions	4
3.1.2	Subsoil Conditions	5
3.1.3	Soil Corrosivity Test Results	6
3.1.4	Groundwater Conditions	7
3.1.5	Bedrock Conditions	7
3.2	John Street	8
3.2.1	Pavement Conditions	8
3.2.2	Subsoil Conditions	8
3.2.3	Soil Corrosivity Test Results	9
3.2.4	Groundwater Conditions	9
3.2.5	Bedrock Conditions	10
3.3	Little John Lane	10
3.3.1	Pavement Conditions	10
3.3.2	Subsoil Conditions	10
3.3.3	Soil Corrosivity Test Results	11
3.3.4	Groundwater Conditions	11
3.4	Jaguar Valley Drive	11
3.4.1	Pavement Conditions	11
3.4.2	Subsoil Conditions	11
3.4.3	Soil Corrosivity Test Results	12
3.4.4	Groundwater Conditions	12
3.4.5	Bedrock Conditions	12
4	Geotechnical Considerations and Recommendations	13
4.1	Excavation and Backfilling	13
4.2	Trench Reinstatement	14
4.3	Kirwin Street and Cooksville Creek Crossing	15
4.3.1	Shoring Consideration	15
4.4	Temporary Construction Dewatering	15

General Comments	. 17
ables	
able 1: Summary of Borehole Information	3
able 2: Summary of Pavement Structure (Kirwin Street)	
able 3: Summary of Gradation Results - Fill	
able 4: Summary of Gradation Results - Cohesionless Deposits	6
able 5: Summary of Gradation Results - Sandy Clay/ Clayey Sand Till	6
able 6: Summary of Gradation Results - Clay with Sand	
able 7: Summary of Soil Corrosivity Tests - Kirwin Street	
able 8: Groundwater Level Observations in Monitoring Well	
able 9: Summary of Pavement Structure (John Street)	
able 10: Summary of Gradation Results - Cohesionless Deposits	
able 11: Summary of Gradation Results - Sandy Clay Till	
able 12: Summary of Soil Corrosivity Tests - John Street	
able 13: Groundwater Level Observations in Monitoring Well	
able 14: Summary of Pavement Structure (Little John Lane)	
able 15: Summary of Gradation Results - Cohesionless Deposits	
able 16: Summary of Soil Corrosivity Tests - Little John Lane	
able 17: Summary of Pavement Structure (Jaguar Valley Drive)	
able 18: Summary of Gradation Results - Sandy Clay Till	
able 19: Summary of Soil Corrosivity Tests - Jaguar Valley Drive	12

Appendices

Appendix A Borehole Location Plan

Appendix B Borehole Logs

Appendix C Geotechnical laboratory Test Results

Appendix D Corrosivity Testing Results

1 Introduction

Englobe Corp. (Englobe) was retained by Region of Peel to conduct a geotechnical investigation for the sanitary sewer and watermain replacement on Kirwin Avenue, John Street, Little John Lane and Jaguar Valley Drive, Mississauga, Ontario (hereinafter referred to as the "Site").

The purpose of this geotechnical investigation was to determine the subsurface conditions at the borehole locations and from the findings in the boreholes make engineering recommendations for the proposed sanitary sewer and watermain replacement.

This report deals with the geotechnical aspect of the project only. The environmental assessments associated with O.Reg.406/19 will be submitted under separate covers.

2 Project Methodology

2.1 Field Investigation

Subsequent to obtaining public service clearances nine (9) boreholes (BH1 to BH7, BH14, and BH15) were drilled on Kirwin Avenue, four (4) boreholes (BH9 to BH12) were drilled on John Street, one (1) borehole (BH8) was drilled on Little John Lane, and one (1) borehole (BH13) was drilled on Jaguar Valley Drive to depth ranging from 4.1 to 9.5 meter below ground surface (mbgs).

Shale bedrock was encountered in boreholes BH1, BH12, and BH13 at the depth of ranging from 3.0 to 3.8 mbgs. The boreholes BH1 to BH15 were completed on December 8, 11, and 12, 2022 using continuous flight solid stem auger drilling equipment supplied and operated by Drilltech Drilling Limited under the continuous supervision of an Englobe field technician.

Subsoil samples were recovered from the boreholes at depth intervals of 0.76 m to 3 m depth and 1.5 m to the bottom of the boreholes using a 50 mm O.D. split-barrel sampler driven into the subsoil in accordance with the Standard Penetration Test procedure (ASTM D1586). The recovered subsoil samples were visually examined in the field and then preserved and transported to the Englobe Toronto laboratory for examination and testing.

Groundwater observations were carried out in the open boreholes upon completion of the field work. In addition, six (6) monitoring wells were installed in the boreholes.

The borehole locations were surveyed by Englobe using Sokkia GRX2 GNSS Receiver GPS connected to MAGNET Enterprise network referenced to UTM Zone 17T (NAD83) and presented in the attached Borehole Location Drawing in Appendix A. The information of the drilled boreholes is summarized in Table 1.

Table 1: Summary of Borehole Information

ROAD		COORDI	NATES (m)	GROUND SURFACE	DEPTH OF
NAME	BH No.	NORTHING	EASTING	ELEVATION (masl)*	BH (m)
Kirwin Street	BH1	4826515.359	611443.5915	117.7	4.8
	BH2	4826652.267	611523.7336	118.0	6.7
	вн3	4826712.987	611587.7412	118.3	8.1
	BH4	4826759.71	611638.3213	117.0	6.5
	BH5	4826770.131	611752.4511	114.8	6.7
	вн6	4826755.96	611792.0351	114.0	9.5
	ВН7	4826755.213	611792.7343	113.9	4.4
	BH14	4826655.055	611883.5684	113.3	4.4
	BH15	4826583.955	611959.644	112.6	4.4
John Street	ВН9	4826902.118	611569.4055	116.9	4.4
	BH10	4826827.37	611513.2292	117.5	4.4
	BH11	4826760.57	611457.2588	118.7	4.4
	BH12	4826629.557	611347.7775	121.2	4.1
Little John Lane	BH8	4826796.441	611569.0087	118.0	4.4
Jaguar Valley Drive	BH13	4826640.205	611433.9776	118.9	4.2

^{*}Meter Above Sea Level

2.2 Geotechnical Laboratory Tests

Soil samples recovered during this investigation were preserved and transported to the Englobe Toronto laboratory for additional testing. In the laboratory, each soil sample was examined as to its visual and textural characteristics by the Project Engineer. Moisture content determinations were carried out on all recovered soil samples. The results are plotted on the borehole logs attached in Appendix B.

Thirteen (13) grainsize analyses and Atterberg Limits were performed on selected soil samples. The geotechnical laboratory test results are provided in Appendix C of this report as well as presented on the respective borehole logs provided in Appendix B.

Fifteen (15) soil samples were collected during the geotechnical investigation and submitted to ALS Canada Ltd. Laboratories for soil corrosivity analysis. The results are presented in Appendix D.

Soil samples for other environmental testing were also collected during the geotechnical investigation as per soil sampling plan. Discussion on the environmental test results will be presented under separate environmental related reports.

3 Site and Subsurface Conditions

Kirwin Street, John Street, Little John Lane and Jaguar Valley Drive are located in the centre of Mississauga, Ontario.

The approximate borehole locations are shown on the attached Borehole Locations Drawings (Drawing 1) provided in Appendix A. The subsurface conditions in the geotechnical boreholes are presented in the individual Borehole Logs (Drawings 2 to 16 presented in Appendix B) and summarized for each road in the following paragraphs.

3.1 Kirwin Street

3.1.1 Pavement Conditions

Flexible pavement structure consisting of asphalt concrete followed by granular base and subbase was encountered at all boreholes drilled on Kirwin Street. The thickness of the asphalt concrete varied from 100 mm to 300 mm. The pavement structure thicknesses are summarized in Table 2.

Table 2: Summary of Pavement Structure (Kirwin Street)

BH No.	THICKNESS OF ASPHALT CONCRETE (mm)	THICKNESS OF GRANULAR BASE/SUBBASE (mm)
BH1	100	300
BH2	250	300
BH3	300	300
BH4	250	300
BH5	130	300
BH6	100	300
BH7	150	250
BH14	250	300
BH15	280	300

3.1.2 Subsoil Conditions

None (9) boreholes were drilled in Kirwin Street. The dominant subgrade soils under the pavement structure on Kirwin Street within the project limits were observed to consist of cohesionless deposit followed by till materials.

Fill: Fill material was encountered in BH5 to BH7, BH14, and BH15 underneath the pavement structure and extended to depth of ranging from 1.5 to 2.3 mbgs. In general, the fill was comprised of silty clay or silty sand with gravel with an in-situ moisture content of 8 to 22 percent. The recorded SPT 'N'-value ranged from 2 to 22 blows per 300 mm of penetration, indicating a very loose state for cohesionless soil and firm to very stiff consistency for cohesive soil.

The laboratory test result for one (1) soil sample from the fill material is presented in Appendix 3. A summary of testing for this material is briefly outlined in Table 3:

Table 3: Summary of Gradation Results - Fill

DH No	SAMPLE	GRAIN SIZE DISTRIBUTION ANALYSES (%)					
	BH No.	NO.	GRAVEL	SAND	SILT	CLAY	
	BH14	SS3	26.2	61.6	9.8	2.4	

Cohesionless Deposits: Cohesionless deposit was encountered directly below the pavement structure or below fill material in all boreholes drilled in Kirwin Street, extended to the depth of ranging from 3.0 mbgs to 6.1 mbgs. In general, the cohesionless deposits was comprised of silty sand/ silty sand with gravel/ silty clayey sand with gravel/ sand with silt/ sand with silt and gravel. The cohesionless deposit presented in a loose to very dense condition, having a SPT 'N'-value of 8 to over 50 blows per 300 mm of penetration. The in-situ moisture content of the cohesionless deposits varied from 4 to 40 percent.

The laboratory test results for five (5) soil samples from the cohesionless deposits are presented in Appendix 3. A summary of testing for this material is briefly outlined in Table 4:

Table 4: Summary of Gradation Results - Cohesionless Deposits

BH No. SAMPLE		GRAIN S	SIZE DISTRI	BUTION ANA	ATTERBERG LIMITS TEST			
БП NO.	NO.	GRAVEL	SAND	SILT	CLAY	PL	LL	PI
BH01	SS4	28.5	46.3	15.0	10.2	12.4	19.1	6.7
BH02	SS3	13.2	78.0	4.8	4.0	NP		
BH03	SS5	38.8	53.8	5.7	1.7	NP		
BH05	SS3	9.5	74.4	12.4	3.7	NP		
BH07	SS5	30.2	57.2	9.9	2.7	NP		

Sandy Clay/ Clayey Sand Till: Sandy clay/ clayey sand till deposit was encountered below the cohesionless deposits in borehole BH2 to BH6 and BH14, extended to the depth of ranging from 4.4 to 9.5 mbgs. The till deposit presented in a stiff to hard consistency, having a SPT 'N'-value of 12 to over 50 blows per 300 mm of penetration. The in-situ moisture content of the till deposits varied from 8 to 23 percent.

The laboratory test results for two (2) soil samples from the till deposits are presented in Appendix 3. A summary of testing for this material is briefly outlined in Table 5.

Table 5: Summary of Gradation Results - Sandy Clay/ Clayey Sand Till

BH No.	SAMPLE	GRAIN S	SIZE DISTRIBUTION ANALYSES (%)			ATTERBERG LIMITS TEST		
БП NO.	NO.	GRAVEL	SAND	SILT	CLAY	PL	LL	PI
BH04	SS6	7.2	27.1	32.9	32.8	16.5	27.3	10.8
BH06	SS8	8.3	53.6	24.1	14.0	14.0	22.0	8.0

Clay with Sand: Clay with sand was encountered in borehole BH15 extended to the depth of 4.4 mbgs. The deposit presented in a stiff, having a SPT 'N'-value of 14 blows per 300 mm of penetration. The in-situ moisture content of the till deposits was 18 percent.

The laboratory test results for one (1) soil sample from the deposits are presented in Appendix 3. A summary of testing for this material is briefly outlined in Table 6.

Table 6: Summary of Gradation Results - Clay with Sand

RH NO -	SAMPLE	GRAIN S	SIZE DISTRI	BUTION ANA	LYSES (%)	ATTERBERG LIMITS TEST		
	NO.	GRAVEL	SAND	SILT	CLAY	PL	LL	PI
BH15	SS6	3.1	15.3	40.4	41.2	14.2	26.8	12.6

3.1.3 Soil Corrosivity Test Results

Nine (9) soil samples were collected during the geotechnical investigation and submitted to ALS Canada Ltd. Laboratory for soil corrosivity analysis. The results are presented in Appendix D and summarized in Table 7.

Table 7: Summary of Soil Corrosivity Tests - Kirwin Street

BH No.	Sample Number	Chloride, Leachable (mg/kg)	Sulfate, Leachable (mg/kg)
BH 01	SS5	124	43
BH 02	SS5	338	<11
BH 03	SS3	198	12
BH 04	SS3	64.9	11
BH 05	SS5	789	<11
BH 06	SS4	690	<11
BH 07	SS4	899	<11
BH 14	SS4	354	30
BH 15	SS4	520	<11

3.1.4 Groundwater Conditions

Groundwater measurements were conducted during and upon completion of boreholes drilling as well as in the installed monitoring well. The water level in borehole BH6 was 3.7 mbgs upon completion of drilling. The rest of the boreholes drilled on Kirwin Street were found dry upon completion of drilling. The results of groundwater measurement in the installed monitoring well are tabulated in Table 8 and are also shown in the respective borehole logs. Groundwater levels measured in the monitoring well on December 20, 2023.

Table 8: Groundwater Level Observations in Monitoring Well

BH NO.	WELL DEPTH (m)	DATE MEASURED	DEPTH OF GROUNDWATER TABLE (m)	ELEVATION OF GROUNDWATER TABLE (m)
BH1	4.8	2023/12/8 (measured upon borehole completion)	Dry	-
		2023/12/20	3.15	114.59
BH4	5.2	2023/12/8 (measured upon borehole completion)	Dry	-
		2023/12/20	3.20	113.77
BH6	9.5	2023/12/11 (measured upon borehole completion)	Dry	-
		2023/12/20	4.88	109.09
BH7	3.3	2023/12/11 (measured upon borehole completion)	Dry	-
		2023/12/20	Dry	-
BH15	3.9	2023/12/11 (measured upon borehole completion)	Dry	-
		2023/12/20	Dry	-

3.1.5 Bedrock Conditions

Shale bedrock was encountered at the borehole BH1 at approximate depth of 3.0 mbgs, corresponding to elevations of 114.7 m.

It should be noted that the soil overlying the bedrock contains weathered shale which could be augured and would give a false indication of the bedrock level. As such, the bedrock surface should not be considered accurate to better than ± 0.5 m and some variations in the bedrock surface elevation across the site should be expected.

3.2 John Street

3.2.1 Pavement Conditions

Flexible pavement structure consisting of asphalt concrete followed by granular base and subbase was encountered at four (4) boreholes drilled on John Street (BH9 to BH12). The thickness of the asphalt concrete was between 150 to 200 mm. The pavement structure thicknesses are summarized in Table 9.

Table 9: Summary of Pavement Structure (John Street)

BH No.	THICKNESS OF ASPHALT CONCRETE (mm)	THICKNESS OF GRANULAR BASE/SUBBASE (mm)
ВН9	150	400
BH10	150	300
BH11	150	300
BH12	200	300

3.2.2 Subsoil Conditions

The dominant subgrade soils under the pavement structure on John Street within the project limits were observed to consist of cohesionless deposit followed by till materials.

Cohesionless Deposits: Cohesionless deposit was encountered directly below the pavement structure in all boreholes drilled in John Street, extended to the depth of ranging from 2.3 mbgs to 4.3 mbgs. In general, the cohesionless deposits was comprised of silty sand/ sand with gravel. The cohesionless deposit presented in a loose to compact condition, having a SPT 'N'-value of 7 to 24 blows per 300 mm of penetration. The in-situ moisture content of the cohesionless deposits varied from 6 to 20 percent.

The laboratory test results for one (1) soil sample from the cohesionless deposits is presented in Appendix 3. A summary of testing for this material is briefly outlined in Table 10:

Table 10: Summary of Gradation Results - Cohesionless Deposits

BH No.	SAMPLE	GRAIN S	RAIN SIZE DISTRIBUTION ANALYSES (%)			ATTERBERG LIMITS TEST		
DП NU.	NO.	GRAVEL	SAND	SILT	CLAY	PL	LL	PI
BH10	SS2	10.6	77.0	8.7	3.7		NP	

Sandy Clay Till: Sandy clay till deposit was encountered below the cohesionless deposits in borehole BH9 extended to the depth of 4.4 mbgs. The till deposit presented in a very stiff to hard consistency, having a SPT 'N'-value of 22 to 32 blows per 300 mm of penetration. The in-situ moisture content of the till deposits was 13 percent.

The laboratory test results for one (1) soil sample from the till deposits is presented in Appendix 3. A summary of testing for this material is briefly outlined in Table 11.

Table 11: Summary of Gradation Results - Sandy Clay Till

DH No	SAMPLE	GRAIN SIZE DISTRIBUTION ANALYSES (%)				ATTERBERG LIMITS TEST		
BH No. NO.	GRAVEL	SAND	SILT	CLAY	PL	LL	PI	
BH09	SS5	5.6	36.7	27.6	30.1	16.0	26.9	10.9

Silty Clay: Silty clay was encountered in borehole BH10 to BH12 extended to the depth of ranging from 3.8 to 4.4 mbgs. The deposit presented in a stiff to hard consistency, having a SPT 'N'-value of 10 to more than 50 blows per 300 mm of penetration. The in-situ moisture content of the deposits varied from 8 to 20 percent.

3.2.3 Soil Corrosivity Test Results

Four (4) soil samples were collected during the geotechnical investigation and submitted to ALS Canada Ltd. Laboratory for soil corrosivity analysis. The results are presented in Appendix D and summarized in Table 12.

Table 12: Summary of Soil Corrosivity Tests - John Street

BH No.	Sample Number	Chloride, Leachable (mg/kg)	Sulfate, Leachable (mg/kg)
BH 09	SS4	27.0	<11
BH 10	SS5	139	34
BH 11	SS4	230	15
BH 12	SS3	378	56

3.2.4 Groundwater Conditions

Groundwater measurements were conducted during and upon completion of boreholes drilling as well as in the installed monitoring well. The all boreholes drilled on John Street were found dry upon completion of drilling. The results of groundwater measurement in the installed monitoring well are tabulated in Table 13, and are also shown in the respective borehole logs. Groundwater levels measured in the monitoring well on December 20, 2023.

Table 13: Groundwater Level Observations in Monitoring Well

BH NO.	WELL DEPTH (m)	DATE MEASURED	DEPTH OF GROUNDWATER TABLE (m)	ELEVATION OF GROUNDWATER TABLE (m)
BH11	3.8	2023/12/12 (measured upon borehole completion)	Dry	-
		2023/12/20	3.51	115.19

3.2.5 Bedrock Conditions

Shale bedrock was encountered at the boreholes BH12 at approximate depth of 3.8 mbgs, corresponding to elevation of 117.4 m.

