

DRAFT

HYDROGEOLOGICAL INVESTIGATION REPORT ENVIRONEMNTAL ASSESSMENT AND PRELIMINARY DESIGN FOR DRAINAGE IMPROVEMENTS OF HIGHWAY 50 FROM MAYFIELD ROAD TO HEALEY ROAD REGION OF PEEL

Report

to

R.V. Anderson Associates Limited

Date: October 07, 2020

File: 28262

TABLE OF CONTENTS

1	INTR	RODUCTION	1
2	BAC	KGROUND REVIEW	1
	2.1	Site and Project Description	1
	2.2	Topography and Drainage	2
	2.3	Physiography	2
	2.4	Regional Geology and Hydrogeology	2
	2.5	Groundwater Users	4
	2.6	Environmental Features	4
3	INVE	ESTIGATION	5
	3.1	Geotechnical Investigation	5
	3.2	Hydrogeological Investigation	5
		3.2.1 Groundwater Levels	6
		3.2.2 Hydraulic Conductivity	7
		3.2.3 Infiltration Testing for LID Applications	7
		3.2.4 Groundwater Quality	9
4	DEW	VATERING ASESSMENT	10
5	IMPA	ACT ASSESSMENT	11
6	CON	ICLUSIONS AND RECOMMENDATIONS	12
	6.1	Water Taking Permitting	12
	6.2	Groundwater Discharge	12
	6.3	Low Impact Development	13
	6.4	Control of Impacts and Monitoring	13
	6.5	Future Work	14
7	CLO	SURE	15
8	REFE	ERENCES	17

STATEMENT OF LIMITATIONS AND CONDITIONS

Table 1 – Monitoring Well Details	5
Table 2 – Measured Groundwater Levels in Monitoring Wells	
Table 3 – Estimated Hydraulic Conductivities	7
Table 4 – Estimated Saturated Hydraulic Conductivity and Infiltration Rate	8

APPENDICES

Appendix A Drawings

1 – Site Location Plan

2 – Topography

3 – Physiography

4 – Surficial Geology

5 – Bedrock Geology

6 - Regional Geologic Cross Section

7 – MECP Well Records

8 – Nearby Environmental Features

9 - Monitoring Well Locations

Borehole Location Plans

Appendix B MECP Well Records

Appendix C Record of Borehole Sheets

Appendix D Single Well Response Test Analyses

Appendix E Infiltration Testing Results

Appendix F Laboratory Certificates of Analysis

1 INTRODUCTION

Thurber Engineering Ltd. (Thurber) was retained by R.V. Anderson Associates Limited to prepare a hydrogeological investigation in support of the Class Environmental Assessment (Class EA) and Preliminary Design for stormwater management/drainage improvements of Highway 50 in the Town of Caledon, Ontario. The limits of the project are from Mayfield Road to Healey Road for a total length of approximately 2.4 km (the Site) and are shown on Drawing 1 in Appendix A. A recent condition assessment of the drainage infrastructure along the Site has identified the need for the rehabilitation of 17 entrance culverts (and crossings) on the east and west sides of Highway 50 within the Site limits.

The purpose of the investigation was to establish baseline hydrogeological conditions along the alignment in support of the class EA and preliminary design through subsurface investigation, including characterization of the soil and groundwater conditions. Preliminary discussion of potential construction dewatering needs is included, as well as an impact assessment and potential mitigation measures.

A geotechnical investigation was completed concurrently with the hydrogeological investigation. The results of the geotechnical investigation are reported under separate cover and should be read in conjunction with this report.

It is a condition of this report that Thurber's performance of its professional services is subject to the attached Statement of Limitations and Conditions.

2 BACKGROUND REVIEW

2.1 Site and Project Description

This section of Highway 50 between Mayfield Road and Healey Road presently consists of a fivelane urban roadway with two lanes in the north bound direction, two lanes in the southbound direction, and a central turning lane. Concrete curbs and gutters abut the paved lanes on both sides of the road and shallow ditches lay beyond the curb on both sides.

A recent condition assessment of the road's drainage infrastructure has confirmed the need for rehabilitation of 17 entrance culverts (and crossings) on the east and west side from McEwan Drive to Mayfield Road. Construction elements may include low impact development (LID) features such as infiltration trenches or bioswales, storm sewers, culverts (assumed to be non-structural) and site grading.

The land use adjacent to the corridor is a mix of industrial and commercial properties, with a few residential properties located on the eastern side at the southern end of the site.

2.2 Topography and Drainage

The Site is located within the Humber River Watershed and falls under the jurisdiction of the Toronto Region and Region Conservation Authority (TRCA). The regional topography slopes southeasterly toward Humber River, and eventually drains into Lake Ontario. A regional topographic map is presented on Drawing 2 in Appendix A.

Ground elevation at the Site range from about 248 m in the northern portion of the Site near Healey Road to approximately 226 m near Mayfield Road in the southern portion of the Site. Overland flow drainage at the Site generally follows the existing topography toward the adjacent watercourse.

2.3 Physiography

A review of the physiographic regions of southern Ontario indicated that the north portion of the Site is primarily located within the physiographic region of the South Slope, while the south portion of the Site is located within the Peel Plain physiographic region. The South Slope is typically a drumlinized area consisting of areas of thin (<1 m) aeolian sand deposits underlain by glacial deposits, primarily till. The peel plain physiographic region is a relatively flat tract of soils that are predominantly clay with localized clay loam and loam. The underlying material of the plain is a till containing shale and limestone fragments. (Chapman and Putnam, 1984). A physiographic map of the Site and surrounding area is shown on Drawing 3 in Appendix A.

2.4 Regional Geology and Hydrogeology

The current understanding of the regional geological and hydrogeological conditions was based on scientific work conducted by the geological and hydrogeological Information from Ontario Geological Survey (OGS), and available information from the TRCA.

The surficial geology across the Site primarily consists of clay to silt-textured till that was derived from glaciolacustrine deposits or shale. Drawing 4 in Appendix A illustrates the regional surficial geology for the Site.

The bedrock underlying the Site consists of the Georgian Bay Formation, typically consisting of shale and limestone. The bedrock surface in the area is expected to be at approximate elevation of 110 m. A bedrock geology map is presented on Drawing 5 in Appendix A.

October 07, 2020

2 of 17

Date:

Page:

Client: R.V. Anderson Associates

File No.: 28262

A regional north to south geologic cross section along the Main Humber River is provided on Drawing 6 in Appendix A. Based on a review of the regional cross section, the following units overlie the bedrock:

- Recent Sediments;
- Halton Till (Aquitard);
- Oak Ridges Aquifer Complex (Aquifer);
- Newmarket Till (Aquitard);
- Thorncliffe Formation (Aquifer);
- Sunnybrook Drift (Aquitard), and
- Scarborough Formation (Aquifer)

The Halton Till is the uppermost overburden unit across the Site and it consists of silt to silty clay with occasional gravel. Groundwater flow in this aquitard is generally vertically downward, with the exception of localized areas where the underlying aquifers are artesian.

The uppermost aquifer underlying the Site is the Oak Ridges Aquifer Complex (ORAC) which is interpreted to occur where continuous layers of fine to medium sand are encountered. The degree of hydraulic connection with the moraine sediments generally decreases with distance from the Oak Ridges Moraine (ORM). Groundwater flow in this unit is influenced by topography and primarily horizontal towards Lake Ontario, with localized flow towards watercourses that cut into the aquifer and may be under artesian conditions.

The lower contact of the ORM sits on the Newmarket Till that acts as a regional aquitard separating the ORM from underlying Thorncliffe formation. Groundwater flow in this unit is predominantly downward, with the leakage to the underlying Thorncliffe Formation.

The Thorncliffe formation is comprised of glaciofluvial deposits containing silt, sand and clay deposits. Groundwater flow is generally south towards Lakes Ontario.

The Sunnybrook Drift aquitard separates the Thorncliffe aquifer from the underlying Scarborough Aquifer. This unit thins in the western portion of the watershed.

The Scarborough Formation is composed of clay, silt, and sand sediments in a deltaic sequence. This unit is mostly found within bedrock valleys and is a very significant unit as the overall

October 07, 2020

3 of 17

Date:

Page:

Client: R.V. Anderson Associates

File No.: 28262

transmissivity of the Scarborough aquifer is high within the valley system. The groundwater flows to the south towards Lake Ontario.

2.5 Groundwater Users

A search of the Ministry of Environment, Conservation and Parks (MECP) well records database conducted for a 500 m radius around the Site returned a total of 115 records (Drawing 7 in Appendix A). Based on the well records, the majority of the nearby wells are listed as water supply wells (40 records). Although it is Thurber's understanding that an existing watermain is located on the eastern side of HWY 50, it is possible that some residences are not connected to the municipal water supply system. A detailed table summarizing the data provided from MECP's database is provided in Appendix B.

A search conducted in August 2020 identified no active Permits To Take Water (PTTWs) within 500 m of the Site.

2.6 Environmental Features

Based on regional-scale source protection mapping, the Site is not located within Wellhead Protection Areas (WHPAs), Significant Groundwater Recharge Areas (SGRAs) and Highly Vulnerable Aquifers (HVAs). However, the SGRAs lie just southeast of the intersection of Highway 50 and Mayfield Road. The Site is also located within the TRCA regulated areas.

A number of tributaries of Humber River and West Humber River are located within 1 km of the Site, including an onsite tributary. This tributary of the Humber River flows southeasterly towards the Humber River. Based on a review of the Humber River Fisheries Management Plan Report (Clayton J. et. al., 2004), the watercourse is classified as a warm water watercourse; and thus, is unlikely to be groundwater dependent.

A search of the Ministry of Natural Resources and Forestry (MNRF) online mapping returned no significant heritage features, including Areas of Natural and Scientific Interest (ANSIs), wetlands, or Environmentally Sensitive Areas (ESAs), within 1 km of the Site. The natural features located within a 1 km buffer of the Site are illustrated on Drawing 8 in Appendix A.

Roadside ditches and/or swales generally existed along both sides of the Site alignment. The ditches were covered with grass, vegetation and shrubs; however, gabion stones lined portions of the east ditch at culvert or head wall inlets and outlets.

October 07, 2020

4 of 17

Date:

Page:

Client: R.V. Anderson Associates

File No.: 28262

3 INVESTIGATION

The current understanding of the local geological and hydrogeological environment of the Site is based on the geotechnical investigation and the hydrogeological investigation conducted by Thurber.

3.1 Geotechnical Investigation

Thurber conducted a geotechnical investigation at the Site in March and April 2020 (Thurber, 2020). Twenty-five boreholes were drilled to depths of 3.6 to 4.4 m. The geotechnical borehole logs were used to understand local geology of the Site. Record of borehole sheets are provided in Appendix C and borehole location plans are provided in Appendix A.

Based on the borehole logs, the overburden material at the Site consists of a thin layer of asphalt overlying a layer of sand to gravelly sand fill with thickness ranging from approximately 0.6 m to 3.3 m. Underlying the fill is a layer of silty clay till extending to the termination of the boreholes. Below the sandy fill layer, a silty clay fill layer was also encountered in Boreholes 20-02 and 20-20.

3.2 Hydrogeological Investigation

To support the hydrogeological investigation, eight monitoring wells were installed in the selected boreholes. Each monitoring well was developed following completion of drilling by removing a minimum of 3 well volumes of water to clear any silt or drilling debris from the sand pack and well casing. A map illustrating the location of the monitoring wells is provided on Drawing 9 in Appendix A.

The monitoring wells were used to measure groundwater levels, collect samples for groundwater quality analyses, and estimate the hydraulic conductivity of the screened units. Monitoring well details are summarized in Table 1.

Table 1 – Monitoring Well Details

Borehole No.	Ground Elevation (m)	Well Depth (m)	Well Diameter (mm)	Screen Length (m)	Screen Unit
BH20-02	226.9	3.95	51	1.5	Silty clay (Till)
BH20-06	231.0	3.92	51	1.5	Silty clay (Till)
BH20-08	233.0	3.90	51	1.5	Silty clay (Till)
BH20-12	237.4	3.43	51	1.5	Sand (Fill)

October 07, 2020

5 of 17

Date:

Page:

Client: R.V. Anderson Associates

File No.: 28262

BH20-16	239.7	3.92	51	1.5	Silty clay (Till)
BH20-19	242.4	3.72	51	1.5	Silty clay (Till)
BH20-20	243.0	3.89	51	1.5	Silty clay (Till)
BH20-24	245.9	3.81	51	1.5	Silty clay (Till)

3.2.1 Groundwater Levels

Groundwater levels in the monitoring wells were measured manually between May 26, 2020, and August 24, 2020, as summarized in Table 2.