It should be noted that the soil overlying the bedrock contains weathered shale which could be augured and would give a false indication of the bedrock level. As such, the bedrock surface should not be considered accurate to better than ± 0.5 m and some variations in the bedrock surface elevation across the site should be expected.

3.3 Little John Lane

3.3.1 Pavement Conditions

Flexible pavement structure consisting of asphalt concrete followed by granular base and subbase was encountered at one (1) borehole drilled on Little John Lane (BH8). The thickness of the asphalt concrete was 130 mm. The pavement structure thicknesses are summarized in Table 14.

Table 14: Summary of Pavement Structure (Little John Lane)

BH No.	THICKNESS OF ASPHALT CONCRETE (mm)	THICKNESS OF GRANULAR BASE/SUBBASE (mm)
ВН8	130	400

3.3.2 Subsoil Conditions

The dominant subgrade soils under the pavement structure on Little John Lane within the project limits were observed to consist of fill materials followed by cohesionless deposit and till materials.

Fill: Fill material was encountered in BH8 underneath the pavement structure and extended to depth of 2.3 mbgs. The fill was comprised of sand with gravel with an in-situ moisture content of 9 to 11 percent. The recorded SPT 'N'-value ranged from 4 to 5 blows per 300 mm of penetration, indicating a very loose to loose state.

Cohesionless Deposits: Cohesionless deposit was encountered below the fill material in boreholes BH8, extended to the depth of 3.8 mbgs. The cohesionless deposits was comprised of sand with silt. The cohesionless deposit presented in a compact condition, having a SPT 'N'-value of 12 to 14 blows per 300 mm of penetration. The in-situ moisture content of the cohesionless deposits varied from 15 to 24 percent.

The laboratory test results for one (1) soil sample from the cohesionless deposits is presented in Appendix 3. A summary of testing for this material is briefly outlined in Table 15:

Table 15: Summary of Gradation Results - Cohesionless Deposits

	BH No. SAMPLE NO.	SAMPLE	GRAIN S	SIZE DISTRI	BUTION ANA	LYSES (%)	ATTE	RBERG LIMITS	TEST
		GRAVEL	SAND	SILT	CLAY	PL	LL	PI	
	BH08	SS4	6.7	87.7	4.8	0.8		NP	

Sandy Clay Till: Sandy clay till deposit was encountered below the cohesionless deposits in borehole BH8 extended to the depth of 4.4 mbgs. The till deposit presented in hard consistency, having a SPT 'N'-value of 36 blows per 300 mm of penetration. The in-situ moisture content of the till deposits was 13 percent.

3.3.3 Soil Corrosivity Test Results

One (1) soil sample was collected during the geotechnical investigation and submitted to ALS Canada Ltd. Laboratory for soil corrosivity analysis. The results are presented in Appendix D and summarized in Table 16.

Table 16: Summary of Soil Corrosivity Tests - Little John Lane

BH No.	Sample Number	Chloride, Leachable (mg/kg)	Sulfate, Leachable (mg/kg)		
BH 08	SS4	311	19		

3.3.4 Groundwater Conditions

Groundwater measurements was conducted during and upon completion of borehole BH8 drilling. The borehole drilled on Little John Lane was found dry upon completion of drilling.

3.4 Jaguar Valley Drive

3.4.1 Pavement Conditions

Flexible pavement structure consisting of asphalt concrete followed by granular base and subbase was encountered at borehole BH13 drilled on Jaguar Valley Drive. The thickness of the asphalt concrete was 100 mm. The pavement structure thicknesses are summarized in Table 17.

Table 17: Summary of Pavement Structure (Jaguar Valley Drive)

BH No.	THICKNESS OF ASPHALT CONCRETE (mm)	THICKNESS OF GRANULAR BASE/SUBBASE (mm)
BH13	100	300

3.4.2 Subsoil Conditions

The predominant subgrade soils beneath the pavement structure on Jaguar Valley Drive, within the project limits, were observed to consist of cohesionless deposit, succeeded by till materials overlaying bedrock shale.

Cohesionless Deposits: Cohesionless deposit was encountered below the pavement structure in borehole BH13 drilled in Jaguar Valley Drive, extended to the depth of 3.0 mbgs. In general, the cohesionless deposits was comprised of silty sand/ sand with gravel. The cohesionless deposit presented in a dense to very dense condition, having a SPT 'N'-value of 30 to 50 blows per 300 mm of penetration. The in-situ moisture content of the cohesionless deposits varied from 3 to 4 percent.

Sandy Clay Till: Sandy clay till deposit was encountered below the cohesionless deposits in borehole BH13 extended to the depth of 3.8 mbgs. The till deposit presented in a very stiff consistency, having a SPT 'N'-value of 20 blows per 300 mm of penetration. The in-situ moisture content of the till deposits was 15 percent.

The laboratory test results for one (1) soil sample from the till deposits is presented in Appendix 3. A summary of testing for this material is briefly outlined in Table 18.

Table 18: Summary of Gradation Results - Sandy Clay Till

PH No	SAMPLE	GRAIN S	RAIN SIZE DISTRIBUTION ANALYSES (%)			ATTERBERG LIMITS TEST		
BH No.	NO.	GRAVEL	SAND	SILT	CLAY	PL	LL	PI
BH13	SS5	5.5	31.7	27.5	35.3	16.4	30.3	13.9

3.4.3 Soil Corrosivity Test Results

One (1) soil sample was collected during the geotechnical investigation and submitted to ALS Canada Ltd. Laboratory for soil corrosivity analysis. The results are presented in Appendix D and summarized in Table 7.

Table 19: Summary of Soil Corrosivity Tests - Jaguar Valley Drive

BH No.	Sample Number	Chloride, Leachable (mg/kg)	Sulfate, Leachable (mg/kg)
BH 13	SS4	185	<10

3.4.4 Groundwater Conditions

Groundwater measurements were conducted during and upon completion of borehole BH13 drilling. The boreholes BH13 drilled on Jaguar Valley Drive was found dry upon completion of drilling.

3.4.5 Bedrock Conditions

Shale bedrock was encountered at the boreholes BH13 at approximate depth of ranging from 3.8 mbgs, corresponding to elevation of 115.0 m.

It should be noted that the soil overlying the bedrock contains weathered shale which could be augured and would give a false indication of the bedrock level. As such, the bedrock surface should not be considered accurate to better than ± 0.5 m and some variations in the bedrock surface elevation across the site should be expected.

4 Geotechnical Considerations and Recommendations

It is understood that the existing sanitary sewer and watermain will be replaced at a depth ranging from 2 to 5 mbgs. The soil conditions encountered at the borehole locations are generally consist of fill material followed by cohesionless deposits and silty clay till overlaying shale bedrock. Except for one borehole drilled on Kirwin Street (BH5), all other boreholes were found to be dry upon completion of drilling. The measured groundwater table from the installed monitoring wells is tabulated in Table 8, and Table 13.

4.1 Excavation and Backfilling

Excavations to the depths required for sanitary sewer or watermain installation are expected to be relatively straightforward. The pavement structure in the excavation area should be properly removed by saw-cutting and any existing granular base/subbase sub-excavated and disposed off-site. The investigation results suggest that excavations should be able to be carried out to the depths required for sanitary sewer or watermain installation using conventional excavation equipment. Excavation side slopes in the upper subsoils are expected to be excavated in vertical cuts, temporary shoring such as trench boxes will be required to support the excavation sidewalls and any surcharge loads that may be applied during the construction period.

Ground loss, raveling and/or loosing of soil may occur when using a trench box prior to its installation and while moving the box. To minimize the risk of trench side collapsing, caving and significant undermining of excavation, trench boxes need to be installed expediently and excavation should be done inside the box as the trench box is lowered.

All excavations must be carried out in accordance with the most recent Ontario Occupational Health and Safety Act (OHSA). The subsoils encountered at site as per OHSA criteria would typically be considered:

- Fill (very loose to loose cohesionless soil)- Type 4
- Fill (stiff to very stiff cohesive soil) Type 3
- Moist very loose to loose cohesionless deposits Type 4
- Moist compact to dense cohesionless deposits Type 3
- Moist very dense cohesionless deposits Type 2
- Moist, stiff sandy clay till/ silty clay- Type 3
- Moist, very stiff to hard sandy clay till/ silty clay- Type 2
- Weathered Shale Type 2

All wet and/or disturbed material, or other obviously objectionable material such as organics, should be subexcavated to the depths required for placement of the sanitary sewer/ watermain bedding.

In the planning of the trench's shoring and excavation, the presence of the adjacent existing buried service pipes should be considered. In addition to the stability of these existing adjacent pipes, which must be maintained without detrimental settlements, the backfill in these trenches and especially the granular bedding surrounding the existing service pipes, manholes, etc. may be a source of water, which, if encountered, must be dealt with.

Class "B" bedding is to be used as per City of Mississauga Standard 2112.09 for the sanitary sewer pipes and cover material shall confirm with City Standard 2112.10. Also, the bedding material for watermain should conform to the City of Mississauga bedding stone gradation requirements. The pipe bedding must then be placed surrounding and supporting the watermain pipe. If water is present in the trench excavation 19mm clear stone is to be used for bedding. The minimum bedding thickness should be 150 mm, but this should be increased as dictated by the pipe diameter and/or specifications. In addition, where the subgrade is wet (evidence of free water), the minimum bedding thickness should be increased to 250 mm.

The sanitary sewer/ watermain must be provided with at least 1.40 m of earth cover to provide adequate protection from frost effects. Alternatively, an appropriate insulation providing equivalent protection could also be considered where 1.40 m of earth cover cannot be consistently achieved.

It is preferable that the excavated soils to be re-used from approximately the position at which they are excavated so that frost response characteristics of the soils after construction remain essentially similar to presently existing. In cases where native backfill material is deemed unsuitable, the material used for backfilling in the trench should be OPSS granular "B" Type I. The backfill material should be placed in maximum 200 mm thick layers at or near (±2%) their optimum moisture content and each layer should be compacted to at last 95% SPMDD. The degree of compaction should be increased to 98% within the top 1.0 m of the subgrade. Unsuitable materials such as organic soils, boulders, cobbles, frozen soils, etc. should not be used for backfilling.

4.2 Trench Reinstatement

The existing road pavement structure should be reinstated as-per City of Mississauga standards. The granular sub-base/base materials should be compacted to at least 100% of their respective SPMDD. New granular material must match into the undersides of existing asphalt to ensure unimpeded cross drainage.

Following the completion of the sanitary sewer or watermain replacement, the trench reinstatement shall be completed by backfilling with unshrinkable fill or granular backfill to match the existing in accordance with OPSD 509.010.

It should be noted that differential performance, including differential frost-heaving, may occur between the reinstated and existing adjacent pavements if they have different material and structural compositions.

4.3 Kirwin Street and Cooksville Creek Crossing

The proposed installation of 250mm sanitary sewer under the Cooksville Creek will be installed by opencut method on the south side of the bridge. Based on the data from BH6 and BH7 (Appendix B), no shale bedrock was identified down to 9.5 mbgs on the north side of Cooksville Creek along Kirwin Street.

The available data implies that the proposed sanitary sewer and new manhole will be founded in clayey sand till close to creek. The soil along the creek banks may have higher moisture content and may cause bank instability at the time of excavation. We recommend shoring of excavations by trench boxes or steel closed tight sheeting system to minimize the disturbance to the creek's embankments.

4.3.1 Shoring Consideration

The lateral earth pressures (P), in kPa, acting on the shoring system, may be calculated using the equation below.

 $P = Ka (\gamma H + q)$

where:

Ka= coefficient of active lateral earth pressure; use Ka= 0.30;

 γ = bulk unit weight of the soil behind the shoring; use 21.0 kN/m³;

H = height in meters at which the pressure is being calculated; and

q = surcharge adjacent to shoring system in kPa.

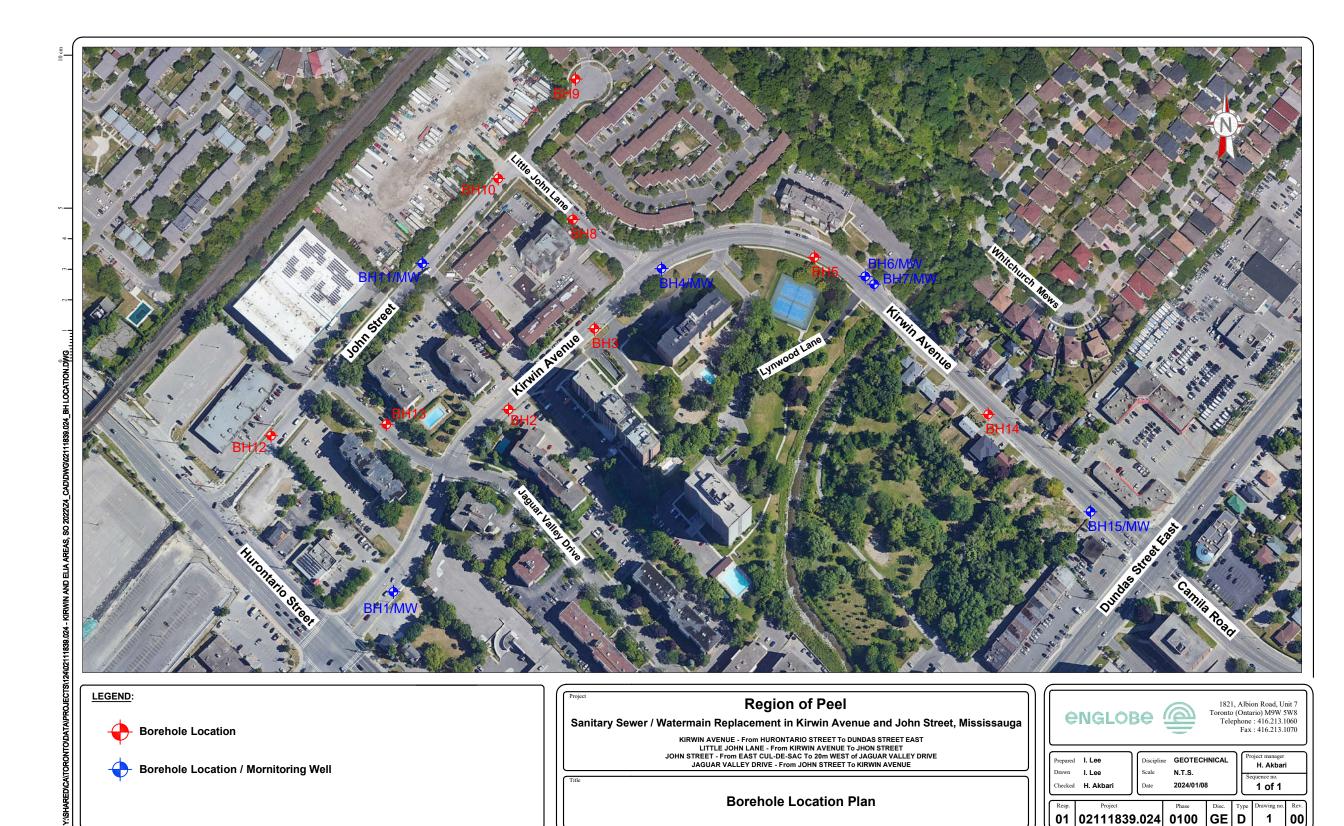
A minimum safety factor of 2.0 should be employed when analyzing the earth pressure.

4.4 Temporary Construction Dewatering

With the exception of one borehole on Kirwin Street (BH5), all other boreholes were found to be dry upon completion of drilling. The measured groundwater table from the installed monitoring wells were between 3.2 to 4.9 mbgs corresponding to Elevation of 109.1 to 114.6 m. The dominate soil encountered at the site were fill material (silty clay/ silty sand/ silty sand with gravel/ sand with gravel), cohesionless deposits (silty sand/ sand with silt/ sand with silt and gravel/ sand with gravel), clayey sand till, and silty clay. Shale bedrock was encountered at the boreholes BH1, BH12, and BH13 at approximate depth of ranging from 3.0 to 3.8 mbgs, corresponding to elevation of 114.7 to 117.4 m. Shale bedrock, sandy clay till and silty clay are expected to be nearly impervious and moisture contents indicated that subsoils were generally in moist condition. It is expected that seepage within the excavation depth should be controllable using sump pumps.

A hydrogeological investigation report prepared by others will a dewatering that may be required during the construction period.	address th	e groundwater	impact and	any

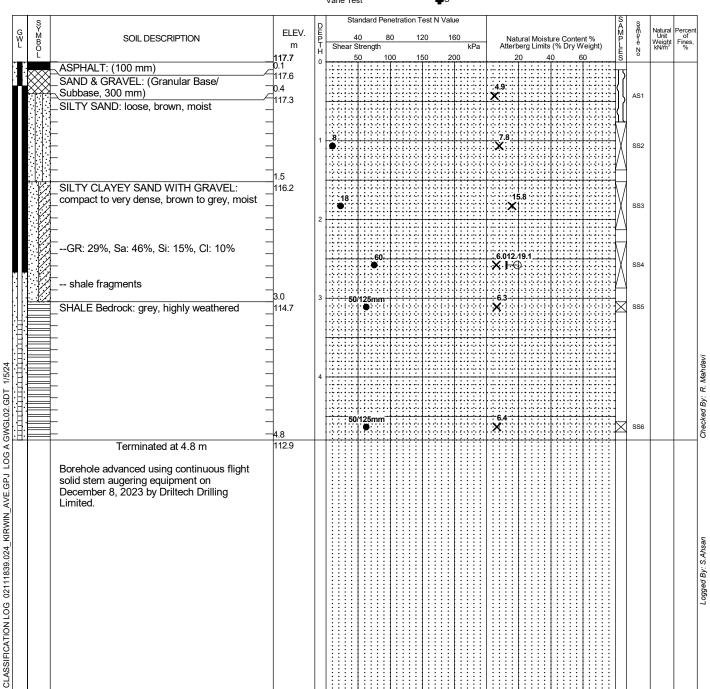
5 General Comments


The comments provided in this report have been developed for the use of Region of Peel and its designer. It should be noted that the soil boundaries indicated on the Borehole Logs are inferred from non-continuous sampling and observations during drilling and should not be interpreted as exact planes of geological change. These boundaries are intended to reflect approximate transition zones for the purpose of geotechnical design. Also, the subsoil and groundwater conditions have been determined at the borehole locations only. Additional boreholes and/or test pits would be necessary to determine the localized conditions. Contractors bidding on, or undertaking the works, must conduct their own interpretations of the factual borehole data, and draw their own conclusions as to how the subsoil and groundwater conditions may affect their construction techniques, scheduling and costs.

It is further noted that, depending on the time of year the field work was completed, water levels should be expected to vary, perhaps significantly from those observed at the time of this investigation.

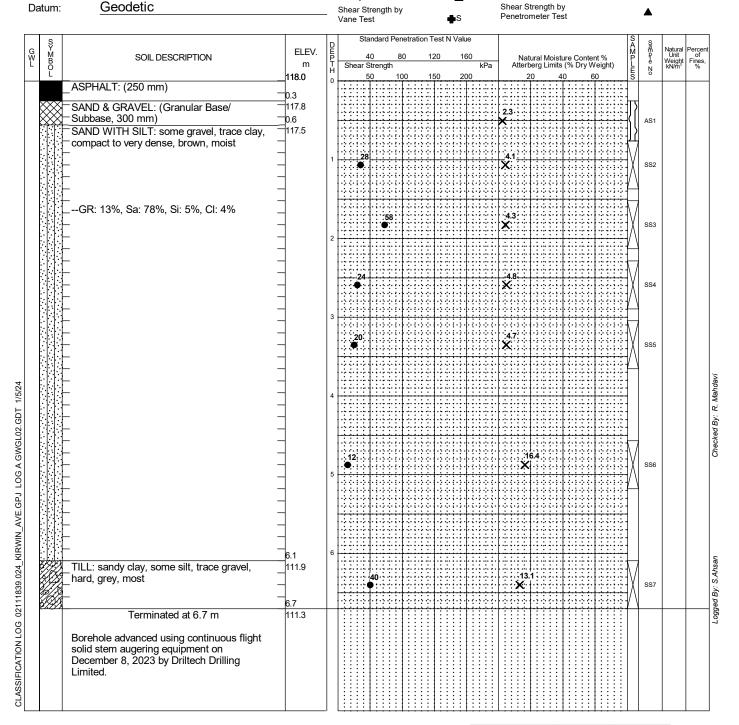
Appendix A Borehole Location Plan

englobe


Appendix B Borehole Logs

englobe

Englobe


02111839.024 DRAWING No. Project No. 23-2126, 23-2129, 25-1310 - Kirwin Avenue and Little John Lane 1 of 1 Sheet No. Project: Kirwin Ave, 40m East of intersection with Hurontario St. 2.5m north of south curbline. Location: N 4,826,515.359 E 611,443.592 Split Spoon Sample \boxtimes Auger Sample Natural Moisture Content × 12/8/2023 Date Drilled: SPT (N) Value Atterberg Limits 0 Solid Stem Augers Dynamic Cone Test Undrained Triaxial at Drill Type: 15 ⊕5 10 % Strain at Failure Shelby Tube Geodetic Shear Strength by Datum: Shear Strength by Penetrometer Test Vane Test Standard Penetration Test N Value ELEV. SOIL DESCRIPTION 160

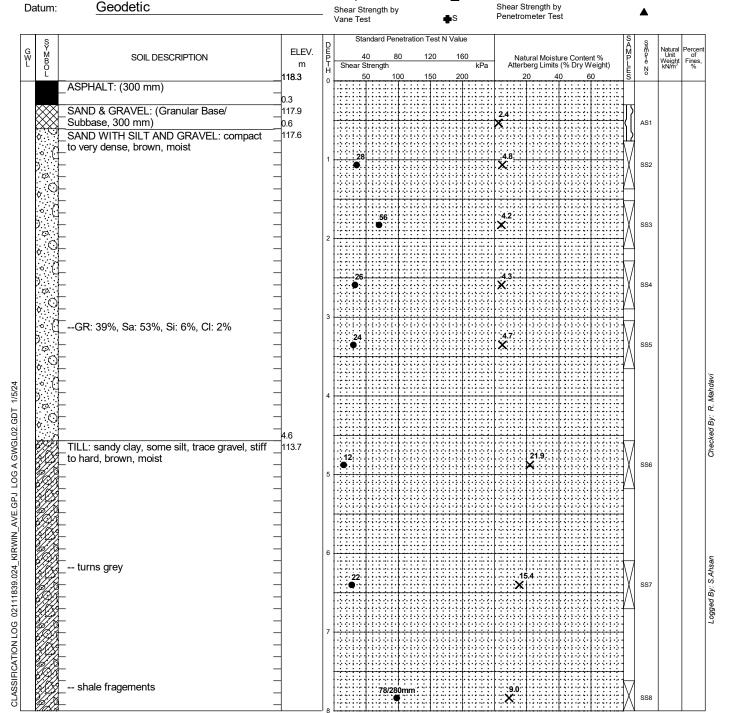
Time	Water Level (m)	Depth to Cave (m)
Upon Completion 12/20/2023	Drý 1.0	Òpen

Englobe

02111839.024 3 DRAWING No. Project No. 23-2126, 23-2129, 25-1310 - Kirwin Avenue and Little John Lane 1 of 1 Sheet No. Project: Kirwin Ave, in front of building #3170. 2.5m north of south curbline. Location: N 4,826,652.267 E 611,523.734 Split Spoon Sample \boxtimes Auger Sample Natural Moisture Content X 12/8/2023 Date Drilled: SPT (N) Value Atterberg Limits 0 Solid Stem Augers Dynamic Cone Test Undrained Triaxial at Drill Type: 15 ⊕5 10 % Strain at Failure Shelby Tube

Time	Water Level (m)	Depth to Cave (m)
Upon Completion	Òrý	Òpen

Englobe


15 🕀 5

Undrained Triaxial at

% Strain at Failure

02111839.024 DRAWING No. Project No. 23-2126, 23-2129, 25-1310 - Kirwin Avenue and Little John Lane 1 of 2 Sheet No. Project: Kirwin Ave, in front of building #3120. 2.5m north of south curbline. Location: N 4,826,712.987 E 611,587.741 Split Spoon Sample \boxtimes Auger Sample Natural Moisture Content X 12/8/2023 Date Drilled: SPT (N) Value Atterberg Limits 0 Solid Stem Augers Dynamic Cone Test

Shelby Tube

Continued Next Page

Drill Type:

Time	Water Level (m)	Depth to Cave (m)
Upon Completion	Drý	Òpen

Englobe

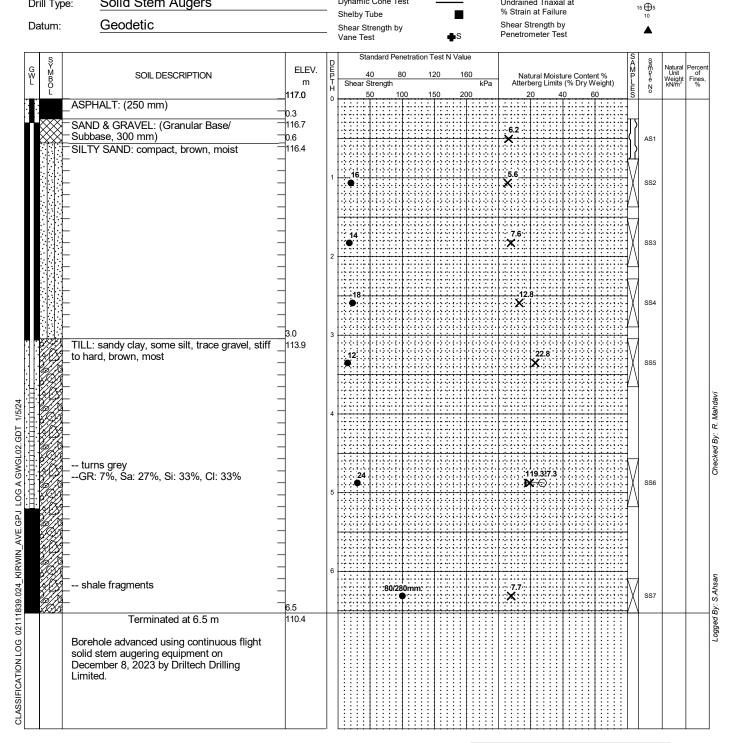
Project No. 02111839.024 DRAWING No. 4

Project: <u>23-2126, 23-2129, 25-1310 - Kirwin Avenue and Little John Lane</u> Sheet No. <u>2</u> of <u>2</u>

ſ		٩				Sta	ndard Per	etration	Test N V	alue		_			s	_		
	G N L	SYMBOL	SOIL DESCRIPTION	ELEV.	DEPT	4		0		160	N:	atural Moi	sture Con	tent %	SAMPLES	Saed-e	Natural Unit	Percent of Fines,
	Ë	O B	56.2 2 2 3 5 1 1 1 1 5 1 V	m	H		strength			kPa			sture Con its (% Dry 40		Ë	ė N o	Unit Weight kN/m	Fines, %
ŀ		XXYVV	Terminated at 8.1 m	8.1 110.2	8	3	0 10	00	150	200	1	20	1 : : :	60	×			
			Borehole advanced using continuous flight solid stem augering equipment on December 8, 2023 by Driltech Drilling Limited.															
4																		lavi
N_AVE.GPJ LOG A GWGL02.GDT 1/5/24																		Checked Bv. R. Mahdavi
CLASSIFICATION LOG 02111839.024_KIRWIN_AVE.GP																		l oaded Bv. S. Ahsan

Time	Water Level (m)	Depth to Cave (m)
Upon Completion	Ďrý	Òpen

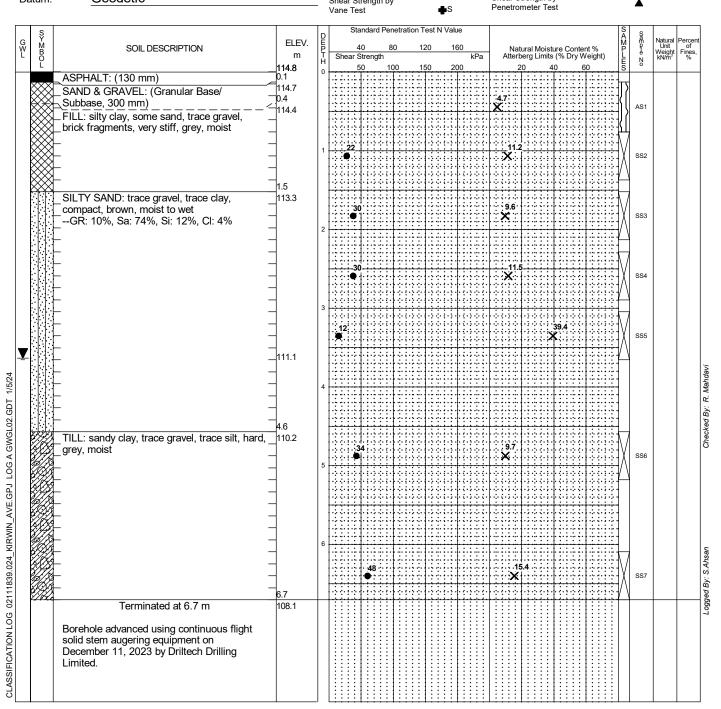
Englobe


Undrained Triaxial at

02111839.024 DRAWING No. Project No. 23-2126, 23-2129, 25-1310 - Kirwin Avenue and Little John Lane 1 of 1 Sheet No. Project: Kirwin Ave, at intersection with Little John Ln. 2m north of south curbline. Location: N 4,826,759.710 E 611,638.321 Split Spoon Sample \boxtimes Auger Sample Natural Moisture Content X 12/8/2023 Date Drilled: SPT (N) Value Atterberg Limits 0

Dynamic Cone Test

Solid Stem Augers


Drill Type:

Time	Water Level (m)	Depth to Cave (m)
Upon Completion 12/20/2023	Drý 1.0	Òpen

Englobe

02111839.024 DRAWING No. Project No. 23-2126, 23-2129, 25-1310 - Kirwin Avenue and Little John Lane 1 of 1 Sheet No. Project: Kirwin Ave, in front of building #3121. 2.5m east of west curbline. Location: N 4,826,770.131 E 611,752.451 Split Spoon Sample \boxtimes Auger Sample Natural Moisture Content × 12/11/2023 Date Drilled: SPT (N) Value Atterberg Limits 0 Solid Stem Augers Dynamic Cone Test Undrained Triaxial at Drill Type: 15 🕀 5 % Strain at Failure Shelby Tube Geodetic Shear Strength by Datum: Shear Strength by

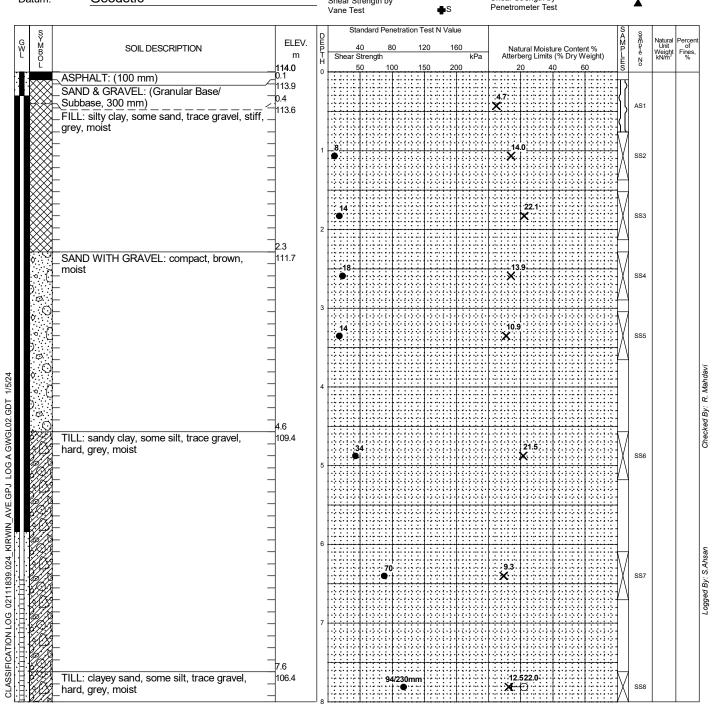
epth to Cave (m)
Open

Englobe

15 🕀 5

Undrained Triaxial at

% Strain at Failure


Shear Strength by

02111839.024 DRAWING No. Project No. 23-2126, 23-2129, 25-1310 - Kirwin Avenue and Little John Lane 1 of 2 Project: Sheet No. Kirwin Ave, 3m north of hydro pole#P06586. 2m west of east curbline. Location: N 4,826,755.960 E 611,792.035 Split Spoon Sample \boxtimes Auger Sample Natural Moisture Content X 12/11/2023 Date Drilled: SPT (N) Value Atterberg Limits 0

Dynamic Cone Test

Shear Strength by

Shelby Tube

Continued Next Page

Solid Stem Augers

Geodetic

Drill Type:

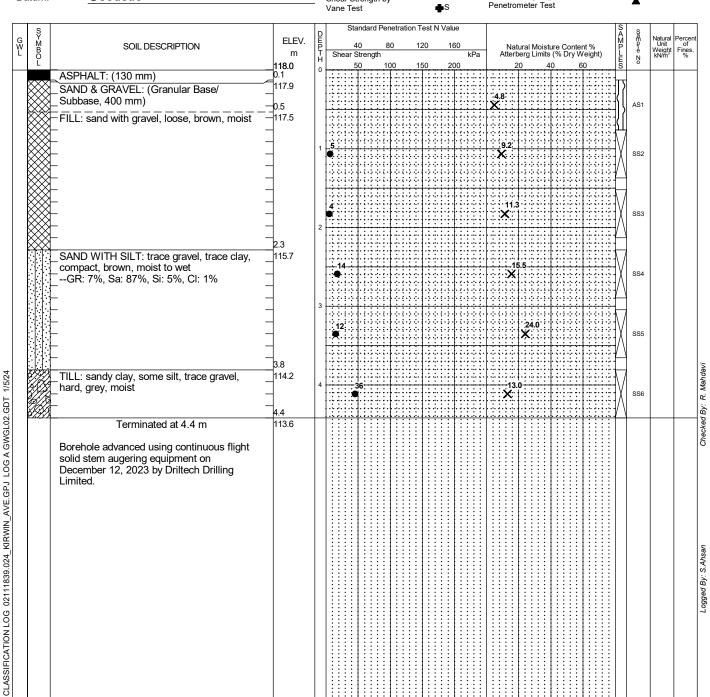
Datum:

Time	Water Level (m)	Depth to Cave (m)
Upon Completion 12/20/2023	Dry 1.5	Öpen

Englobe

02111839.024 DRAWING No. Project No. 23-2126, 23-2129, 25-1310 - Kirwin Avenue and Little John Lane 2 of Project: Sheet No. Standard Penetration Test N Value ELEV. G W L SOIL DESCRIPTION Unit Weight kN/m Natural Moisture Content % Atterberg Limits (% Dry Weight) ---GR: 8%, Sa: 54%, Si: 24%, Cl: 14% -TILL: clayey sand, some silt, trace gravel, -hard, grey, moist *(continued)* SS9 Terminated at 9.5 m 104.5 Borehole advanced using continuous flight solid stem augering equipment on December 11, 2023 by Driltech Drilling Limited. Checked By: R. Mahdavi CLASSIFICATION LOG 02111839.024_KIRWIN_AVE.GPJ LOG A GWGL02.GDT 1/5/24 Logged By: S.Ahsan

Time	Water Level (m)	Depth to Cave (m)
Upon Completion 12/20/2023	Drý 1.5	Òpen


Englobe LOG OF No. BH-07 02111839.024 8 Project No. DRAWING No. 23-2126, 23-2129, 25-1310 - Kirwin Avenue and Little John Lane Sheet No. 1 of 1 Project: Kirwin Ave, 2m north of hydro pole#P06586. 2m west of east curbline. Location: N 4,826,755.213 E 611,792.734 Split Spoon Sample \boxtimes Auger Sample Natural Moisture Content X 12/11/2023 Date Drilled: SPT (N) Value • Atterberg Limits 0 Solid Stem Augers Dynamic Cone Test Drill Type: Undrained Triaxial at 15 05 % Strain at Failure Shelby Tube Shear Strength by Geodetic Datum: Shear Strength by Penetrometer Test **₽**S Standard Penetration Test N Value G M W ELEV. 40 80 SOIL DESCRIPTION 120 160 Natural Moisture Content %