Table 2 – Measured Groundwater Levels in Monitoring Wells

Well ID	May 26, 2020		June 9, 2020		June 11, 2020		August 24, 2020	
Well ID	Depth (m)	Elev. (m)	Depth (m)	Elev. (m)	Depth (m)	Elev. (m)	Depth (m)	Elev. (m)
BH20-02	3.25	223.65	NM	NM	NM	NM	3.23	223.67
BH20-06	3.01	227.99	NM	NM	NM	NM	3.01	227.99
BH20-08	2.99	230.01	NM	NM	2.82	230.18	2.94	230.06
BH20-12	2.83	234.57	NM	NM	NM	NM	3.08	234.32
BH20-16	3.05	236.65	NM	NM	2.89	236.81	3.07	236.63
BH20-19	2.14	240.26	NM	NM	NM	NM	2.13	240.27
BH20-20	1.05	241.95	1.05	241.95	NM	NM	1.08	241.93
BH20-24	2.23	243.67	2.44	243.46	NM	NM	2.24	243.66

NM: Not Measured

The water level elevations in the monitoring wells ranged from 223.65 m to 243.67 m. The highest groundwater level (Elev. 243.67 m; depth 2.23 m) was measured in BH20-24 and the lowest water level (Elev. 223.65 m; depth 3.25 m) was measured in BH20-02.

Based on our conceptual understanding of the local hydrogeology, the monitoring wells are considered to be screened within the unconfined overburden and the water levels recorded from the monitoring wells are interpreted to be representative of the shallow groundwater table. Groundwater levels collected on August 24, 2020 indicated that shallow groundwater flows from northwest to southeast toward the tributary of Humber River, following local topography.

October 07, 2020

6 of 17

Date:

Page:

Client: R.V. Anderson Associates

File No.: 28262

3.2.2 Hydraulic Conductivity

Single-well response tests (slug tests) were conducted between June 9, 2020 and June 17, 2020 in four selected monitoring wells. Falling head tests were carried out to estimate the in-situ hydraulic conductivity (K) of the screened overburden materials. Hydraulic conductivity estimates were obtained using the Hvorslev method (1951). Estimated K values are presented in Table 3. The slug test analyses are presented in Appendix D.

Well ID	Bottom of Screen Elevation (m)	Top of Screen Elevation (m)	Screened Material	Hydraulic Conductivity (K) (m/s)
20-08	229.10	230.63	Silty clay (Till)	1.1 x 10 ⁻⁸
20-16	235.78	237.30	Silty clay (Till)	1.1 x 10 ⁻⁷
20-20	239.11	240.64	Silty clay (Till) Silty clay (Fill)	5.2 x 10 ⁻⁷
20-24	242.09	243.61	Silty clay (Till)	9.8 x 10 ⁻¹⁰

Table 3 - Estimated Hydraulic Conductivities

The estimated in-situ K values for the silty clay till materials range from 9.8×10^{-10} m/s to 5.2×10^{-7} m/s. A portion of the well screen and sand pack for the well at Borehole 20-20 was within silty clay fill and may have resulted in a somewhat higher hydraulic conductivity estimate. The geometric mean of the slug tests conducted solely in the silty clay till is 1.1×10^{-8} m/s.

3.2.3 Infiltration Testing for LID Applications

Guelph Permeameter testing was conducted at nine locations on the grass boulevards on the west side of Highway 50 adjacent to the selected drilled boreholes. The locations of the boreholes are shown on Drawing 9 in Appendix A.

For each infiltration test, a hole was augered using a 6 cm diameter hand auger to a depth of between 30 cm and 60 cm. Infiltration tests were performed in the hole using a Guelph Permeameter. The device maintains a constant water column in the hole using the Marriott Principle. The water that infiltrates into the ground is replenished by the Guelph Permeameter reservoir and the rate of water level drop in the reservoir is indicative of the infiltration rate into the hole. The infiltration rate is estimated by measuring the change in water level in the Guelph Permeameter reservoir once steady state is reached as indicated by a minimum of three consecutive intervals with the same or similar change in water level. The field saturated hydraulic conductivity (K_{fs}) calculations and results are presented in Appendix E.

October 07, 2020

7 of 17

Date:

Page:

Client: R.V. Anderson Associates

File No.: 28262

The saturated hydraulic conductivity measured using the Guelph Permeameter was converted to an infiltration rate (T) for the purpose of designing the infiltration measures. The approximate relationship presented in the Low Impact Development Stormwater Management Planning and Design Guide (TRCA and CVC, 2010) was used for the conversion, as follows, where K_{fs} is in cm/s and T is in mm/hr:

$$K_{fs} = 6 \times 10^{-11} \times T^{3.7363}$$

The surface materials at the Site are mainly sand fill with some silt and gravel, with an estimated saturated hydraulic conductivity range between 2.7 x 10⁻⁵ cm/s and 1.8 x 10⁻³ cm/s. The corresponding infiltration rate for the sand fill ranged between 59 mm/hr and 101 mm/hr with a corresponding geometric mean infiltration rate of 72 mm/hr. The infiltration rate values are generally high and reflect the high content of sand and gravel in the shallow fill at the Site. A summary of the results is provided in Table 4.

Table 4 – Estimated Saturated Hydraulic Conductivity and Infiltration Rate

Test ID	Test Depth (m)	Materials	Saturated Hydraulic Conductivity (cm/s)	Infiltration Rate (mm/hr)
Test 20-02	0.56	Sand and Gravel (Fill)	1.1 x 10 ⁻³	88
Test 20-06	0.48	Sand (Fill)	7.8 x 10 ⁻⁴	80
Test 20-08	0.41	Sand (Fill)	1.8 x 10 ⁻³	101
Test 20-12	0.48	Sand (Fill)	1.7 x 10 ⁻³	99
Test 20-14	0.37	Sand and Silt (Fill)	2.4 x 10 ⁻⁴	59
Test 20-18	0.54	Sand (Fill)	2.7 x 0 ⁻⁵	43
Test 20-20	0.46	Sand (Fill)	5.4 x 10 ⁻⁴	73
Test 20-22	0.33	Sand (Fill)	3.9 x 10 ⁻⁴	66
Test 20-24	0.3	Sand (Fill)	2.9 x 10 ⁻⁴	61

As previously described in Section 3.2.2, the geometric mean of hydraulic conductivity of the silty clay till was 1.1×10^{-8} m/s. The converted infiltration rate is 14 mm/hr. As expected, locations underlain by till deposits exhibited lower infiltration rates than locations underlain strictly by the more permeable sand fill.

October 07, 2020

8 of 17

Date:

Page:

Client: R.V. Anderson Associates

File No.: 28262

Based on a review of the estimated infiltration rates provided above, the estimated infiltration rates for the sand fill were higher than the 15 mm/hour threshold recommended in the stormwater Management Planning and Design Manual, which indicates the fill materials at the Site may be suitable for implementation of infiltration Best Management Practices (BMPs). However, the feasibility for implementing infiltration LIDs within the silty clay till materials is limited due to the low infiltration rate associated with the silty clay till.

For design purposes, if the LID measures can be placed in a location where there is 1.5 m or more of sand fill below the base, then a safety correction factor of 2.5 would apply and the typical design infiltration rate would be approximately 29 mm/hr (72 mm/hr divided by 2.5). If the base is in sand fill but silty clay till is within 1.5 m of the base, then a safety correction factor of 4.5 would typically apply because the silty clay till infiltration rate is 5.1 times smaller than that of the sand fill. In this case a design infiltration rate of 16 mm/hr would apply (72 mm/hr divided by 4.5). If the LIDs are proposed to be installed within the silty clay till materials, the estimated infiltration rates should be divided by a safety correction factor of 2.5 to calculate the design infiltration rate, which in this case would be approximately 5.6 mm/hr (14 mm/hr divided by 2.5).

In addition to infiltration rate requirements, the groundwater table must be sufficiently below the infiltration measure such that the storm water may infiltrate into the ground.

3.2.4 Groundwater Quality

Groundwater samples were collected on August 24, 2020 from monitoring wells at Boreholes 20-24, 20-20, 20-16, and 20-08 at the Site using a disposable PVC bailer. The collected samples were sent to SGS Laboratories for analysis of parameters in the Peel Sewer Use By-Law 53-2010. The laboratory analytical results and Certificate of Analysis are included in Appendix F.

A review of the analytical results indicated that all groundwater samples exceeded the storm sewer discharge criteria for total suspended solids (TSS) and manganese. The samples collected from Boreholes 20-24 and 20-16 also exceeded the storm sewer discharge criteria for total Kjeldahl Nitrogen. All other tested parameters met the Peel Storm Sewer Use By-Law criteria.

The groundwater sample collected from Borehole 20-16 exceeded the By-Law 53-2010 criteria for sanitary sewers for TSS. All other analyzed parameters met the applicable water quality criteria.

Based on conditions typically encountered for open excavations in till, it is expected that groundwater would require treatment prior to direct discharge into surface water or any sewers. Treatment to remove suspended sediment and associated metals, and possible adjustment of

October 07, 2020

9 of 17

Date:

Page:

Client: R.V. Anderson Associates

File No.: 28262

temperature if discharging to surface water, would likely be the minimum requirements. Where feasible, it is recommended that groundwater should be discharged at least 30 m away from any surface water bodies.

Pre-treatment of dewatering discharge will be the responsibility of the dewatering contractor to ensure that the quality of the dewatering discharge effluent meets applicable discharge criteria. Should the dewatering discharge be contaminated such that the groundwater cannot be treated to the appropriate water quality criteria, the dewatering contractor shall be responsible for transporting the contaminated groundwater off-site for disposal at an appropriate licensed facility.

4 DEWATERING ASESSMENT

At this time, there is not sufficient design information to provide preliminary dewatering estimates for the replacement and/or improvements to the roadside drainage ditches and culvert crossings along the Regional Road Highway 50. Once engineering drawings for structural drainage improvements are finalized, detailed dewatering estimates should be completed during detailed design, well in advance of construction to support permitting requirements.

Based on our understanding of the geology and water table at the Site, it is anticipated that minimal dewatering will be required for the construction of culverts or improvement to the storm drainage infrastructure. It is anticipated that water may be perched locally within the sand fill and that it would be of limited volume. It is further anticipated that groundwater flow rates through the silty clay till would be low due to the relatively low hydraulic conductivity of that soil. However, water taking estimates must include rainfall and surface water if they cannot be kept separate from groundwater, and, depending on the number and size of the excavations, the need for some form or water taking permit is likely.

The Zone of Influence (ZOI) from the edge of any excavations in the silty clay till is anticipated to be localized and less than 10 m.

If the detailed investigation indicates that dewatering is required, then the estimated budgeted peak flow rate will determine the type of water taking permission that is required. If the budgeted peak water taking rate is greater than 50,000 L/day but less than 400,000 L/day, then registration on the Environmental Activity and Sector Registry (EASR) is required, and a Water Taking Plan and Water Discharge Plan are required. If the flow rate exceeds 400,000 L/day, then a Category 3 PTTW must be applied for and obtained from MECP. The application must include a Hydrogeological Study in accordance with permit requirements.

October 07, 2020

10 of 17

Date:

Page:

Client: R.V. Anderson Associates

File No.: 28262

Water that is removed from excavations for dewatering must be discharged or disposed of in accordance with current regulations, whether to the natural environment or to a sewer system. The Water Discharge Plan in the case of an EASR registration or the PTTW and associated Hydrogeological Study will specify conditions on the discharge of the groundwater to the environment.

5 IMPACT ASSESSMENT

Lowering of the shallow groundwater level could potentially reduce the groundwater discharge to nearby natural environmental features and ground water users, and could potentially result in settlement or ground loss, although the likelihood of significant impacts is low due to the low hydraulic conductivity of the silty clay till. Any potential impacts during construction dewatering are expected to be temporary in nature. These potential impacts, however, need to be monitored and managed to minimize impact.

During the detailed design, a dewatering assessment should be completed to evaluate the potential need for construction dewatering during the installation of structures and dewatering rates and volumes as well as the potential ZOI should be estimated. These efforts would be completed as part of hydrogeological investigation for detailed design and will assess potential impact as a result of groundwater taking and provide mitigation measures.