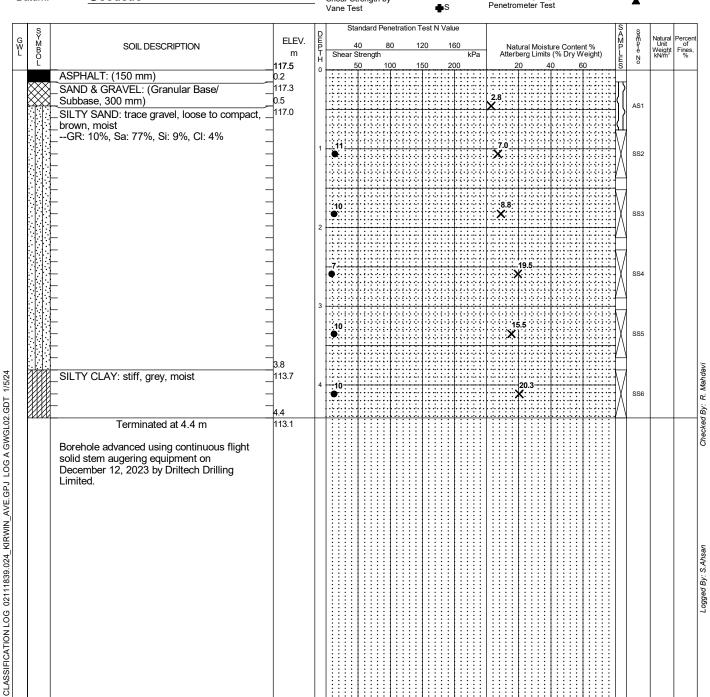
Į W	B O L	SOIL DESCRIPTION	m	P T H	<u>}</u>	Shear	40 r Str	ength	80	12	<u>U 1</u>	60 kPa	Na Atte	atural M berg L	∕loistı .imits	ure Conte (% Dry V	nt % Veight)	P L	e N o	Weight kN/m	Fines,	
L	Ľ		113.9	H 0			50		100	15	0 2	100		20	4		30	E S	o N			
		ASPHALT: (150 mm)	0.2	"			:-					+						\Box				
	XXX	SAND & GRAVEL: (Granular Base/	113.8 0.4				: #:								::::			11				
	$ \hbox{\longleftrightarrow} $	Subbase, 250 mm)	113.5				<u>:</u>					1::::::	5.4 X		:::			IJŁ	AS1			
	XXX	FILL: silty clay, some sand, trace gravel, stiff,	110.0			. ;. ; .	: [-				.; ; ; ;	1			÷.;.		14444	11				
	$\otimes\!$	_grey, moist _	4				::::	! :				######	13333		::::: ::::::		12222	Щ				
	$\otimes\!$	-	_	١,	1:	R:::	÷ŀ	••••	+	::::::	• • • • • • • • • • • • • • • • • • • •	† { · } · } ·	1:4:4:4	21.1		}	1000	1//				
	XXX	 - -	+	'	4	Ď.; . ; .	: .				•			Χ.	· · ·		133.53	7 X I	SS2			
- [] [$\times\!\!\!\times\!\!\!\times$	-	-			·		1 · 2 · 2 · 1 1 · 3 · 3 · 3		::::::1	·	1:::::::			· · · ·		12212	1/\				
- [1]	\otimes	-	1.5		1		⊹	: - ; - ; : ;	+			.	1.5.5.5	.		- {- - - - - - - - - - - - - - -	1000	Н				
- :	XX	SILTY SAND WITH GRAVEL: trace clay,	112.4				:::				33.1.3		13.333		:::		13333	\forall				
:	,	compact, brown, moist	1				6				:::::::	<u> </u>	9.0 X		::::			Wt				
	0(- ' ' ' -				•	: [:		1			1	::X::		:.:.			٦XI	SS3			
1.1	P.:.:	-		2			:::					1:::::::	1				1	∜ \				
1:1					1:	÷ ; .	÷ †-	: : : :: :	-	:-:	•	+ : : : : :	· ÷ ÷ ÷		÷ ; ;							
出	φ. · · ·						: [:	: : : : : : : : : : : :				Į.;.;.;.;.		1.;.;	÷ ; ;		1.5.5.5	Λ				
1.1	0.	<u> </u>			<u> </u> :	2	4					<u> </u>	12	2.7	:::		1:::::	171	SS4			
1:日	3	-			:	٠٠Ť٠	÷ŀ	• • • •				+ :·: ·: ·	÷ ; • • • • • • • • • • • • • • • • • •		÷ ; ;	1000	1000	∤∕∖∣				
出	Ø	-				· (· ! · · (· ! ·		! •			·	1000			(*) ·		13333	Ш				
1,1	\circ	CD: 200/ Co: 570/ Ci: 100/ Cl: 20/	_	3	1:	::::	:::	 		:::::l	: : : : :	 	13333		::::	 	12222	\vdash				
1:8	· · · · ·	GR: 30%, Sa: 57%, Si: 10%, Cl: 3%	_		1	12	$\cdot +$	••••				<u> </u>	1000	4.8	÷ ; .	- {- - - - - - - - - - - - - -		1//				
	í, r	-	_			. ∷		:			.; .; .;	1:::::::	×	4	::::		13333	1XI	SS5			
) ල	-	+		1		:::	: : : : :			:::::	<u> </u>	<u> </u>		:::		13333	IJV.				
	\Box	-			1		: -					+ : : : : :	\				14444	H				'S
/24	٥ <u>~</u>	-					= #:								::::			\square				hda
1/5	· o · (4		-16-	1						×	2.9				₫VI.	SS6			Ma
): · · ·		_		:		÷ †-	: : : :: :		:-:	• • • • • • • • • • • • • • • • • • • •	+ : : : : :	} ÷ ÷ •••••••••••••••••••••••••••••••••		÷ : : :		1::::::	łΛI	000			Checked By: R. Mahdavi
2.G	Ø		4.4	+	1:	·	#	: : : : : : : : : : : :			·	1			<u>;;;</u>		1.5.5.5.5	71				d B
95		Terminated at 4.4 m	109.5												: : :		1::::					cke
Š		Borehole advanced using continuous flight																				Š
٩		solid stem augering equipment on			:	::	:	: : : :		: : :	\vdots \vdots \vdots	1::::	1 : : : :	1 : :	:::	1::::	1::::					
8		December 11, 2023 by Driltech Drilling																				
3		Limited.												1 : :								
요					:	::	:	: : : :		: : :	::::	1::::	: : : :	1 : :	\vdots	::::	1::::					
3																						
Z					:	::	:	: : : :		:::	\vdots \vdots \vdots	1::::	::::	1::	\vdots	::::	1::::					
<u>×</u>																						
취											::::		: : : :	1 : :								ue
75					:	::	:	: : : :		:::	\vdots \vdots \vdots	1::::	1 : : : :	1 : :	:::		::::					Ahs
39.0																						S
8							:				::::	1::::	: : : :	1 : :	::		1::::					J By
121																						Logged By: S.Ahsan
0																	::::					70
의						::	:			:::	::::	1::::	::::	1::	\vdots		1::::					
NO NO												1::::										
Ĭ,													::::			: : : :						
잂					:	::		: : : :	1:		::::		: : : :	::	: : :		: : : :					
CLASSIFICATION LOG 02111839.024_KIRWIN_AVE.GPJ LOG A GWGL02.GDT 1/5/24																						
7						::				: : :	::::	1::::	; ; ; ;	1 : :	\vdots							
- ∟	1			_	L	- : :	: _	<u>: : : :</u>		::::	<u> </u>	1::::	<u> </u>	1::	- : :		1::::	\perp				_

Time	Water Level (m)	Depth to Cave (m)
Upon Completion 12/20/2023	Drý Dry	Òpen

Englobe

02111839.024 DRAWING No. Project No. 23-2126, 23-2129, 25-1310 - Kirwin Avenue and Little John Lane 1 of 1 Sheet No. Project: Little John Ln, 50m south of intersection with John St. 2m east of west curbline. Location: N 4,826,796.441 E 611,569.009 Split Spoon Sample \boxtimes Auger Sample Natural Moisture Content 12/12/2023 Date Drilled: SPT (N) Value Atterberg Limits 0 Solid Stem Augers Dynamic Cone Test Undrained Triaxial at Drill Type: 15 🕀 5 Shelby Tube % Strain at Failure Geodetic Shear Strength by Datum: Shear Strength by Penetrometer Test Vane Test Standard Penetration Test N Value

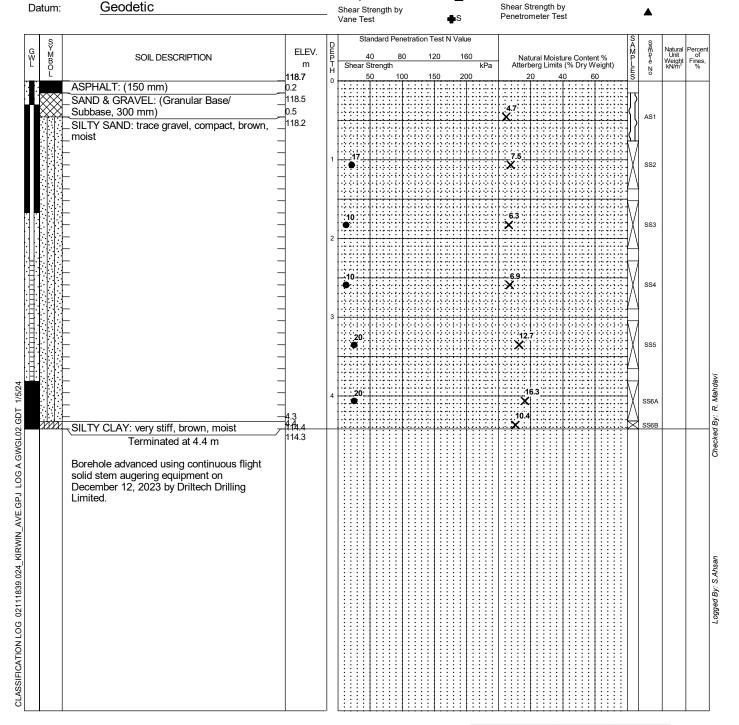
Time	Water Level (m)	Depth to Cave (m)
Upon Completion	Òrý	Òpen


Englobe

02111839.024 10 DRAWING No. Project No. 23-2126, 23-2129, 25-1310 - Kirwin Avenue and Little John Lane 1 of 1 Sheet No. Project: John St, in front of house #3175. 2m south of north curbline. Location: N 4,826,902.118 E 611,569.406 Split Spoon Sample \boxtimes Auger Sample Natural Moisture Content × 12/12/2023 Date Drilled: SPT (N) Value Atterberg Limits 0 Solid Stem Augers Dynamic Cone Test Undrained Triaxial at Drill Type: 15 🕀 5 Shelby Tube % Strain at Failure Geodetic Shear Strength by Datum: Shear Strength by Penetrometer Test Vane Test Standard Penetration Test N Value G W L ELEV. SOIL DESCRIPTION 160 Natural Moisture Content % Atterberg Limits (% Dry Weight) Weight kN/m Shear Strength m 116.9 ASPHALT: (150 mm) 0.2 SAND & GRAVEL: (Granular Base/ 116.8 Subbase, 400 mm) AS1 0.6 SILTY SAND: some clay, trace gravel, 116.4 compact, brown, moist SS3 TILL: sandy clay, some silt, trace gravel, very stiff to hard, grey, moist 114.6 SS4 --GR: 6%, Sa: 37%, Si: 27%, CI: 30% 10 26.9 SS5 Checked By: R. Mahdavi CLASSIFICATION LOG 02111839.024_KIRWIN_AVE.GPJ LOG A GWGL02.GDT 1/5/24 SS6 Terminated at 4.4 m 112.5 Borehole advanced using continuous flight solid stem augering equipment on December 12, 2023 by Driltech Drilling Limited. Logged By: S.Ahsan

Time	Water Level (m)	Depth to Cave (m)
Upon Completion	Ďrý	Òpen

Englobe

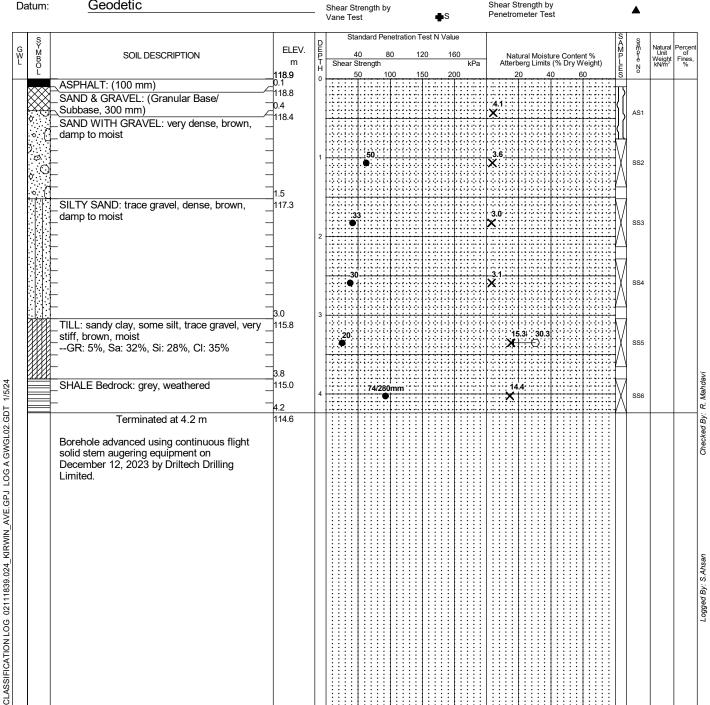

02111839.024 11 DRAWING No. Project No. 23-2126, 23-2129, 25-1310 - Kirwin Avenue and Little John Lane 1 of 1 Sheet No. Project: John St, 18m west of hydro pole#P7572. 3m south of north curbline. Location: N 4,826,827.370 E 611,513.229 Split Spoon Sample \boxtimes Auger Sample Natural Moisture Content × 12/12/2023 Date Drilled: SPT (N) Value • Atterberg Limits 0 Solid Stem Augers Dynamic Cone Test Undrained Triaxial at Drill Type: 15 ⊕5 10 Shelby Tube % Strain at Failure Geodetic Shear Strength by Datum: Shear Strength by Penetrometer Test Vane Test

Time	Water Level (m)	Depth to Cave (m)
Upon Completion	Ďrý	Òpen

Englobe

12 02111839.024 DRAWING No. Project No. 23-2126, 23-2129, 25-1310 - Kirwin Avenue and Little John Lane 1 of 1 Project: Sheet No. John St, in front of building # 6. 2m south of north curbline. Location: N 4,826,760.570 E 611,457.259 Split Spoon Sample \boxtimes Auger Sample Natural Moisture Content X 12/12/2023 Date Drilled: SPT (N) Value Atterberg Limits 0 Drill Type: Solid Stem Augers Dynamic Cone Test Undrained Triaxial at 15 ⊕5 10 % Strain at Failure Shelby Tube

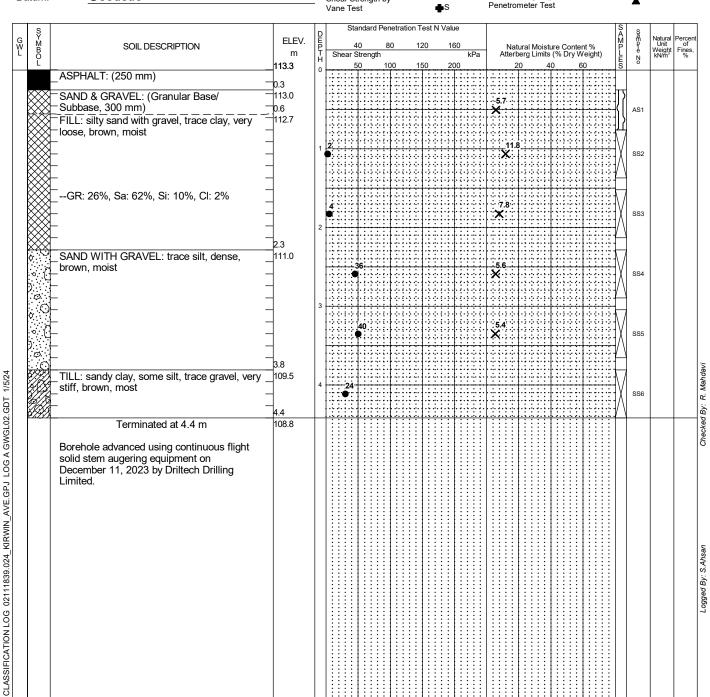
Time	Water Level (m)	Depth to Cave (m)
Upon Completion 12/20/2023	Drý 1.1	Òpen


Englobe LOG OF No. BH-12 02111839.024 13 Project No. DRAWING No. 23-2126, 23-2129, 25-1310 - Kirwin Avenue and Little John Lane Project: Sheet No. 1 of 1 John St, 13m east of hydro pole#P7578. 2m south of north curbline. Location: N 4,826,629.557 E 611,347.778 \boxtimes Split Spoon Sample Auger Sample Natural Moisture Content X 12/12/2023 Date Drilled: SPT (N) Value • Atterberg Limits 0 Solid Stem Augers Dynamic Cone Test Drill Type: Undrained Triaxial at 15 05 % Strain at Failure Shelby Tube Shear Strength by Penetrometer Test Geodetic Datum: Shear Strength by •S Vane Test S Standard Penetration Test N Value

- ,	G	S Y		ELEV.	P	P				etration I								A M	Salin-e	Natural	Percent	į
'	G W L	S M B O L	SOIL DESCRIPTION	m	DEPT H	밁	Shear S					160 kPa	_ N Atte			ture Conte s (% Dry V		AMPLIES	P N o	Natural Unit Weight kN/m	Percent of Fines, %	
H		L	ASPHALT: (200 mm)	121.2	0			50	10	0 15	50	200	 	20		40 (60	Š	0			-
	>	$\times\!\!\times\!\!\times$	SAND & GRAVEL: (Granular Base/ -	_0.2 _121.0					:::									<u>H</u>				
	8	\bowtie	_Subbase, 300 mm)	0.5				1:::	÷ ; .		: : : :	: - : : : :				1:::::	1:::::	11 1/2	AS1			
	K) . · ·	SAND WITH GRAVEL: compact, brown,	120.7				1:::	÷ ; ;									K				
	:	o ()	_moist -					1:::										H				
	3)	 		1	1	16	1					8.1 X					₹VI	SS2			
	ŀ	\cdot	_					1		• • • • •								$\frac{1}{1}$				
	S) 	-	-				111										H				
		:) ::ف						1.1.2										\mathcal{M}				
		D.	<u>-</u>	_			: 11 : · : :: : : :	1					7.4 X					₹ΧΙ	SS3			
	į	, O	-	-	2	2		 					+ :: :: :		: :::	 		1 /∖				
	ľ	h										: : : : : :										
		, :::Y					44	1					7.6		: : : :			\mathbb{N}				
	[D.					•	1.1.					×					7XI	SS4			
	k	\circ	 -												? (*) ? (*)			₹Ν				
				3.0	3	3	}	111		· · · · · · · · · · · · · · · · · · ·	****				: (·) : 		12412					
			SILTY CLAY: trace sand, very stiff, brown,moist	118.2			18	144			· > · > · · · ·			19.3	}			1/				
							•	1.1.3						X	. (.) . (.)			1XI	SS5			
								1			33.1.							\mathbb{Z}				
4			CLIALE Deducate and worth and	3.8			50)/100n ●	mm				8.3			# :: : : :		\square				Javi
1/5/2	Ē		_SHALE Bedrock: grey, weathered	117.4 4.1	4	4							X		: ::: <u>:</u>			X	SS6			Checked By: R. Mahdavi
Ы			Terminated at 4.1 m	117.1																		ς. α.
)2.G			Borehole advanced using continuous flight																			ed By
VGL(solid stem augering equipment on																			ecke
J G			December 12, 2023 by Driltech Drilling Limited.																			Ò
)G A			Ellillod.																			
GP																						
AVE																						
ξ																						
N N																						
42																						hsar
39.03																						S.A
118																						d By
021																						Logged By: S.Ahsan
90																						Ĭ
N																						
ATIC																						
FIC																						
CLASSIFICATION LOG 02111839.024_KIRWIN_AVE.GPJ LOG A GWGL02.GDT 1/5/24																						
了																						