As discussed previously, it is anticipated that the anticipated ZOI is less than 10 meters and minimal construction dewatering is required for the Site. Potential impacts associated with the construction dewatering may include the following:

- Impacts to Surface Water and the Natural Environment: Excavations have some
 potential to reduce groundwater contributions to surface water bodies and natural
 environmental features if within the ZOI and open for extended periods. However,
 considering the low hydraulic conductivity, the slow rate of drainage within the silty clay
 till and the small ZOI, there is not expected to be a discernible decrease in water
 contribution to surface water or the natural environment.
- Impacts to Groundwater Users: No domestic well users are located within the ZOI; therefore, impacts to groundwater users are not expected. However, the ZOI should be re-assessed during detailed design to determine whether a private well survey is warranted.
- **Geotechnical Impacts:** The lowering of groundwater levels can induce ground settlement due to an increase in the effective stress. At the proposed excavations, ground settlements associated with the dewatering activities are anticipated to be minor based

October 07, 2020

11 of 17

Date:

Page:

Client: R.V. Anderson Associates

File No.: 28262

on the anticipated groundwater drawdowns discussed in this report; however, an assessment of settlement potential should be completed during detailed design, prior to construction. Also, dewatering through the use of poorly designed wells and extraction systems may draw in silt and sand and cause ground loss; however, the low hydraulic conductivity of the silty clay till and the shallow anticipated excavation depths are not anticipated to result in this impact.

6 CONCLUSIONS AND RECOMMENDATIONS

6.1 Water Taking Permitting

As discussed in Section 5, a water taking permit may be required to conduct the construction. Depending on the outcome of further analysis and potentially additional investigation following detailed design, registration on the EASR and preparation of a Water Taking Plan and Water Discharge Plan in the case of peak water taking rates between 50,000 and 400,000 litres per day or application for a Category 3 PTTW and required Hydrogeological Study for water taking rates exceeding 400,000 litres per day may be required.

The permit application fee from MECP for a Category 3 PTTW is currently \$3,000 and the application will be subject to an administrative review as well as a technical review. MECP may request additional information or testing. The review process typically takes three to five months following submission. The registration fee from MECP for registration of water taking for construction dewatering is currently \$1,190 and no review period is required.

It would be possible to conduct limited construction dewatering without a permit provided the total daily water taking rate is restricted to 50,000 litres per day or less; however, many elements will not be feasible to construct with that limitation, and the rate of construction of feasible elements may be restricted until a water taking permit is obtained.

Additional terms and conditions may apply as determined by the water taking permit process, including performance, monitoring and reporting requirements among others.

6.2 Groundwater Discharge

Water quality observed during construction will vary from the results obtained herein based on a number of factors. An experienced dewatering contractor and water treatment contractor are recommended to be retained to design and operate dewatering and treatment operations as required. Pre-treatment of dewatering discharge would be the responsibility of the contractor to ensure that the quality of the dewatering discharge effluent meets Provincial Water Quality Objectives (PWQO) criteria or Peel Region Sewer Use By-Law No. 53-2010 as applicable, and

October 07, 2020

12 of 17

Date:

Page:

Client: R.V. Anderson Associates

File No.: 28262

determine if more extensive or specific treatment measures are required. Should the dewatering discharge be contaminated such that the groundwater cannot be treated to the appropriate water quality criteria, the contractor would be responsible for managing the water, including potentially storage and further treatment or transporting the contaminated groundwater off-site for disposal at an appropriate licensed facility.

A discharge permit would be required from the Region of Peel to discharge to a Region of Peel sewer. Discharge to the natural environment may require consultation with MECP, and potentially TRCA and MNRF depending on the discharge location.

6.3 Low Impact Development

Silty clay till was encountered below the fill soils in all boreholes (with the exception of Borehole 20-12) at depths ranging between 0.6 m and 3.6 m and extended to depths of approximately 3.7 m to 4.4 m. Based on the infiltration rates presented herein, the estimated infiltration rates for the silty clay till material encountered across the Site (BH20-09 and BH20-24) were less than the 15 mm/hour threshold specified in the Stormwater Management Planning and Design Manual, which indicate the Site may not be suitable for implementation of infiltration. Infiltration into the sand fill that was identified may be feasible if sufficient thickness and separation from the groundwater table can be identified. An appropriate safety factor as specified in the Low Impact Development Stormwater Management Planning and Design Guide should be applied to the estimated infiltration rate when designing infiltration LIDs to account for the natural variation in infiltration rate as discussed in Section 4.2.3.

Based on review of the existing site conditions and infiltration testing results, the designer may elect to modify the proposed bottom elevation of the LID measures. Additional field infiltration tests may be required to confirm the soil infiltration rates if any alternate locations or depths for infiltration LIDs are proposed in future.

Groundwater depths at the Site were typically between 1 and 3 m, which may limit the effectiveness of infiltration measures.

6.4 Control of Impacts and Monitoring

The following measures are recommended to mitigate the potential for the dewatering activities to cause negative impacts as assessed previously:

 Monitoring of water levels in the monitoring wells prior to, during, and following construction.

October 07, 2020

13 of 17

Date:

Page:

Client: R.V. Anderson Associates

File No.: 28262

- Monitoring of water quality for groundwater collected within the excavation dewatering systems to confirm the water quality is appropriate for the selected discharge option.
 Monitoring should include visual observations for contamination such as sheen or pure product, as well as for excessive sediment in the discharge, which could be an indication of ground loss.
- Where possible, it is recommended that groundwater should be discharged at least 30 m away from any water bodies including streams.
- If discharge to sewers or surface water bodies is proposed, treatment of groundwater to
 meet acceptable levels is required. Suitable treatment would likely include measures to
 address suspended sediment and associated metals and is anticipated to require
 additional treatment based on findings to date. The operation and monitoring of discharge
 facilities should be carried out by an experienced dewatering contractor and water
 treatment contractor familiar with fisheries and water quality requirements.
- Where discharge is to ground surface or water course, temporary erosion control
 measures should be developed and installed to control erosion at the discharge points.
 Additional water quality requirements may be imposed by MECP, TRCA and MNRF.
- Long-term impacts will need to be addressed through the implementation of best management practices to help increase the amount of infiltration to the aquifer system and minimize the environmental impacts of the development.
- Installation of clay plugs or similar are recommended for any open cut trenches to limit the preferential movement of groundwater along the trench.

6.5 Future Work

Additional hydrogeological investigation and analysis will be required to support detailed design. The following recommendation are provided based on the findings of the hydrogeological investigations:

- Additional groundwater level monitoring should be conducted to capture further seasonal variation, and additional groundwater sampling may be warranted depending on potential discharge location. Infiltration testing may also be advisable depending on infiltration concepts that may be developed.
- During the detailed design stage, it will be necessary to refine the analysis of the hydrogeological conditions along the Site to estimate dewatering rates. The ZOI and dewatering rates as a result of construction-related dewatering will be estimated. These

October 07, 2020

14 of 17

Date:

Page:

Client: R.V. Anderson Associates

File No.: 28262

findings will be used to confirm the water takings requirements and the appropriate approvals from the MECP prior to commencement of construction. They will also assist in determining whether a private well survey is warranted.

• Monitoring wells should be decommissioned in accordance with O. Reg. 903 if they are no longer in use to prevent the creation of vertical conduits for contaminant transport.

7 CLOSURE

We trust that this report provides the information you require at this time. If you have any questions regarding this report, please contact the undersigned at your earliest convenience.

Yours truly, Thurber Engineering Ltd.

Alireza Hejazi, Ph.D., P.Eng. Senior Hydrogeologist

David Hill, M.A.Sc., MBA, P.Eng., P.Geo. Senior Hydrogeologist / Environmental Engineer

Renato Pasqualoni, P.Eng. Review Principal

Client: R.V. Anderson Associates

File No.: 28262

E file: 28262 HWY 50 HydroG Draft3.2

Date: October 07, 2020

Page: 15 of 17

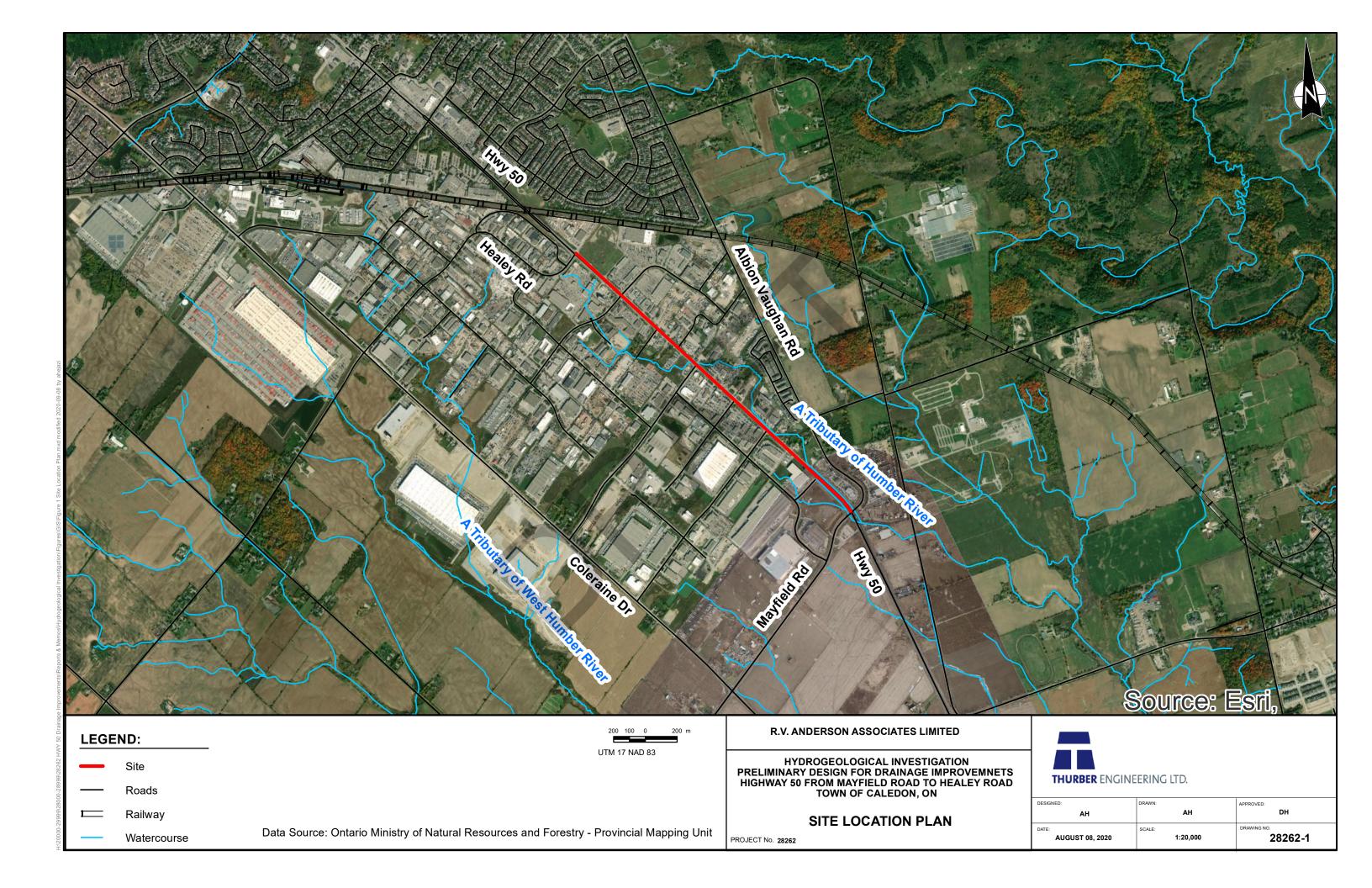
8 REFERENCES

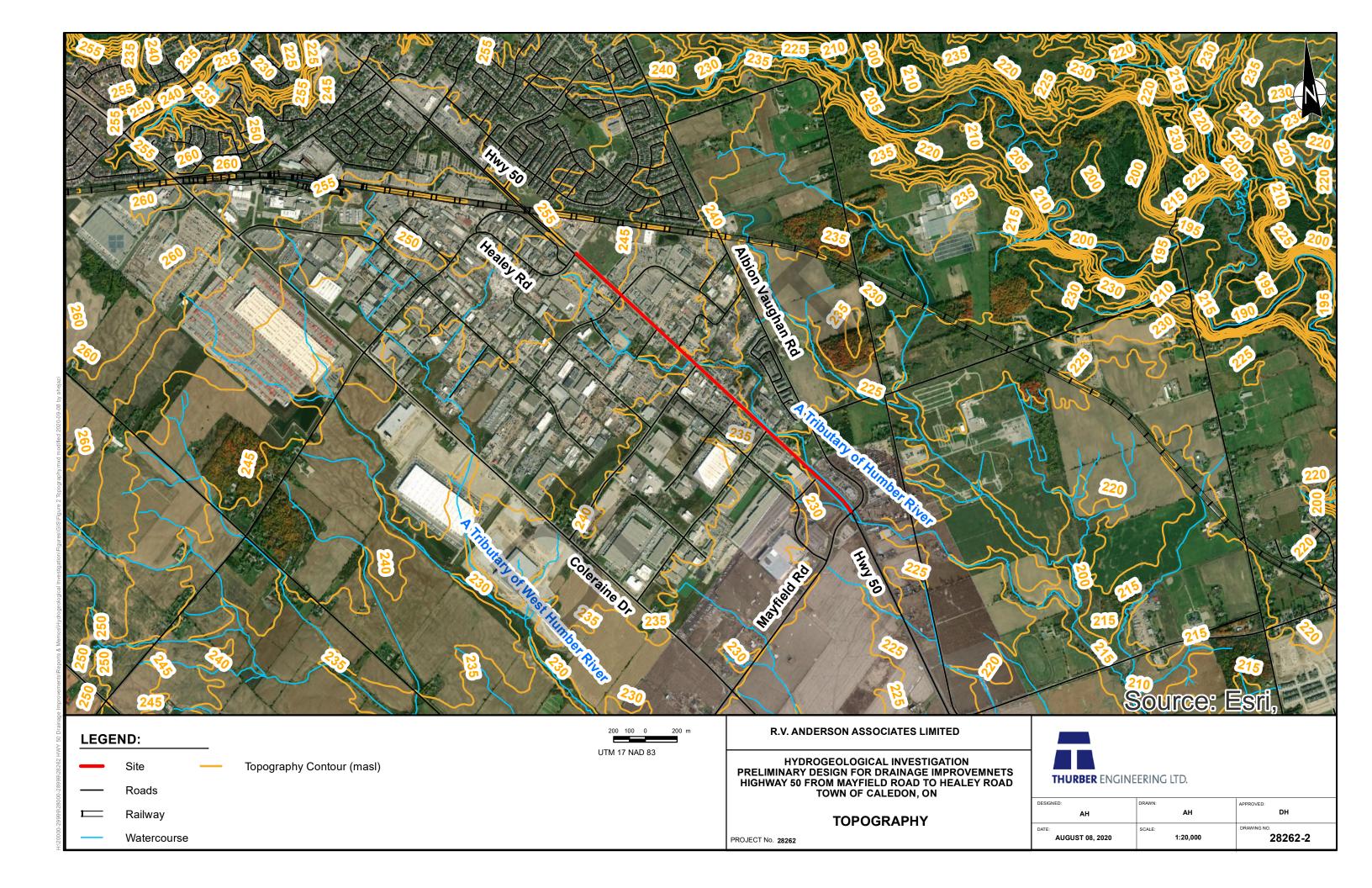
- Chapman, L.J. and Putnam, D.F. 1984. *The Physiography of Southern Ontario*, Third Edition. Ontario Geological Survey, Ontario Ministry of Natural Resources.
- Clayton, J., Hayes K., Heaton, M. G. and, Lawrie, D. 2004. Humber River Fisheries Management Plan. Published by the Ontario Ministry of Natural Resources and the Toronto and Region Conservation Authority.
- Hvorslev, M.J., 1951. Time Lag and Soil Permeability in Groundwater Observations. U.S. Army Corps Engrs. Waterway Exp. Sta. Bull. 36, Vicksburg, Miss.
- Ministry of the Environment, Conservation and Parks. 2020. Source Intake Protection Atlas.
- Ministry of the Environment, Conservation and Parks. 2019. Permit to Take Water Database.
- Ministry of the Environment, Conservation and Parks. 2019. Water Well Information System.
- Ministry of Natural Resources and Forestry, Natural Heritage Information Centre database Make a Heritage Map. Accessed November 2016, Queen's Printer for Ontario, 2015.
- Ontario Ministry of the Environment and Climate Change. 2003. Stormwater Management Planning and Design Manual.
- Ontario Geological Survey. Bedrock Geology of Ontario Seamless Coverage Data Set 6. 2005.
- Ontario Geological Survey. Quaternary geology, seamless coverage of the province of Ontario: Ontario Geological Survey, Data Set 14. 1997.
- Toronto and Region Conservation Authority, 2008. Humber River Watershed Plan Geology and Groundwater Resources.
- Toronto and Region Conservation Authority, 2008. Humber River Watershed, Scenario Modelling and Analysis Report.
- Toronto and Region Conservation Authority, Stormwater Management Criteria, August 2012.
- Thurber Engineering Ltd. Geotechnical Investigation Report. Preliminary Design for Drainage Improvements, Regional Road Highway 50 From Mayfield Road to Healey Road, The Region of Peel, August 2020.