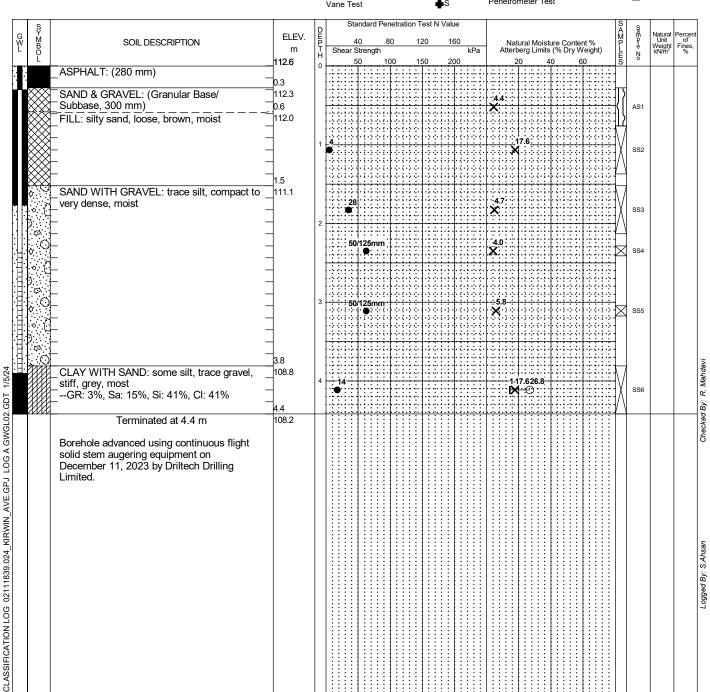
Time	Water Level (m)	Depth to Cave (m)
Upon Completion	Òrý	Òpen

Englobe


14 02111839.024 DRAWING No. Project No. 23-2126, 23-2129, 25-1310 - Kirwin Avenue and Little John Lane 1 of 1 Sheet No. Project: Jaguar Valley Dr. 47m south of intersection with John St. 3m west of east curbline. Location: N 4,826,640.205 E 611,433.978 Split Spoon Sample \boxtimes Auger Sample Natural Moisture Content × 12/12/2023 Date Drilled: SPT (N) Value • Atterberg Limits 0 Solid Stem Augers Dynamic Cone Test Undrained Triaxial at Drill Type: 15 🕀 5 Shelby Tube % Strain at Failure Geodetic Shear Strength by Datum:

Water Level (m)	Depth to Cave (m)
Drý	Òpen
	Level (m)

Englobe


02111839.024 DRAWING No. 15 Project No. 23-2126, 23-2129, 25-1310 - Kirwin Avenue and Little John Lane 1 of 1 Sheet No. Project: Kirwin Ave, in front of house # 3066. 2.5m east of west curbline. Location: N 4,826,655.055 E 611,883.568 Split Spoon Sample \boxtimes Auger Sample Natural Moisture Content × 12/11/2023 Date Drilled: SPT (N) Value Atterberg Limits 0 Solid Stem Augers Dynamic Cone Test Undrained Triaxial at Drill Type: 15 🕀 5 Shelby Tube % Strain at Failure Geodetic Shear Strength by Datum: Shear Strength by Penetrometer Test Vane Test Standard Penetration Test N Value ELEV.

Time	Water Level (m)	Depth to Cave (m)
Upon Completion	Òrý	Òpen

Englobe

02111839.024 DRAWING No. 16 Project No. 23-2126, 23-2129, 25-1310 - Kirwin Avenue and Little John Lane 1 of 1 Sheet No. Project: Kirwin Ave, 35m north of intersection with Dundas St. 2m east of west curbline. Location: N 4,826,583.955 E 611,959.644 Split Spoon Sample \boxtimes Auger Sample Natural Moisture Content × 12/11/2023 Date Drilled: SPT (N) Value Atterberg Limits 0 Solid Stem Augers Dynamic Cone Test Undrained Triaxial at Drill Type: 15 🕀 5 Shelby Tube % Strain at Failure Geodetic Shear Strength by Datum: Shear Strength by Penetrometer Test Vane Test

Time	Water Level (m)	Depth to Cave (m)
Upon Completion 12/20/2023	Drý Dry	Òpen

Appendix C Geotechnical laboratory Test Results

PROJECT: 02111839.024 CLIE	NT/JOB NAME:	Region of Peel	ACT NUMBER:	-			
ROS ID: 111131 PROJEC	CT/LOCATION:	Kirwin Avenue, Mississauga					
SAMPLING LOCATION:	BH1_SS4	GRAIN SIZ	E ANALYSIS	HYDROMETER ANALYSI			
SAMPLING DEPTH, m SAMPLING METHOD:	- Split Spoon	SIEVE SIZE mm	% PASSING	DIAMETER mm	% PASSING		
SAMPLED BY:	SA, Englobe	53.0	100.0	0.037	21.5		
SAMPLE DESCRIPTION:	Gravelly Sandy with Silt and	37.5	100.0	0.026	19.4		
SAMPLE DESCRIPTION:	Clay	26.5	100.0	0.017	16.8		
SAMPLING DATE:	2023-12-08	19.0	100.0	0.010	13.7		
SAMPLE RECEIVED DATE:	2023-12-10	13.2	96.8	0.007	11.7		
		9.5	90.7	0.005	10.2		
GRAIN SIZE PROPO	ORTIONS, %	4.75	71.5	0.003	7.7		
% GRAVEL (> 4.75 mm):	28.5	2.36	51.2	0.001	4.1		
% SAND (75 μm to 4.75 mm):	46.3	1.18	41.8	ATTEDDE	OCTIMITE 0/		
% Silt (5 μm to 75 μm):	15.0	0.60	35.4	ATTERBER	RG LIMITS, %		
% Clay (<5 μm):	10.2	0.30	30.8	Plastic Limit	12.4		
SUSCEPTIBILITY TO FROST	Low	0.15	28.3	Liquid Limit	19.1		
HEAVING:	Low	0.075	25.2	Plastic Index	6.7		

PARTICLE SIZE DISTRIBUTION, MTO LS-702 U.S. BUREAU OF SOILS CLASSIFICATION (AS USED IN MINISTRY OF TRANSPORTATION OF ONTARIO PAVEMENT DESIGNS) VERY FINE SAND MEDIUM SAND COARSE SAND CLAY SILT FINE SAND GRAVEL UNIFIED SOILS CLASSIFICATION ASTM D 2487 FINES (SILT & CLAY) FINE SAND MEDIUM SAND COARSE SAND FINE GRAVEL COARSE GRAVEL 37.5 mm 33.0 mm 100.0 90.0 80.0 70.0 PERCENT PASSING 60.0 50.0 40.0 30.0 20.0 10.0 0.0 0.01 0.001 0.1 10 100 PARTICLE SIZE, mm

T/JOB NAME:	Region of Peel	-		
T/LOCATION:	Kirv	win Avenue, Mississa	auga	
BH2_SS3	GRAIN SIZI	E ANALYSIS	HYDROMET	ER ANALYSIS
- Split Spoon	SIEVE SIZE mm	% PASSING	DIAMETER mm	% PASSING
SA, Englobe	53.0	100.0	0.037	7.8
SANDY / with Gravel, trace	37.5	100.0	0.026	6.8
Silt trace Clay	26.5	100.0	0.017	6.1
2023-12-08	19.0	100.0	0.010	5.3
2023-12-10	13.2	98.0	0.007	4.5
	9.5	94.4	0.005	4.0
RTIONS, %	4.75	86.8	0.003	3.6
13.2	2.36	79.6	0.001	2.9
78.0	1.18	69.4	A TOTAL DE LA CARACTE	
4.8	0.60	58.8	ATTERBERG LIMITS, %	
4.0	0.30	40.3	Plastic Limit	
T	0.15	13.7	Liquid Limit	
LOW	0.075	8.8	Plastic Index	NP
	SPIIT Spoon SA, Englobe SANDY / with Gravel, trace Silt trace Clay 2023-12-08 2023-12-10 PRTIONS, % 13.2 78.0 4.8	### CT/LOCATION: ### BH2_SS3 GRAIN SIZI	STATE STAT	SIEVE SIZE Split Spoon SA, Englobe Silt trace Clay 2023-12-08 ETIONS, % SIEVE SIZE SP.5 94.4 0.005 0.003 0.005

PARTICLE SIZE DISTRIBUTION, MTO LS-702 U.S. BUREAU OF SOILS CLASSIFICATION (AS USED IN MINISTRY OF TRANSPORTATION OF ONTARIO PAVEMENT DESIGNS) VERY FINE SAND MEDIUM SAND COARSE SAND CLAY SILT FINE SAND GRAVEL UNIFIED SOILS CLASSIFICATION ASTM D 2487 FINES (SILT & CLAY) FINE SAND MEDIUM SAND COARSE SAND FINE GRAVEL COARSE GRAVEL 0.15 mm 12.53.0 mm 1.18 mm 100.0 90.0 80.0 70.0 PERCENT PASSING 60.0 50.0 40.0 30.0 20.0 10.0 0.0 0.001 0.01 0.1 10 100 PARTICLE SIZE, mm

PROJECT:	02111839.024 CI	JENT/JOB NAME:	Region of Peel	CONTR	CONTRACT NUMBER: -				
ROS ID:	111131 PRO	DJECT/LOCATION:	Kirwin Avenue, Mississauga						
SAMPLING	LOCATION:	BH3_SS5	GRAIN SIZ	ZE ANALYSIS	HYDROMETER ANALYSIS				
SAMPLING DEPTH, m SAMPLING METHOD:		- Split Spoon	SIEVE SIZE mm	% PASSING	DIAMETER mm	% PASSING			
SAMPLED I	BY:	SA, Englobe	53.0	100.0	0.037	4.8			
CAMBLE DI	ECODIDITION.	Gravelly Sandy, trace Silt tra	37.5	100.0	0.026	4.3			
SAMPLE DESCRIPTION:		Clay	26.5	100.0	0.017	4.0			
SAMPLING	DATE:	2023-12-08	19.0	92.5	0.010	3.2			
SAMPLE RE	ECEIVED DATE:	2023-12-10	13.2	86.1	0.007	2.3			
			9.5	78.8	0.005	1.7			
	GRAIN SIZE PR	OPORTIONS, %	4.75	61.2	0.003	1.2			
% GRAVEL	(> 4.75 mm):	38.8	2.36	51.3	0.001	0.4			
% SAND (7:	5 μm to 4.75 mm):	53.8	1.18	44.6	ATTEDDE	OCTIMITE 0/			
% Silt (5 μm to 75 μm):		5.7	0.60	37.1	ATTERBE	RG LIMITS, %			
% Clay (<5 p	μm):	1.7	0.30	27.7	Plastic Limit				
SUSCEPTIB	SILITY TO FROST	Low	0.15	14.5	Liquid Limit				
HEAVING:		Low	0.075	7.4	Plastic Index	NP			

PARTICLE SIZE DISTRIBUTION, MTO LS-702 U.S. BUREAU OF SOILS CLASSIFICATION (AS USED IN MINISTRY OF TRANSPORTATION OF ONTARIO PAVEMENT DESIGNS) VERY FINE SAND MEDIUM SAND COARSE SAND CLAY SILT FINE SAND GRAVEL UNIFIED SOILS CLASSIFICATION ASTM D 2487 FINES (SILT & CLAY) FINE SAND MEDIUM SAND COARSE SAND FINE GRAVEL COARSE GRAVEL 0.15 mm 37.5 mm 100.0 90.0 80.0 70.0 PERCENT PASSING 60.0 50.0 40.0 30.0 20.0 10.0 0.0 0.001 0.01 0.1 10 100 PARTICLE SIZE, mm

PROJECT:	02111839.024	CLIENT/JOB NAME:	Region of Peel CONTRACT NUMBER:						
ROS ID:	111131	PROJECT/LOCATION:	Kirwin Avenue, Mississauga						
SAMPLING LOCATION:		BH4_SS	BH4_SS6		E ANALYSIS	HYDROMETER ANALYSIS			
SAMPLING SAMPLING	ŕ	- Split Spoo	on	SIEVE SIZE mm	% PASSING	DIAMETER mm	% PASSING		
SAMPLED I	BY:	SA, Englo	obe	53.0	100.0	0.037	58.9		
SAMPLE DESCRIPTION:		Com dry Ciltry Clay t	Sandy Silty Clay trace Gravel		100.0	0.026	54.4		
		Sandy Sinty Clay t			100.0	0.017	48.9		
SAMPLING	DATE:	2023-12-	08	19.0	100.0	0.010	42.2		
SAMPLE RE	ECEIVED DATE:	2023-12-	2023-12-10		100.0	0.007	36.9		
				9.5	98.4	0.005	32.8		
	GRAIN SIZI	PROPORTIONS, %		4.75	92.8	0.003	27.0		
% GRAVEL	(> 4.75 mm):	7.2		2.36	86.8	0.001	14.8		
% SAND (7:	5 μm to 4.75 mm):	27.1		1.18	81.2	ATTEDDE	RG LIMITS, %		
% Silt (5 μm to 75 μm):		32.9		0.60	77.4	ATTERBER	RG LIMITS, %		
% Clay (<5 p	μm):	32.8		0.30	74.2	Plastic Limit	16.5		
SUSCEPTIBILITY TO FROST HEAVING:		Low		0.15	70.5	Liquid Limit	27.3		
		Low	Low		65.7	Plastic Index	10.8		

PARTICLE SIZE DISTRIBUTION, MTO LS-702 U.S. BUREAU OF SOILS CLASSIFICATION (AS USED IN MINISTRY OF TRANSPORTATION OF ONTARIO PAVEMENT DESIGNS) VERY FINE SAND MEDIUM SAND COARSE SAND CLAY SILT FINE SAND GRAVEL UNIFIED SOILS CLASSIFICATION ASTM D 2487 FINES (SILT & CLAY) FINE SAND MEDIUM SAND COARSE SAND FINE GRAVEL COARSE GRAVEL 1.18 mm 100.0 90.0 80.0 70.0 PERCENT PASSING 60.0 50.0 40.0 30.0 20.0 10.0 0.0 0.01 0.001 0.1 10 100 PARTICLE SIZE, mm

PROJECT: 02111839.024	CLIENT/JOB NAME:	Region of Peel	CONTR	-	
ROS ID: 111159 F	PROJECT/LOCATION:	Kir	win Avenue, Mississ	auga	
SAMPLING LOCATION:	BH5_SS3	GRAIN SIZ	E ANALYSIS	HYDROMET	ER ANALYSIS
SAMPLING DEPTH, m SAMPLING METHOD:	- Split Spoon	SIEVE SIZE mm	% PASSING	DIAMETER mm	% PASSING
SAMPLED BY:	SA, Englobe	53.0	100.0	0.037	11.4
SAMPLE DESCRIPTION:	SANDY / with Silt, trace	37.5	100.0	0.026	9.0
SAMPLE DESCRIPTION:	Clay, trace Gravel	26.5	100.0	0.017	7.3
SAMPLING DATE:	2023-12-11	19.0	98.1	0.010	5.4
SAMPLE RECEIVED DATE:	2023-12-13	13.2	95.8	0.007	4.3
		9.5	93.7	0.005	3.7
GRAIN SIZE	PROPORTIONS, %	4.75	90.5	0.003	3.2
% GRAVEL (> 4.75 mm):	9.5	2.36	86.6	0.001	2.4
% SAND (75 μm to 4.75 mm):	74.4	1.18	82.3		
% Silt (5 μm to 75 μm):	12.4	0.60	70.2	ATTERBE	RG LIMITS, %
% Clay (<5 μm):	3.7	0.30	43.0	Plastic Limit	
SUSCEPTIBILITY TO FROST	Ι	0.15	24.5	Liquid Limit	
HEAVING:	Low	0.075	16.1	Plastic Index	Non- plastic

PARTICLE SIZE DISTRIBUTION, MTO LS-702 U.S. BUREAU OF SOILS CLASSIFICATION (AS USED IN MINISTRY OF TRANSPORTATION OF ONTARIO PAVEMENT DESIGNS) VERY FINE SAND MEDIUM SAND COARSE SAND CLAY SILT FINE SAND GRAVEL UNIFIED SOILS CLASSIFICATION ASTM D 2487 FINES (SILT & CLAY) FINE SAND MEDIUM SAND COARSE SAND FINE GRAVEL COARSE GRAVEL 0.15 mm 53.0 mm 1.18 mm 100.0 90.0 80.0 70.0 PERCENT PASSING 60.0 50.0 40.0 30.0 20.0 10.0 0.0 0.001 10 0.01 0.1 100 PARTICLE SIZE, mm

PROJECT: 021	11839.024 CLIEN	T/JOB NAME:	Region of Peel	Region of Peel CONTRACT NUMBER: -					
ROS ID:	111159 PROJEC	CT/LOCATION:	Kii	Kirwin Avenue, Mississauga					
SAMPLING LOCA	ATION:	BH6_SS8	GRAIN SIZ	GRAIN SIZE ANALYSIS		TER ANALYSIS			
	SAMPLING DEPTH, m SAMPLING METHOD:		SIEVE SIZE mm	% PASSING	DIAMETER mm	% PASSING			
SAMPLED BY:		SA, Englobe	53.0	100.0	0.037	31.4			
CAMPLE DECOR	DTION.	SANDY Silt with Clay, tra	ce 37.5	100.0	0.026	27.8			
SAMPLE DESCRIPTION:		Gravel	26.5	100.0	0.017	24.2			
SAMPLING DATE	Ξ:	2023-12-11	19.0	100.0	0.010	19.8			
SAMPLE RECEIV	ED DATE:	2023-12-13	13.2	100.0	0.007	16.7			
			9.5	97.6	0.005	14.0			
	GRAIN SIZE PROPO	RTIONS, %	4.75	91.7	0.003	11.0			
% GRAVEL (> 4.7	75 mm):	8.3	2.36	81.0	0.001	6.6			
% SAND (75 μm to	o 4.75 mm):	53.6	1.18	70.1	A TOTAL DE LA COMPANIA DEL COMPANIA DE LA COMPANIA DEL COMPANIA DE LA COMPANIA DE				
% Silt (5 μm to 75 μ	μm):	24.1	0.60	56.5	ATTERBERG LIMITS, %				
% Clay ($<$ 5 μ m):		14.0	0.30	48.8	Plastic Limit	14.0			
SUSCEPTIBILITY	TO FROST	Low	0.15	43.7	Liquid Limit	22.0			
HEAVING:		Low	0.075	38.1	Plastic Index	8.0			