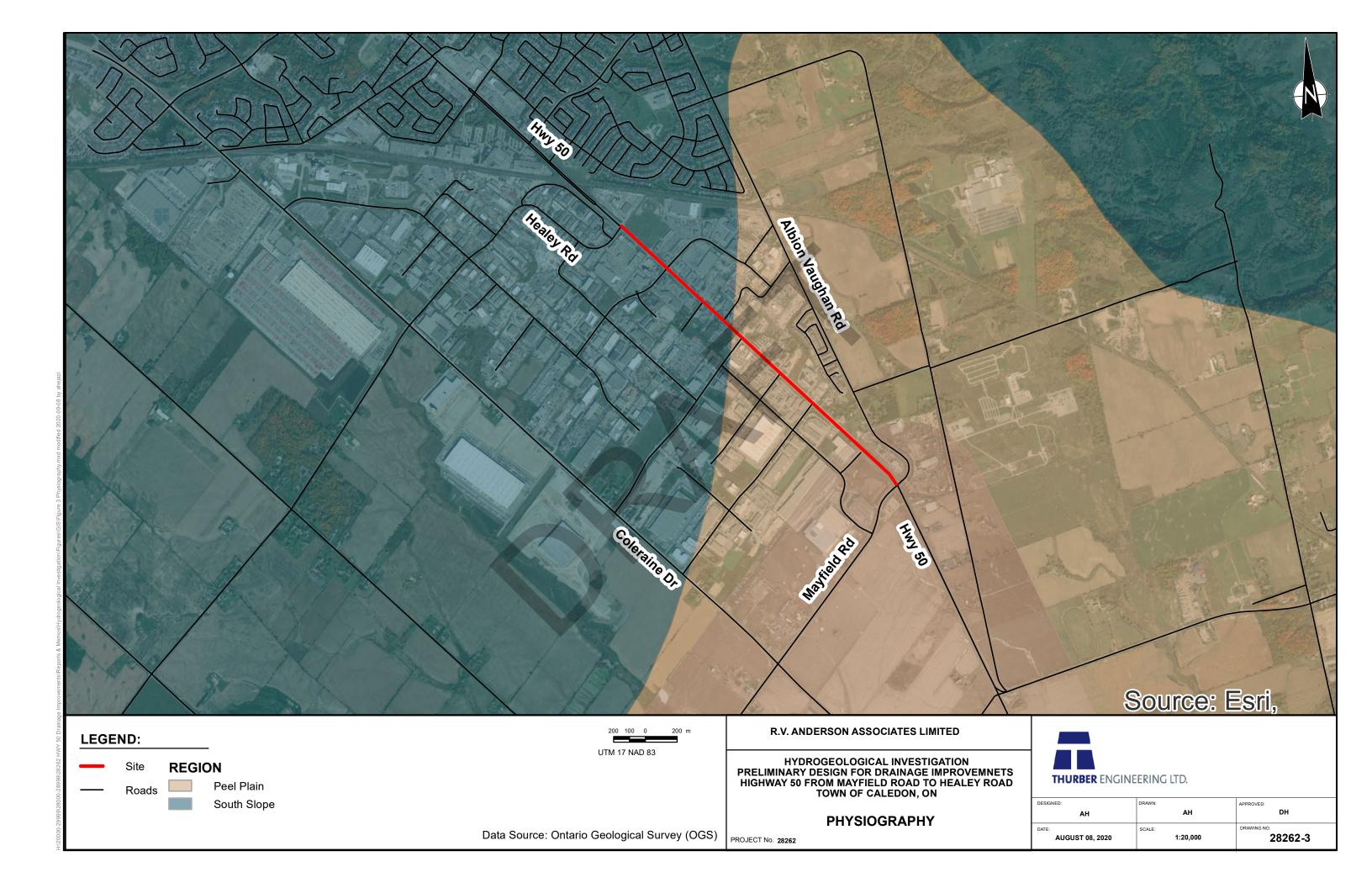
October 07, 2020

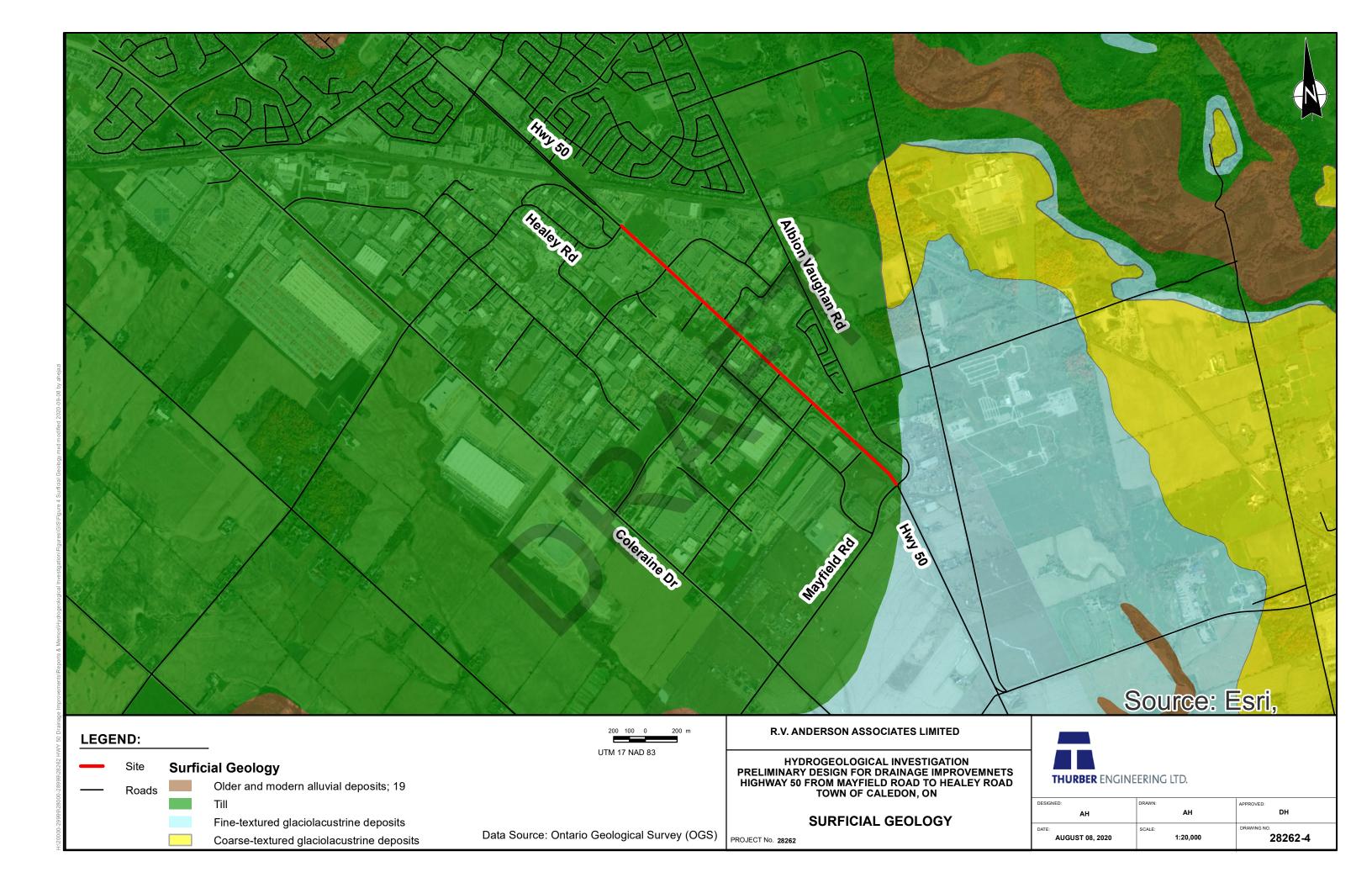
17 of 17

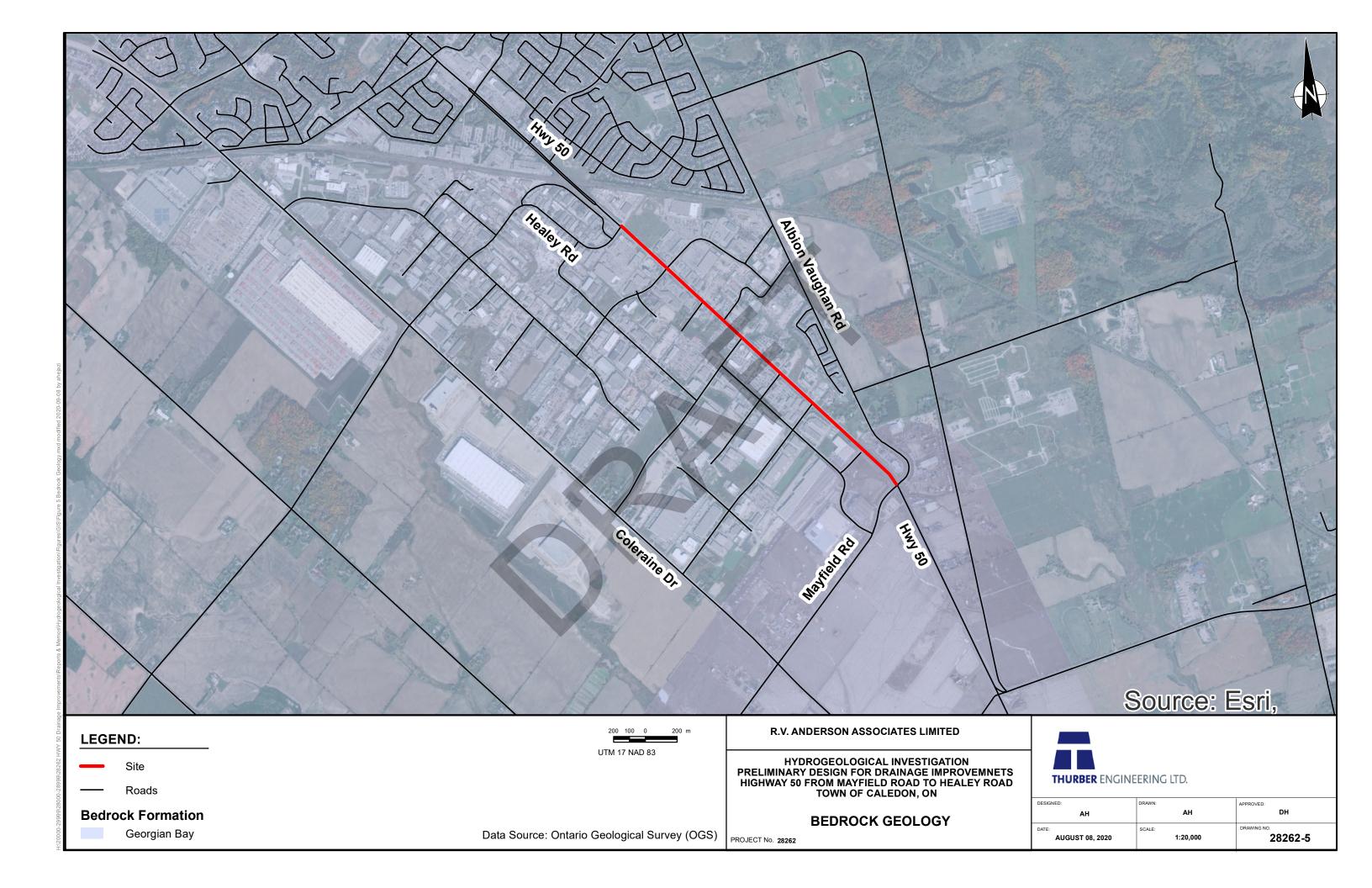
Date:

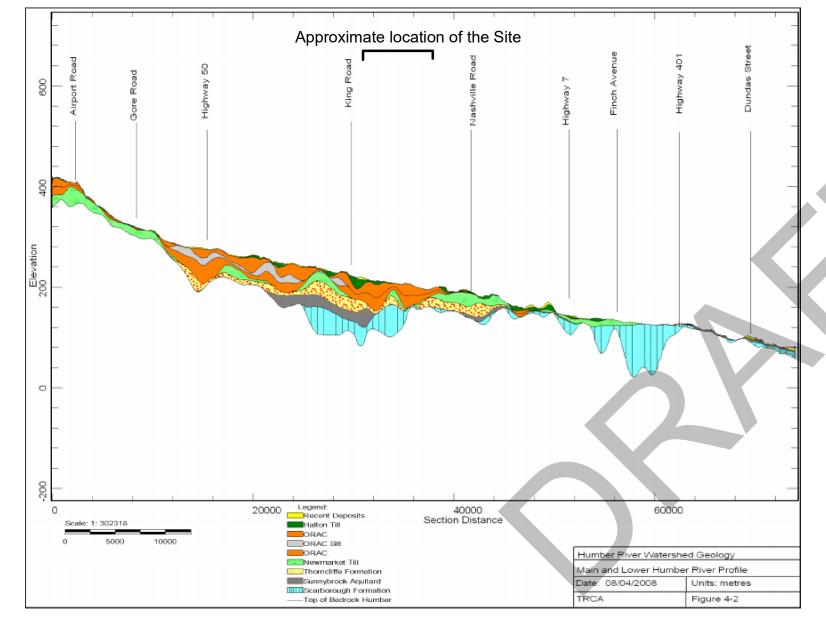

Page:

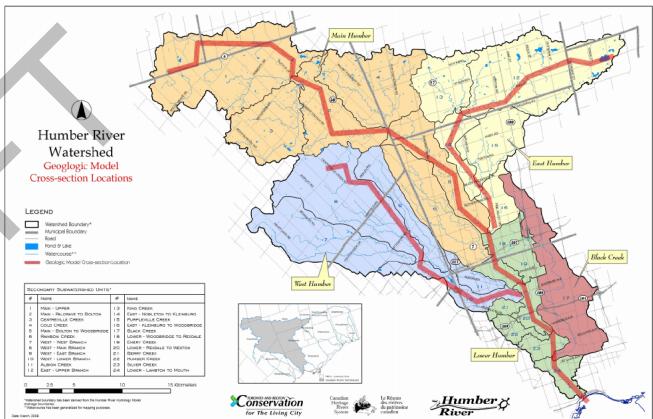

Client: R.V. Anderson Associates


File No.: 28262





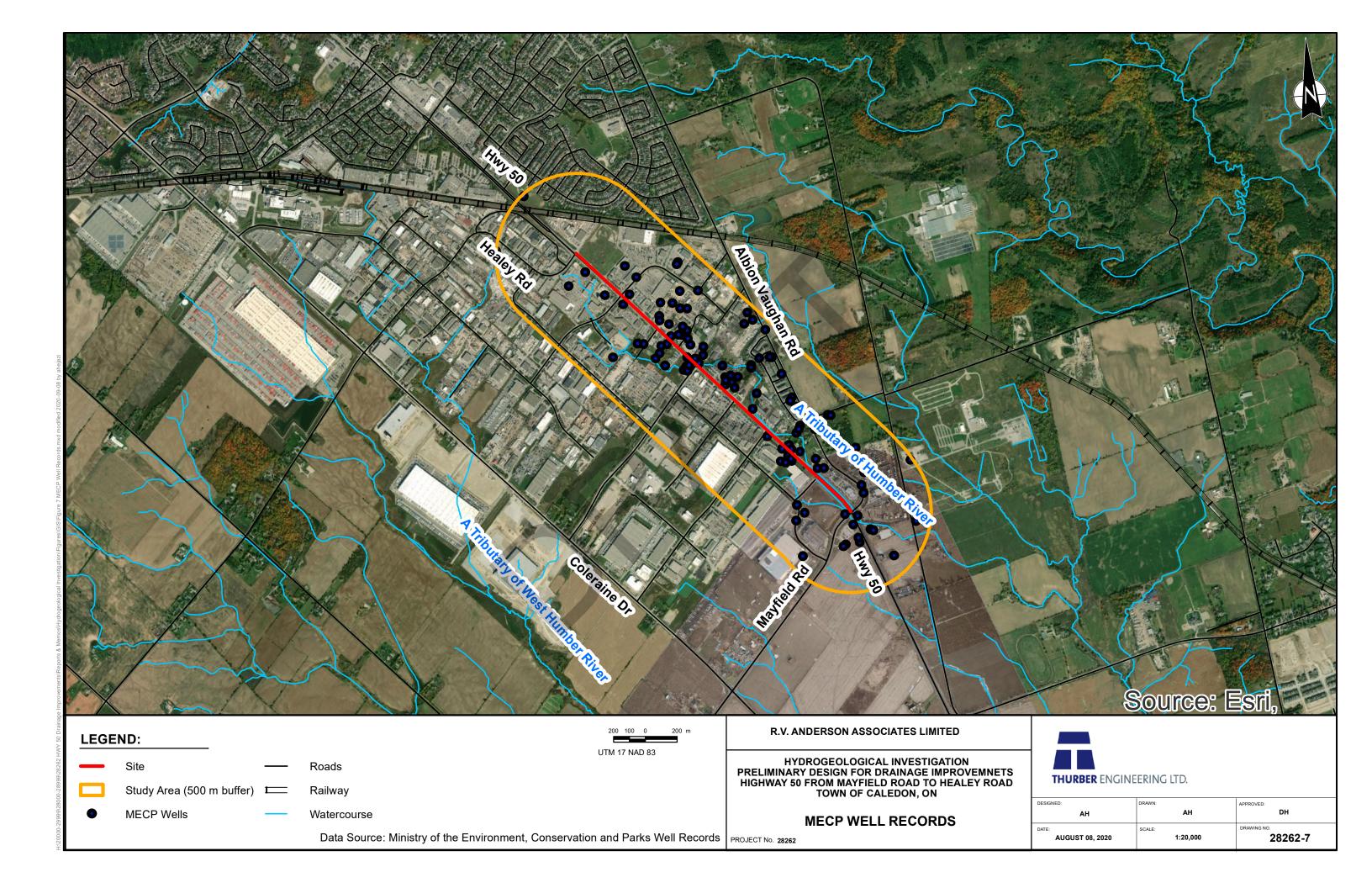


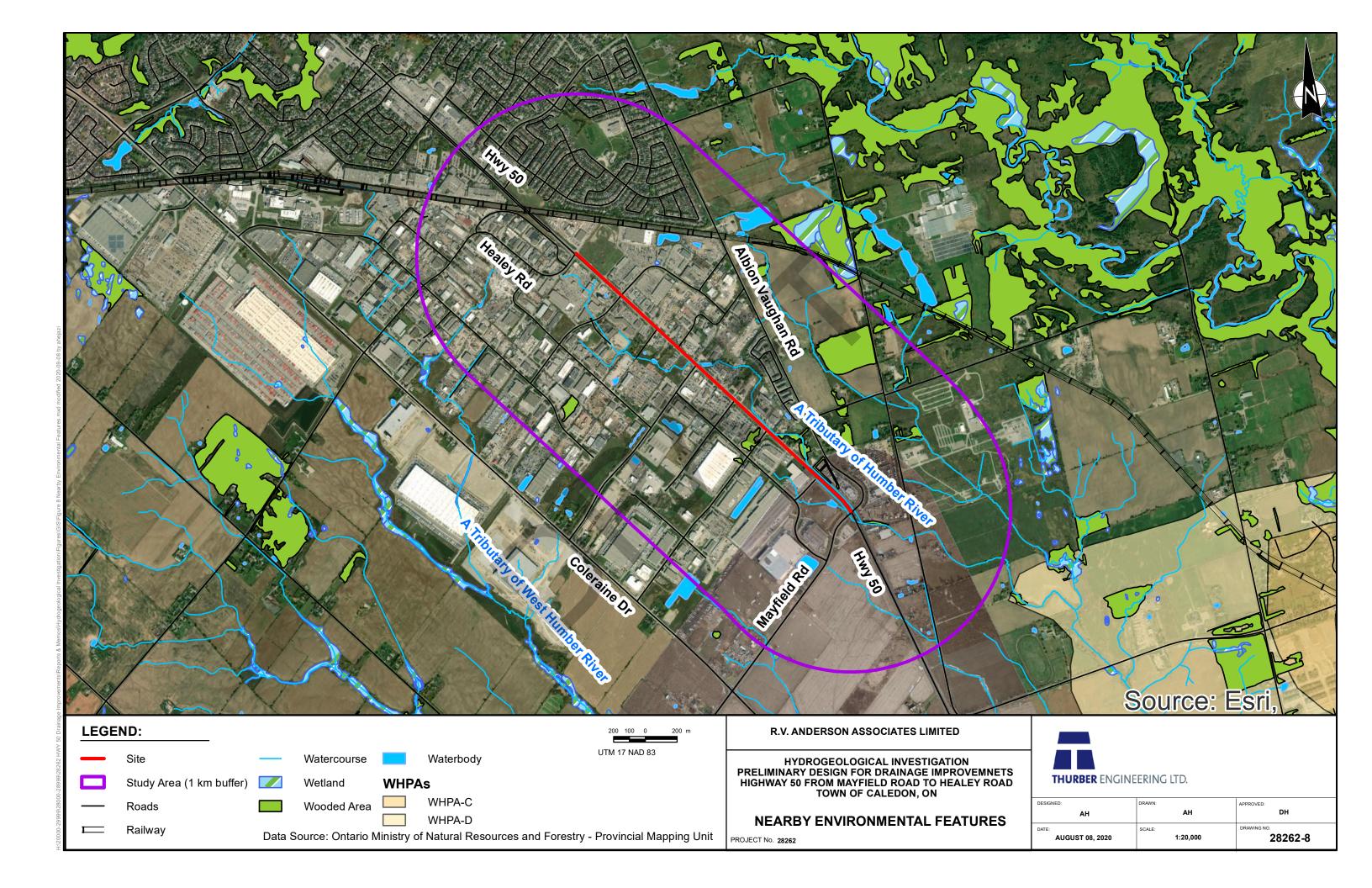


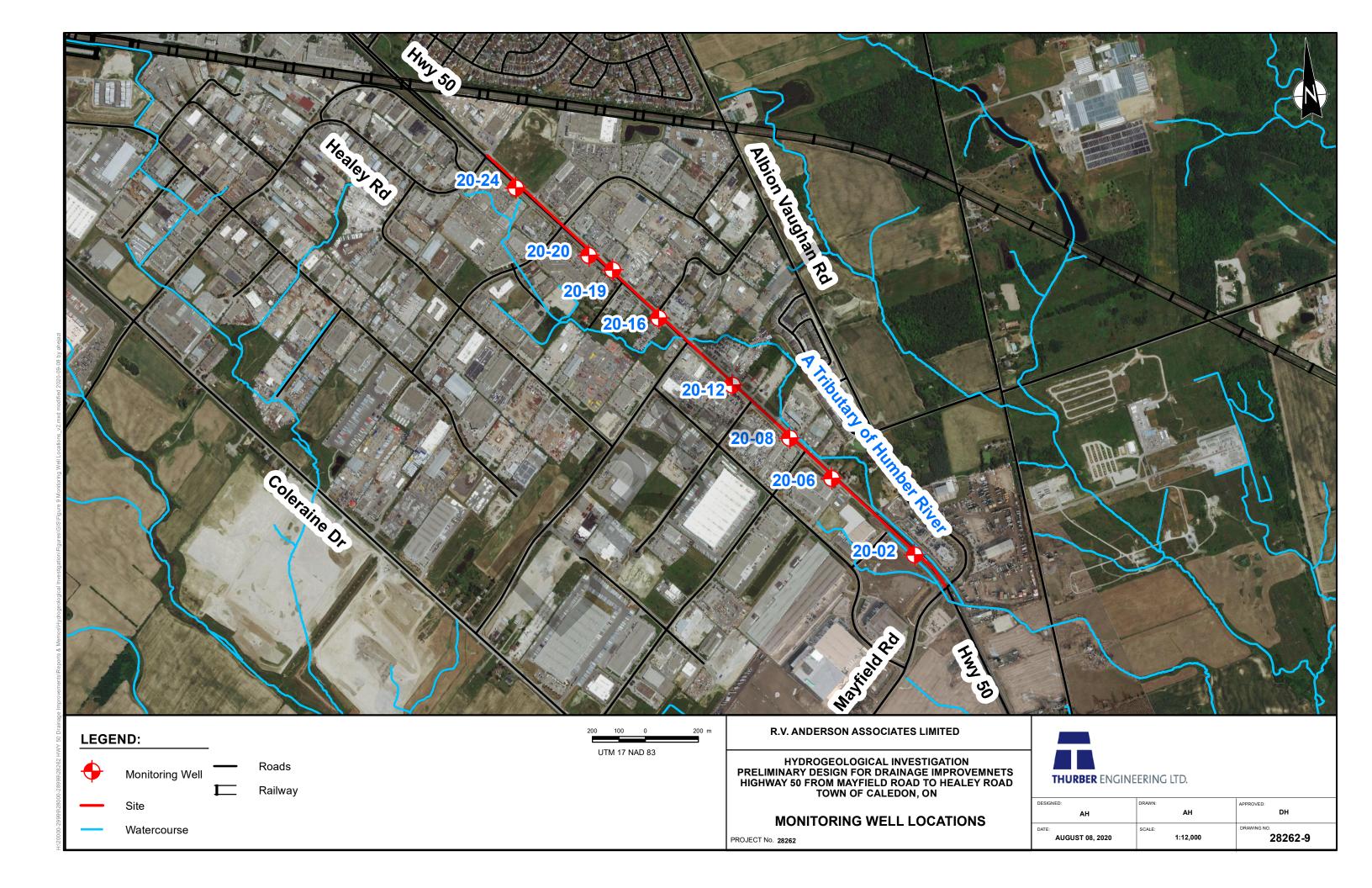
Geologic Cross-section Location Plan

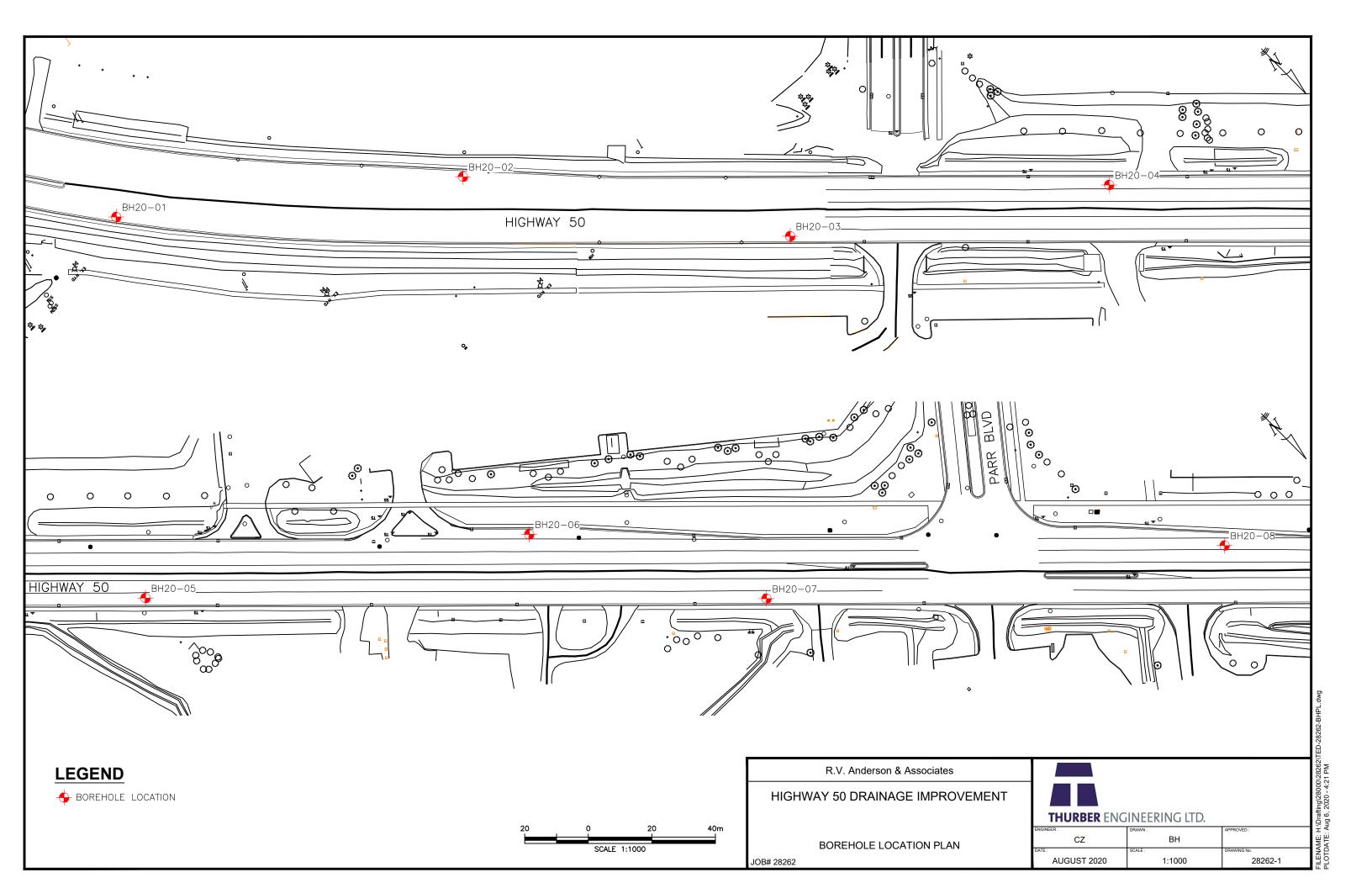
Data Source: Humber River, State of the Watershed Report - Geology and Groundwater Resources, TRCA, 2008