PARTICLE SIZE DISTRIBUTION, MTO LS-702 U.S. BUREAU OF SOILS CLASSIFICATION (AS USED IN MINISTRY OF TRANSPORTATION OF ONTARIO PAVEMENT DESIGNS) VERY FINE SAND MEDIUM SAND COARSE SAND CLAY SILT FINE SAND GRAVEL UNIFIED SOILS CLASSIFICATION ASTM D 2487 FINES (SILT & CLAY) FINE SAND MEDIUM SAND COARSE SAND FINE GRAVEL COARSE GRAVEL 1. 53.0 mm 100.0 90.0 80.0 70.0 PERCENT PASSING 60.0 50.0 40.0 30.0 20.0 10.0 0.0 0.01 0.001 0.1 10 100 PARTICLE SIZE, mm

PROJECT: 02111839.024 CLIEN	IT/JOB NAME:	Region of Peel	Legion of Peel CONTRACT NUMI				
ROS ID: 111159 PROJEC	T/LOCATION:	Kirwin Avenue, Mississauga					
SAMPLING LOCATION:	BH7_SS5	GRAIN SIZ	GRAIN SIZE ANALYSIS		ER ANALYSIS		
SAMPLING DEPTH, m SAMPLING METHOD:	- Split Spoon	SIEVE SIZE mm	% PASSING	DIAMETER mm	% PASSING		
SAMPLED BY:	SA, Englobe	53.0	100.0	0.037	9.0		
SAMPLE DESCRIPTION:	Gravelly Sandy, trace Silt,	37.5	100.0	0.026	6.7		
SAMPLE DESCRIPTION:	trace Clay	26.5	100.0	0.017	5.3		
SAMPLING DATE:	2023-12-11	19.0	100.0	0.010	3.9		
SAMPLE RECEIVED DATE:	2023-12-13	13.2	89.8	0.007	3.1		
		9.5	78.9	0.005	2.7		
GRAIN SIZE PROPO	RTIONS, %	4.75	69.8	0.003	2.3		
% GRAVEL (> 4.75 mm):	30.2	2.36	63.3	0.001	1.2		
% SAND (75 μm to 4.75 mm):	57.2	1.18	54.4	ATTEDDE	OCTIMITS 0/		
% Silt (5 μm to 75 μm):	9.9	0.60	39.7	ATTERBER	RG LIMITS, %		
% Clay (<5 μm):	2.7	0.30	23.2	Plastic Limit			
SUSCEPTIBILITY TO FROST	Low	0.15	16.6	Liquid Limit			
HEAVING:	Low	0.075	12.5	Plastic Index	Non- plastic		

PARTICLE SIZE DISTRIBUTION, MTO LS-702 U.S. BUREAU OF SOILS CLASSIFICATION (AS USED IN MINISTRY OF TRANSPORTATION OF ONTARIO PAVEMENT DESIGNS) VERY FINE SAND MEDIUM SAND COARSE SAND CLAY SILT FINE SAND GRAVEL UNIFIED SOILS CLASSIFICATION ASTM D 2487 FINES (SILT & CLAY) FINE SAND MEDIUM SAND COARSE SAND FINE GRAVEL COARSE GRAVEL 0.15 mm 37.5 mm 33.0 mm 100.0 90.0 80.0 70.0 PERCENT PASSING 60.0 50.0 40.0 30.0 20.0 10.0 0.0 0.001 0.01 0.1 10 100 PARTICLE SIZE, mm

PROJECT: 02111839.024 CLIEN	T/JOB NAME:	Region of Peel	CONTR	ACT NUMBER:	-		
ROS ID: 111190 PROJEC	T/LOCATION:	Kirwin Avenue, Mississauga					
SAMPLING LOCATION:	BH8_SS4	GRAIN SIZ	E ANALYSIS	HYDROMET	ER ANALYSIS		
SAMPLING DEPTH, m SAMPLING METHOD:	- Split Spoon	SIEVE SIZE mm	% PASSING	DIAMETER mm	% PASSING		
SAMPLED BY:	SA, Englobe	53.0	100.0	0.037	4.3		
SAMPLE DESCRIPTION:	SANDY / trace Silt trace	37.5	100.0	0.026	3.0		
SAMPLE DESCRIPTION:	Gravel	26.5	100.0	0.017	2.5		
SAMPLING DATE:	2023-12-12	19.0	100.0	0.010	1.9		
SAMPLE RECEIVED DATE:	2023-12-13	13.2	96.4	0.007	1.0		
		9.5	94.9	0.005	0.8		
GRAIN SIZE PROPO	RTIONS, %	4.75	93.3	0.003	0.8		
% GRAVEL (> 4.75 mm):	6.7	2.36	90.5	0.001	0.8		
% SAND (75 μm to 4.75 mm):	87.7	1.18	87.6	ATTEDDE	OCLIMITE 0/		
% Silt (5 μm to 75 μm):	4.8	0.60	80.6	ATTERBER	RG LIMITS, %		
% Clay (<5 μm):	0.8	0.30	56.7	Plastic Limit			
SUSCEPTIBILITY TO FROST	Low	0.15	11.5	Liquid Limit	_		
HEAVING:	Low	0.075	5.6	Plastic Index			

PARTICLE SIZE DISTRIBUTION, MTO LS-702 U.S. BUREAU OF SOILS CLASSIFICATION (AS USED IN MINISTRY OF TRANSPORTATION OF ONTARIO PAVEMENT DESIGNS) VERY FINE SAND MEDIUM SAND COARSE SAND CLAY SILT FINE SAND GRAVEL UNIFIED SOILS CLASSIFICATION ASTM D 2487 FINES (SILT & CLAY) FINE SAND MEDIUM SAND COARSE SAND FINE GRAVEL COARSE GRAVEL 0.15 mm 1. 53.0 mm 100.0 90.0 80.0 70.0 PERCENT PASSING 60.0 50.0 40.0 30.0 20.0 10.0 0.0 0.01 0.001 0.1 10 100 PARTICLE SIZE, mm

PROJECT:	02111839.024	CLIENT/JOB NAME:]	Region of Peel	ACT NUMBER:			
ROS ID:	111190	PROJECT/LOCATION:	/LOCATION: Kirwin Avenue, Mississauga					
SAMPLING	LOCATION:	BH9_S	SS5	GRAIN SIZE ANALYSIS HYDRON				
SAMPLING DEPTH, m SAMPLING METHOD:		- Split Sp	- Split Spoon		% PASSING	DIAMETER mm	% PASSING	
SAMPLED I	BY:	SA, Eng	globe	53.0	100.0	0.037	51.5	
SAMPLE DESCRIPTION:		Condr. Ciltr. Clar	Sandy Silty Clay trace Gravel		100.0	0.026	47.8	
		Sandy Siny Clay			100.0	0.017	43.0	
SAMPLING	DATE:	2023-12	2023-12-12		100.0	0.010	37.9	
SAMPLE RE	ECEIVED DATE:	2023-12	2023-12-13		100.0	0.007	34.3	
				9.5	98.5	0.005	30.1	
	GRAIN SIZE	PROPORTIONS, %		4.75	94.4	0.003	23.3	
% GRAVEL	(> 4.75 mm):	5.6		2.36	87.3	0.001	9.1	
% SAND (7	5 μm to 4.75 mm):	36.7	7	1.18	78.9	A TETER DED C. I. D. MTG. 0/		
% Silt (5 μm	% Silt (5 μm to 75 μm):		5	0.60	71.9	ATTERBERG LIMITS, %		
% Clay (<5	μm):	30.1		0.30	66.9	Plastic Limit	16.0	
SUSCEPTIBILITY TO FROST HEAVING:		T	,	0.15	62.2	Liquid Limit	26.9	
		Low	Low		57.7	Plastic Index	10.9	

PARTICLE SIZE DISTRIBUTION, MTO LS-702 U.S. BUREAU OF SOILS CLASSIFICATION (AS USED IN MINISTRY OF TRANSPORTATION OF ONTARIO PAVEMENT DESIGNS) VERY FINE SAND MEDIUM SAND COARSE SAND CLAY SILT FINE SAND GRAVEL UNIFIED SOILS CLASSIFICATION ASTM D 2487 FINES (SILT & CLAY) FINE SAND MEDIUM SAND COARSE SAND FINE GRAVEL COARSE GRAVEL 0.15 mm 1.18 mm 100.0 90.0 80.0 70.0 PERCENT PASSING 60.0 50.0 40.0 30.0 20.0 10.0 0.0 0.01 0.001 0.1 10 100 PARTICLE SIZE, mm

PROJECT: 02111839.024 CLI	ENT/JOB NAME:	Region of Peel	on of Peel CONTRACT NUMBER:			
ROS ID: 111190 PROJ	ECT/LOCATION:	Kirv	win Avenue, Mississ	auga		
SAMPLING LOCATION:	BH10_SS2	GRAIN SIZ	E ANALYSIS	HYDROMET	TER ANALYSIS	
SAMPLING DEPTH, m SAMPLING METHOD:	- Split Spoon	SIEVE SIZE mm	% PASSING	DIAMETER mm	% PASSING	
SAMPLED BY:	SA, Englobe	53.0	100.0	0.037	9.1	
SAMPLE DESCRIPTION:	SANDY / with Gravel, trace	37.5	100.0	0.026	7.9	
SAMPLE DESCRIPTION:	Silt trace Clay	26.5	100.0	0.017	6.5	
SAMPLING DATE:	2023-12-12	19.0	96.9	0.010	5.1	
SAMPLE RECEIVED DATE:	2023-12-13	13.2	94.5	0.007	4.3	
		9.5	92.5	0.005	3.7	
GRAIN SIZE PRO	PORTIONS, %	4.75	89.4	0.003	3.1	
% GRAVEL (> 4.75 mm):	10.6	2.36	86.6	0.001	0.8	
% SAND (75 µm to 4.75 mm):	77.0	1.18	84.3	ATTENDED	OCLINATE A	
% Silt (5 μm to 75 μm):	8.7	0.60	77.4	ATTERBER	RG LIMITS, %	
% Clay (<5 μm):	3.7	0.30	52.0	Plastic Limit		
SUSCEPTIBILITY TO FROST	Law	0.15	18.0	Liquid Limit		
HEAVING:	Low	0.075	12.4	Plastic Index		

PARTICLE SIZE DISTRIBUTION, MTO LS-702 U.S. BUREAU OF SOILS CLASSIFICATION (AS USED IN MINISTRY OF TRANSPORTATION OF ONTARIO PAVEMENT DESIGNS) VERY FINE SAND MEDIUM SAND COARSE SAND CLAY SILT FINE SAND GRAVEL UNIFIED SOILS CLASSIFICATION ASTM D 2487 FINES (SILT & CLAY) FINE SAND MEDIUM SAND COARSE SAND FINE GRAVEL COARSE GRAVEL 0.15 mm 53.0 mm 1.18 mm 100.0 90.0 80.0 70.0 PERCENT PASSING 60.0 50.0 40.0 30.0 20.0 10.0 0.0 0.001 0.1 10 0.01 100 PARTICLE SIZE, mm

PROJECT:	02111839.024 CLIE	NT/JOB NAME:	Region of Peel	CONTR	ACT NUMBER:	-			
ROS ID:	111190 PROJE	CT/LOCATION:	/LOCATION: Kirwin Avenue, Mississauga						
SAMPLING	LOCATION:	BH13_SS5	GRAIN SIZ	GRAIN SIZE ANALYSIS		ER ANALYSIS			
SAMPLING DEPTH, m SAMPLING METHOD:		- Split Spoon	SIEVE SIZE mm	% PASSING	DIAMETER mm	% PASSING			
SAMPLED E	BY:	SA, Englobe	53.0	100.0	0.037	57.2			
SAMPLE DESCRIPTION:		C1C!+	37.5	100.0	0.026	53.4			
		Sandy Silty Clay trace Gra	26.5	100.0	0.017	49.1			
SAMPLING	DATE:	2023-12-12	19.0	100.0	0.010	43.0			
SAMPLE RE	ECEIVED DATE:	2023-12-13	13.2	97.8	0.007	39.3			
			9.5	97.0	0.005	35.3			
	GRAIN SIZE PROP	ORTIONS, %	4.75	94.5	0.003	29.3			
% GRAVEL	(> 4.75 mm):	5.5	2.36	90.1	0.001	19.7			
% SAND (7:	5 μm to 4.75 mm):	31.7	1.18	84.0	A TTEDDE	OCLIMITE 0/			
% Silt (5 μm	to 75 μm):	27.5	0.60	77.6	ATTERBER	RG LIMITS, %			
% Clay (<5 µ	μm):	35.3	0.30	72.4	Plastic Limit	16.4			
SUSCEPTIBILITY TO FROST HEAVING:		Low	0.15	68.5	Liquid Limit	30.3			
		Low	0.075	62.8	Plastic Index	13.9			

PARTICLE SIZE DISTRIBUTION, MTO LS-702 U.S. BUREAU OF SOILS CLASSIFICATION (AS USED IN MINISTRY OF TRANSPORTATION OF ONTARIO PAVEMENT DESIGNS) VERY FINE SAND MEDIUM SAND COARSE SAND CLAY SILT FINE SAND GRAVEL UNIFIED SOILS CLASSIFICATION ASTM D 2487 FINES (SILT & CLAY) FINE SAND MEDIUM SAND COARSE SAND FINE GRAVEL COARSE GRAVEL 100.0 90.0 80.0 70.0 PERCENT PASSING 60.0 50.0 40.0 30.0 20.0 10.0 0.0 0.01 0.001 0.1 10 100 PARTICLE SIZE, mm

PROJECT: 02111839.024 CLIEN	T/JOB NAME:	Region of Peel	CONTR.	ACT NUMBER:		
ROS ID: 111159 PROJEC	T/LOCATION:	Kirwin Avenue, Mississauga				
SAMPLING LOCATION:	BH14_SS3	GRAIN SIZ	E ANALYSIS	HYDROMET	ER ANALYSIS	
SAMPLING DEPTH, m SAMPLING METHOD:	- Split Spoon	SIEVE SIZE mm	% PASSING	DIAMETER mm	% PASSING	
SAMPLED BY:	SA, Englobe	53.0	100.0	0.037	8.0	
SAMPLE DESCRIPTION:	Gravelly Sandy, trace Silt,	37.5	100.0	0.026	6.7	
SAMPLE DESCRIPTION:	trace Clay	26.5	100.0	0.017	5.7	
SAMPLING DATE:	2023-12-11	19.0	100.0	0.010	4.4	
SAMPLE RECEIVED DATE:	2023-12-13	13.2	97.3	0.007	3.2	
		9.5	88.9	0.005	2.4	
GRAIN SIZE PROPO	RTIONS, %	4.75	73.8	0.003	1.7	
% GRAVEL (> 4.75 mm):	26.2	2.36	64.0	0.001	1.1	
% SAND (75 μm to 4.75 mm):	61.6	1.18	56.9	ATTEDDE	OCLIMITS 0/	
% Silt (5 μm to 75 μm):	9.8	0.60	43.2	ATTERBER	RG LIMITS, %	
% Clay (<5 μm):	2.4	0.30	24.8	Plastic Limit		
SUSCEPTIBILITY TO FROST	Low	0.15	17.4	Liquid Limit		
HEAVING:	Low	0.075	12.2	Plastic Index	Non- plastic	

PARTICLE SIZE DISTRIBUTION, MTO LS-702 U.S. BUREAU OF SOILS CLASSIFICATION (AS USED IN MINISTRY OF TRANSPORTATION OF ONTARIO PAVEMENT DESIGNS) VERY FINE SAND MEDIUM SAND COARSE SAND CLAY SILT FINE SAND GRAVEL UNIFIED SOILS CLASSIFICATION ASTM D 2487 FINES (SILT & CLAY) FINE SAND MEDIUM SAND COARSE SAND FINE GRAVEL COARSE GRAVEL 0.15 mm 37.5 mm 33.0 mm 100.0 90.0 80.0 70.0 PERCENT PASSING 60.0 50.0 40.0 30.0 20.0 10.0 0.0 0.001 0.01 0.1 10 100 PARTICLE SIZE, mm

PROJECT: 02111839.	024 CLIEN	T/JOB NAME:	Region of Peel CONTRACT NUMBER: -				
ROS ID: 111159	PROJEC	T/LOCATION:	Kir	win Avenue, Mississ	auga		
SAMPLING LOCATION		BH15_SS6	GRAIN SIZ	E ANALYSIS	HYDROMET	TER ANALYSIS	
SAMPLING DEPTH, m SAMPLING METHOD:		- Split Spoon	SIEVE SIZE mm	% PASSING	DIAMETER mm	% PASSING	
SAMPLED BY:		SA, Englobe	53.0	100.0	0.037	73.6	
SAMPLE DESCRIPTION:		Silty Clay with Sand, trace	37.5	100.0	0.026	68.7	
		Gravel	26.5	100.0	0.017	62.6	
SAMPLING DATE:		2023-12-11	19.0	100.0	0.010	53.0	
SAMPLE RECEIVED DA	TE:	2023-12-13	13.2	98.3	0.007	47.0	
			9.5	97.9	0.005	41.2	
GRAII	N SIZE PROPO	RTIONS, %	4.75	96.9	0.003	32.3	
% GRAVEL (> 4.75 mm)	:	3.1	2.36	95.2	0.001	18.2	
% SAND (75 μ m to 4.75 \pm	mm):	15.3	1.18	93.0	ATTEDDE	RG LIMITS, %	
% Silt (5 μ m to 75 μ m):	% Silt (5 μm to 75 μm):		0.60	90.6	ATTERBER	RG LIVITS, %	
% Clay (<5 μm):		41.2	0.30	88.5	Plastic Limit	14.2	
SUSCEPTIBILITY TO FI	ROST	Moderate	0.15	86.0	Liquid Limit	26.8	
HEAVING:		wioderate	0.075	81.5	Plastic Index	12.6	

PARTICLE SIZE DISTRIBUTION, MTO LS-702 U.S. BUREAU OF SOILS CLASSIFICATION (AS USED IN MINISTRY OF TRANSPORTATION OF ONTARIO PAVEMENT DESIGNS) VERY FINE SAND MEDIUM SAND COARSE SAND CLAY SILT FINE SAND GRAVEL UNIFIED SOILS CLASSIFICATION ASTM D 2487 FINES (SILT & CLAY) FINE SAND MEDIUM SAND COARSE SAND FINE GRAVEL COARSE GRAVEL 100.0 90.0 80.0 70.0 PERCENT PASSING 60.0 50.0 40.0 30.0 20.0 10.0 0.0 0.01 0.001 0.1 10 100 PARTICLE SIZE, mm

Appendix D Corrosivity Testing Results

ALS Canada Ltd.

CERTIFICATE OF ANALYSIS (GUIDELINE EVALUATION)

Issue Date

Work Order : **WT2340486** Page : 1 of 4

Client : Englobe Corp. Laboratory : ALS Environmental - Waterloo

Contact : Houshang Akbari : Emily Smith

: 1821 Albion Road, Unit #7 Address : 60 Northland Road, Unit 1

Waterloo, Ontario Canada N2V 2B8

: 18-Dec-2023 16:41

 Telephone
 : --- Telephone
 : +1 519 886 6910

 Project
 : 2111839.024- KIRWIN AVE.
 Date Samples Received
 : 13-Dec-2023 14:25

PO : 60635 Date Analysis Commenced : 14-Dec-2023

Sampler : CLIENT

Toronto ON Canada M9W 5W8

Site : ---Quote number : Peel - 2021-484P (Q87850)

Quote number : Peel - 2021-484P (Q87850)
No. of samples received : 15

No. of samples analysed : 15

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Guideline Comparison

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

Address

C-O-C number

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Josphin Masihi	Analyst	Centralized Prep, Waterloo, Ontario
Nik Perkio	Inorganics Analyst	Inorganics, Waterloo, Ontario

 Page
 :
 2 of 4

 Work Order
 :
 WT2340486

 Client
 :
 Englobe Corp.

Project · 2111839.024- KIRWIN AVE.

No Breaches Found

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guidelines are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Key: LOR: Limit of Reporting (detection limit).

Unit	Description
%	percent
mg/kg	milligrams per kilogram

>: greater than.

Red shading is applied where the result or the LOR is greater than the Guideline Upper Limit (or lower than the Guideline Lower Limit, if applicable).

For drinking water samples, Red shading is applied where the result for E.coli, fecal or total coliforms is greater than or equal to the Guideline Upper Limit.

<: less than.

 Page
 :
 3 of 4

 Work Order
 :
 WT2340486

 Client
 :
 Englobe Corp.

Project : 2111839.024- KIRWIN AVE.

Analytical Results Evaluation

Matrix: Soil/Solid		Client	sample ID	BH1-SS5	BH2-SS5	BH3-SS3	BH4-SS3	BH5-SS5	BH6-SS4	BH7-SS4
Sampling date/time			08-Dec-2023 00:00	08-Dec-2023 00:00	08-Dec-2023 00:00	08-Dec-2023 00:00	11-Dec-2023 00:00	11-Dec-2023 00:00	11-Dec-2023 00:00	
		S	Sub-Matrix	Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid
Analyte	CAS Number	Method/Lab	Unit	WT2340486-001	WT2340486-002	WT2340486-003	WT2340486-004	WT2340486-005	WT2340486-006	WT2340486-007
Physical Tests										
Moisture		E144/WT	%	5.62	4.51	5.51	7.36	10.4	10.8	11.4
Leachable Anions & Nutrients										
Chloride, leachable	16887-00-6	E235.CI/WT	mg/kg	124	338	198	64.9	789	690	899
Sulfate, leachable	14808-79-8	E235.SO4/WT	mg/kg	43	<11	12	11	<11	<11	<11

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

Analytical Results Evaluation

Matrix: Soil/Solid		Client	sample ID	BH8-SS4	BH9-SS4	BH10-SS5	BH11-SS4	BH12-SS3	BH13-SS4	BH14-SS4
		Sampling	date/time	12-Dec-2023 00:00	12-Dec-2023 00:00	12-Dec-2023 00:00	12-Dec-2023 00:00	12-Dec-2023 00:00	12-Dec-2023 00:00	11-Dec-2023 00:00
		S	Sub-Matrix	Soil/Solid						
Analyte	CAS Number	Method/Lab	Unit	WT2340486-008	WT2340486-009	WT2340486-010	WT2340486-011	WT2340486-012	WT2340486-013	WT2340486-014
Physical Tests										
Moisture		E144/WT	%	4.96	13.0	12.8	4.61	6.89	2.99	12.4
Leachable Anions & Nutrients										
Chloride, leachable	16887-00-6	E235.CI/WT	mg/kg	311	27.0	139	230	378	185	354
Sulfate, leachable	14808-79-8	E235.SO4/WT	mg/kg	19	<11	34	15	56	<10	30

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

Page : 4 of 4 Work Order : WT2340486

Client : Englobe Corp.

Project : 2111839.024- KIRWIN AVE.

Analytical Results Evaluation

		Client	sample ID	BH15-SS4	 	 	
Matrix: Soil/Solid							
	Sampling date/time				 	 	
		S	Sub-Matrix	Soil/Solid	 	 	
Analyte	CAS Number	Method/Lab	Unit	WT2340486-015	 	 	
Physical Tests							
Moisture		E144/WT	%	6.56	 	 	
Leachable Anions & Nutrients							
Chloride, leachable	16887-00-6	E235.CI/WT	mg/kg	520	 	 	
Sulfate, leachable	14808-79-8	E235.SO4/WT	mg/kg	<11	 	 	

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

Key:

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **WT2340486** Page : 1 of 10

Client : Englobe Corp. Laboratory : ALS Environmental - Waterloo

Contact : Houshang Akbari Account Manager : Emily Smith

Address :1821 Albion Road, Unit #7 Address :60 Northland Road, Unit 1

Waterloo, Ontario Canada N2V 2B8

Telephone :--- Telephone :+1 519 886 6910

 Project
 : 2111839.024- KIRWIN AVE.
 Date Samples Received
 : 13-Dec-2023 14:25

 PO
 : 60635
 Issue Date
 : 18-Dec-2023 16:49

PO : 60635 Issue Date
C-O-C number :---Sampler : CLIENT

Quote number : Peel - 2021-484P (Q87850)

No. of samples received :15
No. of samples analysed :15

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Site

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

Toronto ON Canada M9W 5W8

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers : Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

No Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples ■ No Quality Control Sample Frequency Outliers occur.	
	alsglobal.com

 Page
 :
 3 of 10

 Work Order
 :
 WT2340486

 Client
 :
 Englobe Corp.

Project : 2111839.024- KIRWIN AVE.

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Analyte Group : Analytical Method	Method	Sampling Date	Ext	raction / Pr			riolaing time exec	Analys		<u> </u>
Container / Client Sample ID(s)			Preparation		g Times	Eval	Analysis Date			Eval
			Date	Rec	Actual			Rec	Actual	
Leachable Anions & Nutrients : Leachable Chloride in Soil/Solid by IC					1					
Glass soil jar/Teflon lined cap [ON MECP] BH10-SS5	E235.CI	12-Dec-2023	14-Dec-2023	30 days	3 days	✓	15-Dec-2023	30 days	4 days	✓
Leachable Anions & Nutrients : Leachable Chloride in Soil/Solid by IC										
Glass soil jar/Teflon lined cap [ON MECP] BH11-SS4	E235.Cl	12-Dec-2023	14-Dec-2023	30 days	3 days	✓	15-Dec-2023	30 days	4 days	✓
Leachable Anions & Nutrients : Leachable Chloride in Soil/Solid by IC										
Glass soil jar/Teflon lined cap [ON MECP] BH12-SS3	E235.CI	12-Dec-2023	14-Dec-2023	30 days	3 days	✓	15-Dec-2023	30 days	4 days	✓
Leachable Anions & Nutrients : Leachable Chloride in Soil/Solid by IC										
Glass soil jar/Teflon lined cap [ON MECP] BH13-SS4	E235.CI	12-Dec-2023	14-Dec-2023	30 days	3 days	✓	15-Dec-2023	30 days	4 days	✓
Leachable Anions & Nutrients : Leachable Chloride in Soil/Solid by IC										
Glass soil jar/Teflon lined cap [ON MECP] BH8-SS4	E235.Cl	12-Dec-2023	14-Dec-2023	30 days	3 days	1	15-Dec-2023	30 days	4 days	✓
Leachable Anions & Nutrients : Leachable Chloride in Soil/Solid by IC										
Glass soil jar/Teflon lined cap [ON MECP] BH9-SS4	E235.Cl	12-Dec-2023	14-Dec-2023	30 days	3 days	✓	15-Dec-2023	30 days	4 days	✓
Leachable Anions & Nutrients : Leachable Chloride in Soil/Solid by IC										
Glass soil jar/Teflon lined cap [ON MECP] BH14-SS4	E235.Cl	11-Dec-2023	14-Dec-2023	30 days	4 days	✓	15-Dec-2023	30 days	5 days	✓

 Page
 :
 4 of 10

 Work Order
 :
 WT2340486

 Client
 :
 Englobe Corp.

ALS

Project : 2111839.024- KIRWIN AVE.

Matrix: Soil/Solid

Evaluation: × = Holdin	a time exceedance : 🗸	′ = Within Holdina Time
------------------------	-----------------------	-------------------------

Matrix: Soli/Solid	1		_			raidation. *-	nolaing time exce			Tiolding Time	
Analyte Group : Analytical Method	Method	Sampling Date	Ex	traction / Pr	eparation		Analysis				
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date		Times	Eval	
			Date	Rec	Actual			Rec	Actual		
Leachable Anions & Nutrients : Leachable Chloride in Soil/Solid by IC											
Glass soil jar/Teflon lined cap [ON MECP]											
BH15-SS4	E235.CI	11-Dec-2023	14-Dec-2023	30	4 days	✓	15-Dec-2023	30 days	5 days	✓	
				days							
Leachable Anions & Nutrients : Leachable Chloride in Soil/Solid by IC											
Glass soil jar/Teflon lined cap [ON MECP]											
BH5-SS5	E235.CI	11-Dec-2023	14-Dec-2023	30	4 days	✓	15-Dec-2023	30 days	5 days	✓	
				days							
Leachable Anions & Nutrients : Leachable Chloride in Soil/Solid by IC											
Glass soil jar/Teflon lined cap [ON MECP]											
BH6-SS4	E235.CI	11-Dec-2023	14-Dec-2023	30	4 days	1	15-Dec-2023	30 days	5 days	✓	
				days				,	,		
Leashahla Aniana & Nutrianta - Leashahla Chlavida in Cail/Calid by IC											
Leachable Anions & Nutrients : Leachable Chloride in Soil/Solid by IC					<u> </u>		<u> </u>				
Glass soil jar/Teflon lined cap [ON MECP] BH7-SS4	E235.CI	11-Dec-2023	14-Dec-2023	30	4 days	√	15-Dec-2023	30 days	5 days	✓	
BH7-004	L200.01	11-200-2020	14-Dec-2023	days	4 days		10-060-2020	oo days	Juays	•	
				uays							
Leachable Anions & Nutrients : Leachable Chloride in Soil/Solid by IC											
Glass soil jar/Teflon lined cap [ON MECP]	E235.CI	08-Dec-2023	14-Dec-2023		7 -1	√	15-Dec-2023	20 4	0 4	√	
BH1-SS5	E235.CI	08-Dec-2023	14-Dec-2023	30	7 days	•	15-Dec-2023	30 days	8 days	•	
				days							
Leachable Anions & Nutrients : Leachable Chloride in Soil/Solid by IC											
Glass soil jar/Teflon lined cap [ON MECP]											
BH2-SS5	E235.CI	08-Dec-2023	14-Dec-2023	30	7 days	✓	15-Dec-2023	30 days	8 days	✓	
				days							
Leachable Anions & Nutrients : Leachable Chloride in Soil/Solid by IC											
Glass soil jar/Teflon lined cap [ON MECP]											
BH3-SS3	E235.CI	08-Dec-2023	14-Dec-2023	30	7 days	✓	15-Dec-2023	30 days	8 days	✓	
				days							
Leachable Anions & Nutrients : Leachable Chloride in Soil/Solid by IC											
Glass soil jar/Teflon lined cap [ON MECP]											
BH4-SS3	E235.CI	08-Dec-2023	14-Dec-2023	30	7 days	✓	15-Dec-2023	30 days	8 days	✓	
				days							
Leachable Anions & Nutrients : Leachable Sulfate in Soil/Solid by IC											
Glass soil jar/Teflon lined cap [ON MECP]											
BH10-SS5	E235.SO4	12-Dec-2023	14-Dec-2023	28	3 days	✓	15-Dec-2023	28 days	4 davs	✓	
21.10 000			200 2020	days	3 44,5		. 5 2 3 2 2 2 2 2 3 2 3 2 3 2 3 2 3 2 3 2		,, .		
				uays							

Page 5 of 10 Work Order: WT2340486 Client Englobe Corp.

Analyte Group : Analytical Method

Glass soil jar/Teflon lined cap [ON MECP]

Container / Client Sample ID(s)

2111839.024- KIRWIN AVE. **Project**

Leachable Anions & Nutrients : Leachable Sulfate in Soil/Solid by IC

Matrix: Soil/Solid

BH11-SS4

		Ev	/aluation: × =	Holding time excee	edance ; 🗸	= Within	Holding Tim				
Ext	raction / Pr	eparation		Analysis							
n		g Times	Eval	Analysis Date		Times	Eval				
	Rec	Actual			Rec	Actual					
23	28 days	3 days	✓	15-Dec-2023	28 days	4 days	√				
23	28 days	3 days	✓	15-Dec-2023	28 days	4 days	*				
23	28 days	3 days	✓	15-Dec-2023	28 days	4 days	*				
23	28 days	3 days	1	15-Dec-2023	28 days	4 days	4				
23	28 days	3 days	✓	15-Dec-2023	28 days	4 days	√				

Leachable Anions & Nutrients : Leachable Sulfate in Soil/Solid by IC										
Glass soil jar/Teflon lined cap [ON MECP] BH12-SS3	E235.SO4	12-Dec-2023	14-Dec-2023	28 days	3 days	✓	15-Dec-2023	28 days	4 days	✓
Leachable Anions & Nutrients : Leachable Sulfate in Soil/Solid by IC										
Glass soil jar/Teflon lined cap [ON MECP] BH13-SS4	E235.SO4	12-Dec-2023	14-Dec-2023	28 days	3 days	✓	15-Dec-2023	28 days	4 days	✓
Leachable Anions & Nutrients : Leachable Sulfate in Soil/Solid by IC										
Glass soil jar/Teflon lined cap [ON MECP] BH8-SS4	E235.SO4	12-Dec-2023	14-Dec-2023	28 days	3 days	✓	15-Dec-2023	28 days	4 days	✓
Leachable Anions & Nutrients : Leachable Sulfate in Soil/Solid by IC										
Glass soil jar/Teflon lined cap [ON MECP] BH9-SS4	E235.SO4	12-Dec-2023	14-Dec-2023	28 days	3 days	✓	15-Dec-2023	28 days	4 days	✓
Leachable Anions & Nutrients : Leachable Sulfate in Soil/Solid by IC										
Glass soil jar/Teflon lined cap [ON MECP] BH14-SS4	E235.SO4	11-Dec-2023	14-Dec-2023	28 days	4 days	✓	15-Dec-2023	28 days	5 days	✓
Leachable Anions & Nutrients : Leachable Sulfate in Soil/Solid by IC										
Glass soil jar/Teflon lined cap [ON MECP] BH15-SS4	E235.SO4	11-Dec-2023	14-Dec-2023	28 days	4 days	✓	15-Dec-2023	28 days	5 days	✓
Leachable Anions & Nutrients : Leachable Sulfate in Soil/Solid by IC										
Glass soil jar/Teflon lined cap [ON MECP] BH5-SS5	E235.SO4	11-Dec-2023	14-Dec-2023	28 days	4 days	✓	15-Dec-2023	28 days	5 days	✓
Leachable Anions & Nutrients : Leachable Sulfate in Soil/Solid by IC										
Glass soil jar/Teflon lined cap [ON MECP] BH6-SS4	E235.SO4	11-Dec-2023	14-Dec-2023	28 days	4 days	✓	15-Dec-2023	28 days	5 days	✓
			,		'					

Sampling Date

12-Dec-2023

Preparation Date

14-Dec-2023

Method

E235.SO4

 Page
 :
 6 of 10

 Work Order
 :
 WT2340486

 Client
 :
 Englobe Corp.

Project : 2111839.024- KIRWIN AVE.

Matrix: Soil/Solid

Evaluation:	× = Holding	time exceedance;	✓ = Within Holding Tim
-------------	-------------	------------------	------------------------

Matrix: Soil/Solid						/aluation. * -	Holding time exce			Holding Time	
Analyte Group : Analytical Method	Method	Sampling Date	Ext	traction / Pr	reparation		Analysis				
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval	
			Date	Rec	Actual			Rec	Actual		
Leachable Anions & Nutrients : Leachable Sulfate in Soil/Solid by IC											
Glass soil jar/Teflon lined cap [ON MECP]											
BH7-SS4	E235.SO4	11-Dec-2023	14-Dec-2023	28	4 days	✓	15-Dec-2023	28 days	5 days	✓	
				days							
Leachable Anions & Nutrients : Leachable Sulfate in Soil/Solid by IC											
Glass soil jar/Teflon lined cap [ON MECP]											
BH1-SS5	E235.SO4	08-Dec-2023	14-Dec-2023	28	7 days	✓	15-Dec-2023	28 days	8 days	✓	
				days							
Leachable Anions & Nutrients : Leachable Sulfate in Soil/Solid by IC											
Glass soil jar/Teflon lined cap [ON MECP]											
BH2-SS5	E235.SO4	08-Dec-2023	14-Dec-2023	28	7 days	✓	15-Dec-2023	28 days	8 days	✓	
				days							
Leachable Anions & Nutrients : Leachable Sulfate in Soil/Solid by IC											
Glass soil jar/Teflon lined cap [ON MECP]											
BH3-SS3	E235.SO4	08-Dec-2023	14-Dec-2023	28	7 days	✓	15-Dec-2023	28 days	8 days	✓	
				days							
Leachable Anions & Nutrients : Leachable Sulfate in Soil/Solid by IC								1			
Glass soil jar/Teflon lined cap [ON MECP]											
BH4-SS3	E235.SO4	08-Dec-2023	14-Dec-2023	28	7 days	✓	15-Dec-2023	28 days	8 days	✓	
				days					-		
Physical Tests : Moisture Content by Gravimetry											
Glass soil jar/Teflon lined cap [ON MECP]											
BH10-SS5	E144	12-Dec-2023					16-Dec-2023		4 days		
									,		
Physical Tests : Moisture Content by Gravimetry											
Glass soil jar/Teflon lined cap [ON MECP]											
BH11-SS4	E144	12-Dec-2023					16-Dec-2023		4 days		
									,-		
Physical Tests : Moisture Content by Gravimetry											
Glass soil jar/Teflon lined cap [ON MECP]											
BH12-SS3	E144	12-Dec-2023					16-Dec-2023		4 days		
									,0		
Physical Tests - Maisture Content by Crayimatry											
Physical Tests : Moisture Content by Gravimetry Glass soil jar/Teflon lined cap [ON MECP]											
BH13-SS4	E144	12-Dec-2023					16-Dec-2023		4 days		
BI110 004	1 - 7 - 7	12 200 2020					10-200-2020		- uays		

Page 7 of 10 WT2340486 Work Order : Client

Englobe Corp. 2111839.024- KIRWIN AVE. Project

Matrix: Soil/Solid					E	/aluation: × =	Holding time excee	edance ;	✓ = Within	Holding Ti
Analyte Group : Analytical Method	Method	Sampling Date	Ex	traction / Pi	reparation		Analysis			
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holdin	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap [ON MECP]										
BH8-SS4	E144	12-Dec-2023					16-Dec-2023		4 days	
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap [ON MECP]										
BH9-SS4	E144	12-Dec-2023					16-Dec-2023		4 days	
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap [ON MECP]										
BH14-SS4	E144	11-Dec-2023					16-Dec-2023		5 days	
BITT+ 00+		11 200 2020					10 200 2020		o dayo	
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap [ON MECP]	F444	44 D 0000					40.5			
BH15-SS4	E144	11-Dec-2023					16-Dec-2023		5 days	
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap [ON MECP]										
BH5-SS5	E144	11-Dec-2023					16-Dec-2023		5 days	
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap [ON MECP]										
BH6-SS4	E144	11-Dec-2023					16-Dec-2023		5 days	
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap [ON MECP]										
BH7-SS4	E144	11-Dec-2023					16-Dec-2023		5 days	
Physical Tests : Maisture Content by Crayimetry										
Physical Tests : Moisture Content by Gravimetry Glass soil jar/Teflon lined cap [ON MECP]							I			
BH1-SS5	E144	08-Dec-2023					16-Dec-2023		8 days	
BH1-000	_ 177	00-2020					10-200-2020		o days	
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap [ON MECP]	F444	00 D 0000					10.0			
BH2-SS5	E144	08-Dec-2023					16-Dec-2023		8 days	

Page 8 of 10 Work Order: WT2340486 Client

Englobe Corp.