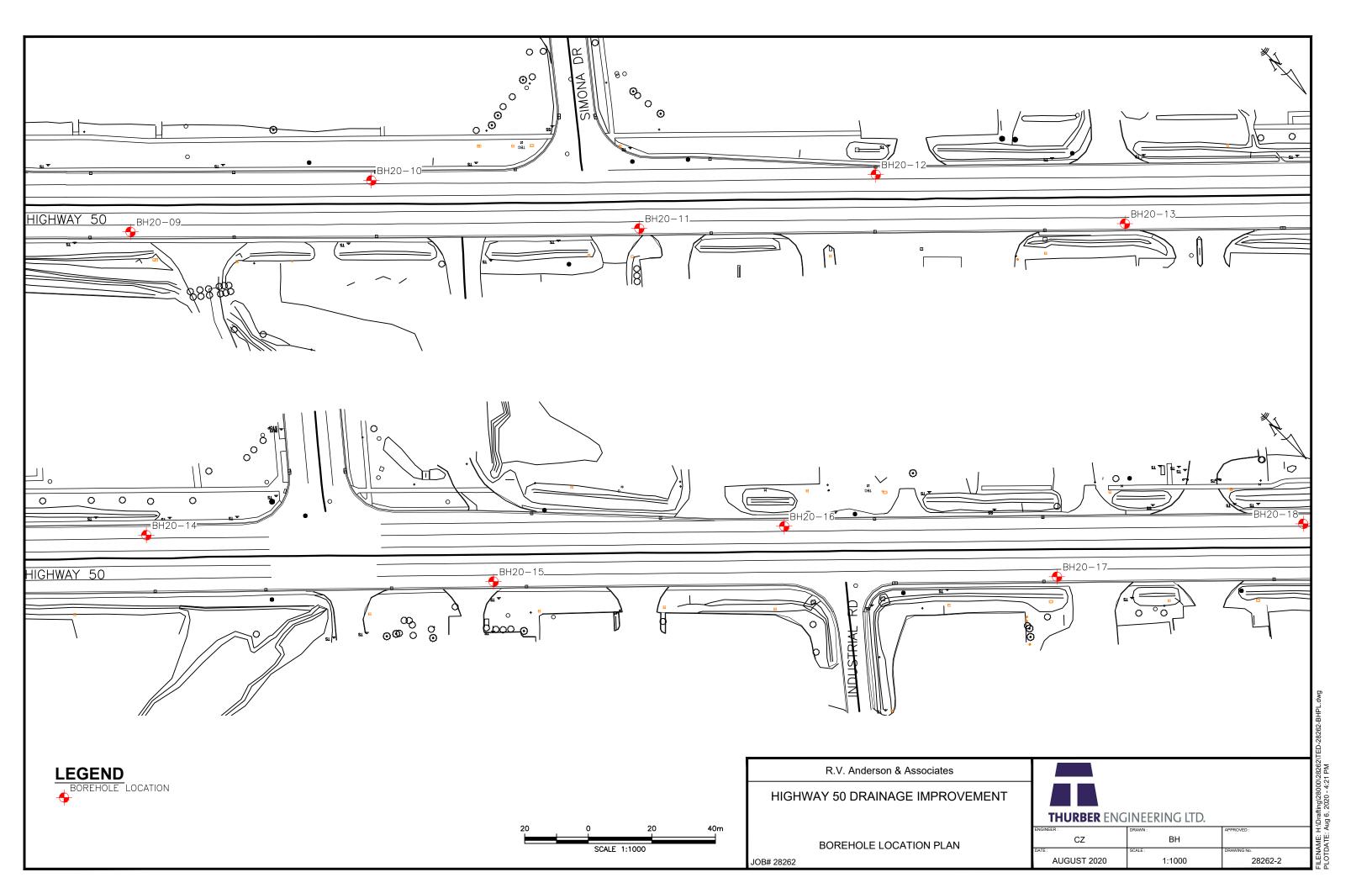
R.V. ANDERSON ASSOCIATES LIMITED

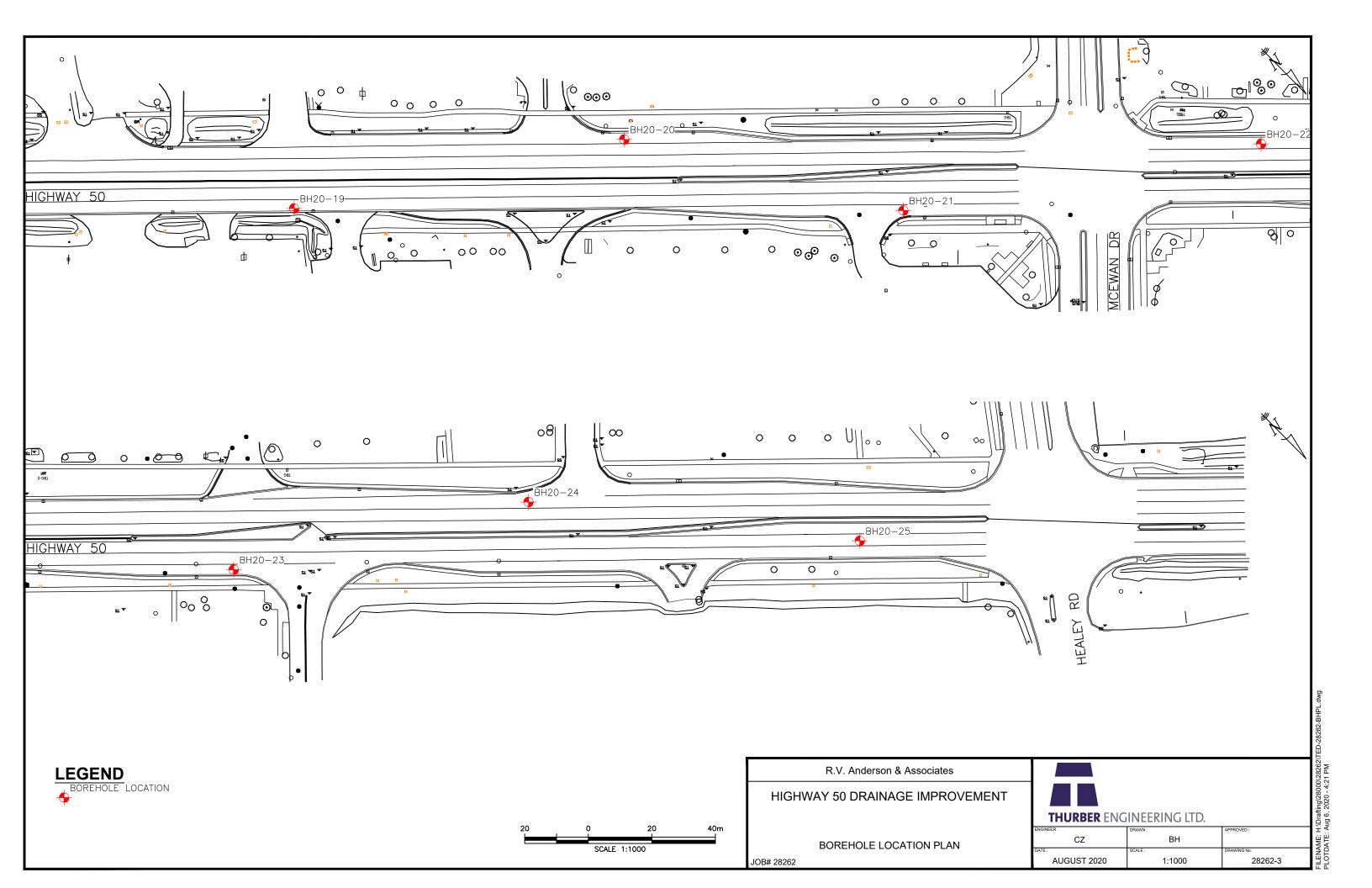

HYDROGEOLOGICAL INVESTIGATION
PRELIMINARY DESIGN FOR DRAINAGE IMPROVEMNETS
HIGHWAY 50 FROM MAYFIELD ROAD TO HEALEY ROAD
TOWN OF CALEDON, ON


REGIONAL GEOLOGIC CROSS SECTION


PROJECT No. 28262




DESIGNED:	DRAWN:	APPROVED:
АН	AH	DH
DATE: AUGUST 08, 2020	SCALE:	28262-6



Appendix B MECP Well Records

MECP Well Record Summary Table

Well ID	UTM Coordinates Easting	UTM Coordinates Northing	Date Completed	Depth to Bedrock	Static Level	Well use
4900316	603685.6	4856848	1967-12-01	0	36.6	Supply Wells
4900361	604228.6	4856559	1953-11-25	0	0	Abandoned
7048899	603899	4856857	2007-07-10	0	0	Observation Well
7230417	603801	4856817	2014-08-06	0	0	Observation Well
7205855	602829	4857940	2013-07-11	0	0	unknown
7196589	603628	4856894	2012-12-13	0	0	Observation Well
7212292	604840	4855812	2013-06-12	0	0	Observation Well
4904182	604405.6	4856303	1973-02-15	0	18.3	Supply Wells
4904495	603804.6	4857065	1974-08-26	58.8	27.4	Supply Wells
7230415	603819	4856840	2014-08-06	0	0	Observation Well
6907219	604868.6	4855867	1964-08-31	37.5	27.4	Supply Wells
7257669	604214	4857167	2016-01-15	0	0	Monitoring and Test Hole
7235624	604478	4856624	2014-11-03	0	30.5	Abandoned
4904497	603906.6	4857314	1974-08-13	45.1	48.2	Supply Wells
4903570	604394.6	4856223	1970-09-29	47.5	0	Abandoned
4900368	603475.6	4857303	1963-10-31	56.4	21.3	Supply Wells
4903571	604464.6	4856223	1970-10-06	44.8	29	Supply Wells
6926696	605231.9	4855823	2002-09-05	0	0	Abandoned
7231573	604427	4856215	2014-10-16	0	0	Monitoring and Test Hole
4900362	604447.6	4856326	1954-08-07	0	32.3	Supply Wells
4904191	603848.6	4856975	1973-09-10	0	21.3	Supply Wells
7113171	604789	4855689	2008-08-27	0	0	Abandoned
7104307	604789	4855689	2008-04-08	0	0	Observation Well
7177345	604496	4856555	2011-12-28	0	33	Abandoned
4900369	603449.6	4857482	1964-11-15	0	40.5	Supply Wells
4905070	604314.6	4856383	1977-03-15	0	32	Supply Wells
7236035	604498	4856398	2014-10-14	0	0	Abandoned
4903323	604664.6	4856173	1969-09-03	50.3	14.3	Supply Wells
6917561	604947	4855780	1984-04-26	36	23.5	Supply Wells
7231571	604441	4856258	2014-10-16	0	0	Monitoring and Test Hole
7172124	604060	4856764	2011-10-25	0	0	Monitoring and Test Hole
7212298	604898	4856060	2013-06-12	0	0	Observation Well
7236037	604417	4856773	2014-10-14	0	0	Abandoned
4903208	604614.6	4856233	1969-03-28	0	0	Abandoned
7263877	603719	4857108	2016-05-11	0	0	Observation Well
4903682	603554.6	4856988	1971-08-23	0	40.2	Supply Wells
4903711	604464.6	4856603	1971-08-25	0	2.4	Supply Wells
4909668	603095	4857366	2004-11-10	0	0	Observation Well

MECP Well Record Summary Table

Well ID	UTM Coordinates Easting	UTM Coordinates Northing	Date Completed	Depth to Bedrock	Static Level	Well use
4905910	604514.6	4855623	1981-03-03	41.5	0	Supply Wells
4903257	604624.6	4856173	1969-06-13	0	24.4	Supply Wells
7212296	604324	4857054	2013-06-12	0	0	Observation Well
4904179	604523.6	4856446	1973-07-18	0	20.7	Supply Wells
7196141	603831	4857064	2013-01-17	0	0	Monitoring and Test Hole
7231572	604460	4856239	2014-10-16	0	0	Monitoring and Test Hole
7245314	604487	4855947	2015-07-16	0	0	Observation Well
7245315	604480	4855849	2015-07-16	0	0	Observation Well
7212225	604256	4856656	2013-10-18	0	0	unknown
4908578	603517	4856992	2000-03-17	0	38.4	Supply Wells
7263868	603668	4857246	2016-05-11	0	0	Observation Well
4909892	604104	4856730	2005-07-03	0	0	Supply Wells
7162056	604773	4855677	2011-04-07	0	0	Monitoring and Test Hole
6918791	604700	4856508	1987-02-05	55.2	29	Supply Wells
4905188	603834.6	4857013	1977-06-02	57.3	40.5	Supply Wells
7232223	604359	4856881	2014-10-27	0	0	unknown
7245851	603359	4856909	2015-05-21	0	0	unknown
7212293	604788	4855880	2013-06-12	0	0	Observation Well
7263876	603742	4857240	2016-05-10	0	0	Observation Well
4903812	604464.6	4856298	1972-04-25	0	28	Supply Wells
7162058	604877	4855699	2011-04-07	0	0	Monitoring and Test Hole
4904567	604517.6	4856281	1974-10-15	0	18.9	Supply Wells
7172123	604045	4856837	2011-10-25	0	0	Monitoring and Test Hole
7196588	603701	4856983	2012-12-13	0	0	Observation Well
4904931	604514.6	4856423	1976-05-13	0	29.3	Supply Wells
4900364	603876.6	4856887	1963-09-26	0	37.8	Supply Wells
7168757	604060	4856717	2010-03-09	0	0	unknown
7212297	604616	4856420	2013-06-12	0	0	Observation Well
4903675	604344.6	4856883	1971-06-16	0	35.1	Supply Wells
4909587	603200	4857451	2004-10-14	0	0	Observation Well
7143512	603839	4856833	2009-09-11	0	0	Monitoring and Test Hole
7051218	603826	4856896	2007-08-31	0	0	Abandoned
4905282	603664.6	4856973	1977-11-04	0	28.7	Supply Wells
7162057	604869	4855728	2011-04-07	0	0	Monitoring and Test Hole
7219133	604227	4856836	2014-03-27	0	0	Observation Well
4900367	603928.6	4856959	1967-10-13	0	34.1	Supply Wells
6916207	604964.6	4855773	1981-11-03	36	24.1	Supply Wells
4904095	603834.6	4857203	1973-03-15	0	38.7	Supply Wells