2111839.024- KIRWIN AVE. Project

Matrix: Soil/Solid

Evaluation: **x** = Holding time exceedance ; ✓ = Within Holding Time

Analyte Group : Analytical Method	Method	Sampling Date	Ext	raction / Pi	eparation					
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding Times		Eval
			Date	Rec	Actual			Rec	Actual	l
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap [ON MECP] BH3-SS3	E144	08-Dec-2023					16-Dec-2023		8 days	
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap [ON MECP] BH4-SS3	E144	08-Dec-2023					16-Dec-2023		8 days	

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

 Page
 :
 9 of 10

 Work Order
 :
 WT2340486

 Client
 :
 Englobe Corp.

Project : 2111839.024- KIRWIN AVE.

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Soil/Solid		Evaluation	n: × = QC freque	ency outside spe	ecification; ✓ = 0	QC frequency wit	hin specification.
Quality Control Sample Type			Co	ount		Frequency (%)	
Analytical Methods	Method	Method QC Lot #			Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Leachable Chloride in Soil/Solid by IC	E235.CI	1276871	1	15	6.6	5.0	✓
Leachable Sulfate in Soil/Solid by IC	E235.SO4	1276872	1	15	6.6	5.0	✓
Moisture Content by Gravimetry	E144	1279653	1	18	5.5	5.0	✓
Laboratory Control Samples (LCS)							
Leachable Chloride in Soil/Solid by IC	E235.CI	1276871	2	15	13.3	10.0	✓
Leachable Sulfate in Soil/Solid by IC	E235.SO4	1276872	2	15	13.3	10.0	✓
Moisture Content by Gravimetry	E144	1279653	1	18	5.5	5.0	✓
Method Blanks (MB)							
Leachable Chloride in Soil/Solid by IC	E235.CI	1276871	1	15	6.6	5.0	✓
Leachable Sulfate in Soil/Solid by IC	E235.SO4	1276872	1	15	6.6	5.0	✓
Moisture Content by Gravimetry	E144	1279653	1	18	5.5	5.0	✓

 Page
 :
 10 of 10

 Work Order
 :
 WT2340486

 Client
 :
 Englobe Corp.

Project : 2111839.024- KIRWIN AVE.

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Moisture Content by Gravimetry	E144	Soil/Solid	CCME PHC in Soil - Tier	Moisture is measured gravimetrically by drying the sample at 105°C. Moisture content is
			1	calculated as the weight loss (due to water) divided by the wet weight of the sample,
	ALS Environmental -			expressed as a percentage.
	Waterloo			
Leachable Chloride in Soil/Solid by IC	E235.CI	Soil/Solid	CSSS Ch. 15	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
			(mod)/EPA 300.1	detection using a soil sample that has been added in a defined ratio of soil to deionized
	ALS Environmental -		(mod)	water, then shaken well and allowed to settle. Anions are measured in the fluid that is
	Waterloo			observed in the upper layer.
Leachable Sulfate in Soil/Solid by IC	E235.SO4	Soil/Solid	CSSS Ch. 15	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
			(mod)/EPA 300.1	detection using a soil sample that has been added in a defined ratio of soil to deionized
	ALS Environmental -		(mod)	water, then shaken well and allowed to settle. Anions are measured in the fluid that is
	Waterloo			observed in the upper layer.
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Leach for Metals and Anions	EP441	Soil/Solid	In-House	This analysis is carried out using a leaching procedure which involves the gentle
				tumbling of the sample in a specified leaching solution (typically deionized water) for a
	ALS Environmental -			specific length of time.
	Waterloo			

ALS Canada Ltd.

QUALITY CONTROL REPORT

Work Order Page : 1 of 4 :WT2340486

Client : Englobe Corp. Laboratory : ALS Environmental - Waterloo **Account Manager** : Emily Smith

Address Address : 1821 Albion Road, Unit #7 : 60 Northland Road, Unit 1

Waterloo, Ontario Canada N2V 2B8

Telephone :+1 519 886 6910

> **Date Samples Received** :13-Dec-2023 14:25

Date Analysis Commenced : 14-Dec-2023

Issue Date :18-Dec-2023 16:42

Project : 2111839.024- KIRWIN AVE. PO :60635 C-O-C number

Sampler : CLIENT

Site

Quote number : Peel - 2021-484P (Q87850)

No. of samples received : 15 No. of samples analysed : 15

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Reference Material (RM) Report; Recovery and Data Quality Objectives

: Houshang Akbari

Toronto ON Canada M9W 5W8

- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

Contact

Telephone

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department

Josphin Masihi Analyst Waterloo Centralized Prep, Waterloo, Ontario Nik Perkio Inorganics Analyst Waterloo Inorganics, Waterloo, Ontario

 Page
 :
 2 of 4

 Work Order
 :
 WT2340486

 Client
 :
 Englobe Corp.

Project : 2111839.024- KIRWIN AVE.

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Soil/Solid			Laboratory Duplicate (DUP) Report												
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier				
Physical Tests (QC	Lot: 1279653)														
WT2340486-001	BH1-SS5	Moisture		E144	0.25	%	5.62	5.98	6.23%	20%					
Leachable Anions &	Nutrients (QC Lot: 1276	6871)													
WT2340486-001	BH1-SS5	Chloride, leachable	E235.CI	5.4	mg/kg	124	137	9.54%	30%						
Leachable Anions &	Nutrients (QC Lot: 1276	8872)													
WT2340486-001	BH1-SS5	Sulfate, leachable	14808-79-8	E235.SO4	11	mg/kg	43	42	0.6	Diff <2x LOR					

 Page
 :
 3 of 4

 Work Order
 :
 WT2340486

 Client
 :
 Englobe Corp.

Project : 2111839.024- KIRWIN AVE.

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Soil/Solid

Cub Matrixi Com Cona					
Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 1279653)					
Moisture	E144	0.25	%	<0.25	
Leachable Anions & Nutrients (QCL	ot: 1276871)				
Chloride, leachable	16887-00-6 E235.CI	5	mg/kg	<5.0	
Leachable Anions & Nutrients (QCL	ot: 1276872)				
Sulfate, leachable	14808-79-8 E235.SO4	10	mg/kg	<10	

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Soil/Solid		Laboratory Control Sample (LCS) Report										
		Spike	Recovery (%)	Recovery	Limits (%)							
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier			
Physical Tests (QCLot: 1279653)												
Moisture		E144	0.25	%	50 %	100	90.0	110				
Leachable Anions & Nutrients (QCLot: 12768	71)											
Chloride, leachable	16887-00-6	E235.CI	5	mg/kg	500 mg/kg	98.7	80.0	120				
Leachable Anions & Nutrients (QCLot: 12768	72)											
Sulfate, leachable	14808-79-8	E235.SO4	10	mg/kg	500 mg/kg	97.5	80.0	120				

Page : 4 of 4 Work Order : WT2340486

Client : Englobe Corp.

Project : 2111839.024- KIRWIN AVE.

Reference Material (RM) Report

A Reference Material (RM) is a homogenous material with known and well-established analyte concentrations. RMs are processed in an identical manner to test samples, and are used to monitor and control the accuracy and precision of a test method for a typical sample matrix. RM results are expressed as percent recovery of the target analyte concentration. RM targets may be certified target concentrations provided by the RM supplier, or may be ALS long-term mean values (for empirical test methods).

Sub-Matrix:			Reference Material (RM) Report										
			RM Target	Recovery (%)	Recovery L								
Laboratory sample ID	Reference Material ID	Analyte	CAS Number	Method	Concentration	RM	Low	High	Qualifier				
Leachable Anion	s & Nutrients (QCLot: 1	276871)											
	RM	Chloride, leachable	16887-00-6	E235.CI	432 mg/kg	97.8	70.0	130					
Leachable Anions & Nutrients (QCLot: 1276872)													
	RM	Sulfate, leachable	14808-79-8	E235.SO4	1070 mg/kg	106	70.0	130					

Canada Toll Free: 1 800 668 9878

Page of 2

Released by: Alfred Iskander		□ YES	re samples for i	□ YES	re samples take	Drinking														ALS use only)	ALS Sample #	ALS Lab Work	SD:	O / AFE:	ob #:	LS Account # / Quote #:		ontact:	ompany:		voice To	ostal Code:	ity/Province:	treet:		hone:		ompany:	eport To
fred Iskander	SHIPMENT REI	O	re samples for human consumption/ use?	NO	re samples taken from a Regulated DW System?	Drinking Water (DW) Samples ¹ (client use)		BH12-SS3	BH11-SS4	BH10-SS5	BH9-SS4	BH8-SS4	BH7-SS4	BH6-SS4	BH5-SS5	BH4-SS3	BH3-SS3	BH2-SS5	BH1-SS5	(T)	San	ALS Lab Work Order # (ALS use only):		60635	2111839.024 - Kirwin Ave.	/ Quote #.	Project I	Houshang Akbari	Englobe Corp.	Copy of Invoice with Report	Same as Report To	M9W 5W8	Etobicoke/ON	1821 Albion Rd. Unit 7, Toronto	Company address below	416 206 0319	Houshang Akbari	Englobe Corp.	Contact and compar
Date: 12/13/2023	SHIPMENT RELEASE (client use)		e?		System?		Note													(This description will appear on the report)	Sample Identification and/or Coordinates	ly):			ve.	Q87850	Project Information			aport - YES - NO	☐ YES ☐ NO			Toronto	Company address below will appear on the final report				Contact and company name below will appear on the final report
Time: Received by:						(Excel COC only)	1 Charles I imite for small or													report)	rdinates	ALS Contact:	Location:	Requisitioner:	Major/Minor Code:	AFE/Cost Center:	Oil	Email 2	Email 1 or Fax	Select Invoice D		Email 3	Email 2	Email 1 or Fax	Select Distribution:	□ Compare Results	Merge QC/QCI	Select Report Format:	eport
3	INITIAL SHIPMENT RECEPTION (ALS use only)					(Excel COC only)	ration by solocity	12-Dec-23	12-Dec-23	12-Dec-23	12-Dec-23	12-Dec-23	11-Dec-23	11-Dec-23	11-Dec-23	8-Dec-23	8-Dec-23	8-Dec-23	8-Dec-23	(dd-mmm-yy)	Date						Oil and Gas Required Fields (client use)			Select Invoice Distribution: EMAIL	Invoice Recipients			Email 1 or Fax houshang.akbari@englobecorp.com	on: 🗵 EMAIL	☐ Compare Results to Criteria on Report - provide details below if box checked	ts with CO	☑ PDF	Reports / Recipients
Date: 12/13/2	RECEPTION (AL					ig mondon and	from drop down														Time	Sampler:			Routing Code:	PO#	Fields (client us			□ MAIL □	cipients			englobecorp.com	□ MAIL □ FAX	provide details below if		□ EXCEL □ EDD(C	ecipients
							bolow	Soil	Soil	Soil	Soil	Soil	Sample Type	Samula Tuna						e)			FAX					0-0	box checked		EDD (DIGITAL)								
Time: 14:25		12-1		Cooler C	Submiss	Cooling Method:	H	D D	٦ ٦	1 R	_1 _D	1 R	1 R	ı R	1 R	ı R	1 R	1 R	1 R			BER		= C	01	NT	All	NE	R			Date	routine tests	Same day [62] if received by 10am M-S - 200% surcharge. Additional control of the	2 day [P2] if received by 3pm M-F - 50% rush surcharge minimum 1 day [F1] if received by 3pm M-F - 100% rush surcharge minimum	3 day [P3] if received by 3pm M-F - 25% rush surcharge minimum	4 day [P4] if received by 3pm M-F - 20% rush surcharge minimum	Routine [R] if received by 3pm M-F - no surcharges apply	
		13.	INITIAL	er Custody Seals Intact:	ion Cor	Method	f	~	~	~	~	~	~	~	~	~	~	~	~			TEX	orido			-						Date and Time Required for all E&P TATs:	sts widde	[E2] if n	2] if receive	3] if receiv] if receiv	R] if recei	7
Received by:		.2	INITIAL COOLER TEMPERATURES °C	Seals I	nments	- NONE														vo	Cs								Indicate Filtered (F), Preserved (P) or Filtered and Pi		For all	e Requir	nsu reduc	ceived b	ved by 3p	ed by 3p	ed by 3pi	ved by 3p	Turnaround Time (TAT) Requested
が		3.01	TEMPE	ntact	identifi		S	-												PA		-							iltered (F		tests wit	ed for all	SIS OIL W	/ 10am	m M-F	m M-F-	n M-F -	m M-F-	nd Time
	FINA	13	RATURE	O YES	ed on S	□ ICE	N P	+	-											PCI mS	nicolnico	(Metals	&Ino	rgar	nics,	VO	Cs)), Prese		rush TA	E&P TA	exerus,	4-S - 20	50% ru	25% ru	20% rus	no surc	(TAT)
	LSHIP	3	S°C	S UN/A	ample	100	RECE																						ved (P) o	An	Ts reques	Ts:	Statution	0% rush	sh surcha	sh surcha	h surcha	harges ap	Reques
Date:	MENT	=		A	Receip	TICE PACKS	PE																						or Filtered	Analysis Reque	For all tests with rush TATs requested, please conta		Hollodys	surcharg	irge minir	irge minir	ge minin	ylqc	ted
Date: 13 me-23	RECEPTIC	826	P	Sample Cu	Submission Comments identified on Sample Receipt Notification:	□ FROZEN	All S (AL																				-	-	Land Pi	Reque	e conta		did in	Add	חשת	mum	mu	١	
-27	INAL SHIPMENT RECEPTION (ALS use only)	h 176	FINAL COOLER TEMPERATURES	dy Seals Intact:	□ YES		SAMPLE RECEIPT DETAILS (ALS use only)																				0	Telephone: +1 519 886 6910			5				WT23	Work Order Reference	Waterloo	Environmental Division	
Time:		۲,	ATURES .	O YES	ONO	COOLING INITIATED	t													S	١M	PLE	s c	N	НС)L		886 691C	B. W. 1		j				40,	Referer		al Div	
3		13	റ്	ON/A		e e	F													-		NDED				_									284	8		sion	

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY, By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form. REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION WHITE - LABORATORY COPY YELLOW - CLIENT COPY

SOL-135 MT

Canada Toll Free: 1 800 668 9878

Page

으

ALS Sample #
(ALS use only) Phone: Are samples taken from a Regulated DW System? PO / AFE Job #: Postal Code: City/Province: Street Company: Are samples for human consumption/ use? LSD: ALS Account # / Quote #: Contact Company: Invoice To Contact Report To REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION Released by: Alfred Iskander ALS Lab Work Order # (ALS use only): Drinking Water (DW) Samples' (client use) □ YES □ NO YES BH15-SS4 BH14-SS4 BH13-SS4 2111839.024 - Kirwin Ave. Houshang Akbari Englobe Corp. Copy of Invoice with Report Same as Report To **M9W 5W8** Etobicoke/ON Company address below will appear on the final report 416 206 0319 Houshang Akbari Englobe Corp. 1821 Albion Rd. Unit 7, Toronto SHIPMENT RELEASE (client use Contact and company name below will appear on the final report Project Information Sample Identification and/or Coordinates (This description will appear on the report) Q87850 Date: 12/13/2023 • YES YES NO O Notes / Specify Limits for result evaluation by selecting from drop-down below Time: Select Distribution: Merge QC/QCI Reports with COA D YES D NO DN/A Received by: AM Requisitioner: AFE/Cost Center. Email 2 Email 1 or Fax Select Invoice Distribution:

EMAIL

MAIL Email 3 Email 2 Email 1 or Fax houshang.akbari@englobecorp.com □ Compare Results to Criteria on Report - provide details below if box checked Select Report Format: PDF DEXCEL ALS Contact: Major/Minor Code: ocation: Oil and Gas Required Fields (client use) (Excel COC only) INITIAL SHIPMENT RECEPTION (ALS use only) (dd-mmm-yy) 11-Dec-23 11-Dec-23 12-Dec-23 Date Reports / Recipients Invoice Recipients WHITE - LABORATORY COPY O MAIL Routing Code PO# Sampler: (hh.mm) Time □ FAX EDD (DIGITAL) FAX 2023 Sample Type Soil Soil Soil Time: 1 day [E] if received by 3pm M-F - 100% rush surcharge minimum Same day [E2] if received by 10am M-S - 200% rush surcharge. Additional Cooler Custody Seals Intact: Submission Comments identified on Sample Receipt Notification: NUMBER OF CONTAINERS Cooling Method:

NONE fees may apply to rush requests on weekends, statutory holidays and non-2 day [P2] if received by 3pm M-F - 50% rush surcharge minimum 3 day [P3] if received by 3pm M-F - 25% rush surcharge minimum 4 day [P4] If received by 3pm M-F - 20% rush surcharge minimum Routine [R] if received by 3pm M-F - no surcharges apply Date and Time Required for all E&P TATs: R Z Z Sulphate & Chloride PHC / BTEX Turnaround Time (TAT) Requested Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) below VOCs For all tests with rush TATs requested, please contact your AM to confirm availability 3.01 PAHs SAMPLE RECEIPT DETAILS (ALS use only) D ICE PCBs DYES DN/A FINAL SHIPMENT RECEPTION (ALS use only) 13:5 mSPLP (Metals&Inorganics, VOCs) STICE PACKS II FROZEN Analysis Request Date - 13 Sample Custody Seals Intact: FINAL COOLER TEMPERATURES °C AFFIX ALS BARCODE LABEL HERE □ YES COOLING INITIATED (ALS use only) ONO □ YES SAMPLES ON HOLD O N/A EXTENDED STORAGE REQUIRED 0 SUSPECTED HAZARD (see notes

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form

englobecorp.com