MECP Well Record Summary Table

Well ID	UTM Coordinates Easting	UTM Coordinates Northing	Date Completed	Depth to Bedrock	Static Level	Well use
4903666	604139.6	4856763	1971-06-16	0	36.6	Supply Wells
6917973	605088.6	4855609	1985-07-10	0	0	Abandoned
7263862	603791	4857206	2016-05-10	0	0	Observation Well
4900365	603725.6	4857032	1963-12-11	59.1	37.2	Supply Wells
7149490	603792	4857314	2010-07-15	0	0	Monitoring and Test Hole
7245316	604535	4855896	2015-07-16	0	0	Observation Well
4900370	603521.6	4857410	1964-07-02	0	0	Abandoned
7149489	603784	4857496	2010-07-15	0	0	Monitoring and Test Hole
6907218	604605.6	4856485	1964-07-16	0	0	Abandoned
7263863	603658	4857161	2016-05-11	0	0	Observation Well
7230416	603826	4856810	2014-08-06	0	0	Observation Well
4900317	603432.6	4857241	1959-07-20	0	0	Abandoned
7132481	604868	4856295	2009-09-14	0	0	Monitoring and Test Hole
7132481	604917	4856138	2009-09-14	0	0	Monitoring and Test Hole
7132481	605031	4856053	2009-09-15	0	0	Monitoring and Test Hole
7205569	604227	4856816	2013-04-17	0	0	unknown
4904849	603660.6	4857133	1976-01-15	0	39.6	Supply Wells
7206967	603319	4857302	2013-07-03	0	0	Abandoned
6917985	605088.6	4855609	1985-04-22	0	27.7	Supply Wells
6912218	605210.6	4856207	1974-04-11	50.3	31.4	Supply Wells
7149488	603777	4857485	2010-07-15	0	0	Monitoring and Test Hole
7194728	604278	4856876	2012-10-11	0	0	unknown
7196142	603802	4857091	2013-01-17	0	0	Monitoring and Test Hole
6917563	605234.6	4855823	1984-05-04	0	24.4	Supply Wells
4900366	603925.6	4856908	1967-06-14	0	31.7	Supply Wells
7247414	604191	4857096	2015-08-13	0	0	Observation Well
4900318	602644.6	4857602	1958-01-15	18.3	42.1	Supply Wells
7235626	604500	4856565	2014-11-03	0	0	Abandoned
7196590	603653	4856928	2012-12-13	0	0	Observation Well
7229211	604224	4856821	2014-09-17	0	0	unknown
7196143	603797	4857038	2013-01-17	0	0	unknown
7143511	603836	4856847	2009-09-11	0	0	Monitoring and Test Hole
4903715	604094.6	4856773	1971-11-12	0	35.1	Supply Wells
7196144	603775	4857041	2013-01-17	0	0	Monitoring and Test Hole
4900363	604118.6	4856695	1966-10-10	0	0	Abandoned
7270670	604246	4857120	2015-11-13	0	0	unknown
4903187	604064.6	4856743	1969-02-24	47.5	40.2	Abandoned
7110588	604717	4856503	2008-07-31	0	0	unknown

Appendix C

HWY 50 Drainage Improvement **PROJECT** Project No. 28262

LOCATION

COMPLETED :

STARTED

March 11, 2020 March 11, 2020

SHEET 1 OF 1 N 4 855 949.5 E 604 798.4 DATUM Geodetic

لِـ	HOD	SOIL PROFILE	1.		SA	MPL	_	COMN	MENT	S	↓ s	HEAR S nat V - rem V -	IKENG	rH: Ci Co	u, KPa Q - X en ▲	a	و ہ	
DEP IN SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE RESISTAI	E PEN NCE F	ETRATION PLOT		40 L ATER C	80 	120 	160) IT	ADDITIONAL LAB. TESTING	PIEZOMETEF OR STANDPIPE
7 -	30RIN	DESCRIPTION	TRAT	DEPTH (m)	NOM	Ĭ	3LOW	20 40 6	- 30	- 80 100	w	/p 	011121V		→ wl		APE LAB.	INSTALLATIO
\dashv	<u> </u>	GROUND SURFACE	S.	226.50			ш		ĩ	1 100	 	-	-	~	+0		\dashv	
		ASPHALT: (200mm)		0.00														
		SAND and GRAVEL, brown, moist: (FILL)	\bowtie	0.20	1	GS												
			\bowtie	005.74														
		CLAY, silty, some to trace sand, trace gravel, firm to hard, brown to grey, moist:		225.74 0.76														
1		(TILL)			2	SS	6						ϕ					
								Crain Cina Analysia										
	gers				3	SS	10	Grain Size Analysis: Gr 0%/ Sa 18%/ Si	47%/	CI 35%		0			>			
2	m Aug																	
	Solid Stem Augers																	
	S				4	ss	21					0						
																	>	
3											<u> </u>							
					5	SS	55					0						
											/_							
4																		
.					6	SS	47					0						
}		END OF BOREHOLE AT 4.42m.	#2X/	222.08 4.42														
		END OF BOREHOLE AT 4.42m. BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH										1						
5		THEN ASPHALT COLDPATCH TO				K					Ž							
		SURFACE.							//~									
										//								
									\nearrow									
3																		
						1		7										
					\langle													
					<u> </u>			\wedge										
7								/										
					\ 	1												
3				/														
		<u> </u>																
9																		
		GROUNDWATER ELE	VA.	TIONS	<u></u>						· · · · ·	I	1				!	
		\overline{Y} WATER LEVEL UPON CC				7	Zγ	/ATER LEVEL I	N W	ELL/PIEZO	METE	R	LOGGI	-D -	. 9	Z		
							•			,		-	CHECH			z Z		THURI

HWY 50 Drainage Improvement **PROJECT**

LOCATION

March 11, 2020 March 11, 2020 Project No. 28262

STARTED COMPLETED :

N 4 856 017.3 E 604 712.0

SHEET 1 OF 1 DATUM Geodetic

			ED : March 11, 2020 SOIL PROFILE			SA	AMPL		856 017.3 E 6	MENTS			SHEAR S	TRENGT	ΓΗ: Cu, K			Geodetic	
DEPTH SCALE (metres)	BORING METHOD	} 	COILTNOTILL	Ϊ́ь				_					SHEAR S nat V - rem V - 40	80 1	Q - 2 Cpen 2 120 1	X ▲ 160	ADDITIONAL LAB. TESTING	PIEZON	иете
H or etres	M H			STRATA PLOT	ELEV.	NUMBER	Щ	BLOWS/0.3m	DYNAMIC CON RESISTA	IE PENE ANCE PL	TRATION OT	<u> </u>		1		1	TEST	OF STAND	₹
ا څ ا	SING.		DESCRIPTION	ATA	DEPTH	UME	TYPE)WS		>		١ '	VATER C wp ⊢	ONTENT			AB. 1	INSTALL	
ر	PO.	2		STR	(m)	Ż		BLC	20 40	60 8	0 100					wi 40	^		
			GROUND SURFACE		226.90														
			ASPHALT: (200mm)		0.00														
		5	SAND and GRAVEL, grey, moist: (FILL)	\bowtie	0.20	1	GS												
				\bowtie	226.29		الحق					۲							
		5	SAND, some gravel, brown, moist: (FILL)		0.61														
, ∣		-	CLAY, silty, sandy, trace gravel, stiff.		225.99 0.91	1			O			0			1			Bentonite	
,		b	CLAY, silty, sandy, trace gravel, stiff, prown, moist: (FILL)	\bowtie		2	SS	10	Grain Size Analysis Gr 6%/ Sa 23%/ S	s: Si 44%/ (CI 27%		0						
		L		\bowtie	225.53														
			SAND, some gravel, loose, brown, moist: (FILL)		1.37	\vdash	-		1										
	,	[`		\bowtie	225.07	_		_				0		//-					
2	agers	į	CLAY, some sand, trace gravel, stiff to nard, grey, moist		1.83		SS	'					//	<				Filter Sand	
•	H.At		iaiu, giey, iiiulat			\vdash	-						0		1			riiler Sand	
	Ster					\vdash	\vdash		1										[
	Solid Stem Augers				3	4	ss	39					0						
	رن						33	39			,	$\sqrt{\ }$							
,					1		1										/	Slotted	
'												Ţ						Screen	
						5	ss	39					0					-	
															//				
						H					1				1			Sand	
										八					1				
·						6	ss	29					0		1				
					222.48						`				1				
İ		E	END OF BOREHOLE AT 4.42m. Well installation consists of 25mm diameter Schedule 40 PVC pipe with a 1.52m slotted	1	4.42										1				
		S	Schedule 40 PVC pipe with a 1.52m slotted screen.												1				
,									1			→×			1				
			WATER LEVEL READINGS: DATE DEPTH(m) ELEV.(m)							7/					1				
			May 26/20 3.25 223.65												1				
											</td <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td>				1				
									\\	\wedge					1				
										_/					1				
								_	1/	•					1				
						V									1				
															1				
															1				
.								\ <u></u>											
						,	V												
						\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1												
			, /																
				//	1														
															1				
															1				
															1				
															1				
			GROUNDWATER ELE	VA	TIONS	3													
)MPI	ETION	ı	Ž	Įν	VATER LEVEL	IN WF	LL/PIF	ZOMFTI	ΞR	LOGGE	D :	SZ			
				L		•			lay 26, 2020	v v L	/: IL:	_	、	CHECK		SZ CZ			
								. •	,,					OI ILON	U .	UZ		TH	IUR

HWY 50 Drainage Improvement **PROJECT** Project No. 28262

LOCATION

March 11, 2020

SHEET 1 OF 1

STARTED March 11, 2020 COMPLETED

N 4 856 103.1 E 604 652.0

DATUM Geodetic

유	SOIL PROFILE			SAM	MPLI	-		CO	MMEN	TS		1	SH	=AR S nat V - em V -	FRENG	IH: Cu Q Cne	ı, KPa } - X en ≜	a	ا و ہ	
(metres) BORING METHOD	DESCRIPTION	ZATA	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAI	MIC CC RESIS	ONE PEI TANCE	_	TION		40 	TER C	SO L DNTEN	120 	160) IT	ADDITIONAL LAB. TESTING	PIEZOMETEF OR STANDPIPE INSTALLATIO
	GROUND SURFACE		228.20				·		_				\exists							
	ASPHALT: (200mm)	****	0.00																	
	SAND, some gravel, dense, brown, moist: (FILL)		0.20	1	GS							0								
				2	SS	36								0						
Augers	CLAY, silty, some sand, trace gravel, stiff to hard, brown to grey, moist: (TILL)		226.68 1.52	3	SS	12								/	0		,			
Solid Stem Augers				4	SS	15													\wedge	
				5	SS	44	Grain Size Gr 1%/ S	: Analys a 14%/	sis: Si 44%	/ CI 41	%			0 1						
			223.78	6	SS	44														
	END OF BOREHOLE AT 4.42m. BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND CUTTINGS, THEN ASPHALT COLDPATCH TO SURFACE.	3617	4.42						\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\											
					4				/ /	<i>\(\)</i>	/									
							/ ?													
			/																	
	GROUNDWATER ELEV	/ATI	ONS	<u> </u>																

 \overline{Y} WATER LEVEL UPON COMPLETION

▼ WATER LEVEL IN WELL/PIEZOMETER

PROJECT : HWY 50 Drainage Improvement Project No. 28262

LOCATION

 STARTED
 :
 April 6, 2020
 SHEET 1 OF 1

 COMPLETED
 :
 April 6, 2020
 N 4 856 162.3 E 604 569.3
 DATUM Geodetic

С	OMP	LETED : April 6, 2020					N 4	856 162.3 E 604 569	3						ATUM	Geodetic
ш	5	SOIL PROFILE			SA	MP	LES	COMMENTS		5	HEAR S nat V - rem V -	TRENGT	H: Cu, K Q - 🕽	Pa K	. (2)	
DEPTH SCALE (metres)	BORING METHOD		ТО		Ī.,		Ë	DVNIAMIC CONF DENET	DATION	1	rem V - 40 8	● 30 1:	Cpen 4 20 1	6 0	ADDITIONAL LAB. TESTING	PIEZOMETER
TH S	2 ∪	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETI RESISTANCE PLO	T T	l v	/ATER C	L ONTENT	PERCE	NT	듣띰	OR STANDPIPE
] []	NEW	DESCRIPTION	RAT,	DEPTH	Ì≧	}	NO.			\	vp ——	$ \circ$ ^w	——I v	wl	AB.	INSTALLATION
Ľ	E		STI	(m)			В	20 40 60 80	100 I		10 2	20 3	30 4	40		
-	Н	GROUND SURFACE ASPHALT: (150mm)		228.70 0.00											\sqcup	
ŀ		SAND and GRAVEL, trace silt, brown,	***	0.00				Grain Size Analysis: Gr 32%/Sa 60%/ Si & Cl 8								-
ŀ		moist: (FILL)			1	SS	85	Gr 32%/Sa 60%/ Si & Cl 8	%							-
ŀ				227.95												-
ŀ		SAND, trace silt and gravel, cobbles, very dense, brown, moist: (FILL)		0.75	2	SS	50/			0						-
- 1		derise, brown, moist. (FILL)	\bowtie				0.15									1
İ			\bowtie													1
İ			\bowtie		L	_										1
Ī			\bowtie		3	SS	100 0.15				9	/_				1
-2	igers		\bowtie								/]
	m At		\bowtie								/					
ļ	Solid Stem Augers	SAND, gravelly, very dense to loose, grey,	₩	226.31 2.39	H						1					∑ .
-	Solic	wet: (FILL)	\bowtie	2.39	4	ss	34		·		0					
-			\bowtie												\sim	-
- 3			\bowtie													-
-			\bowtie													-
ŀ			\bowtie		5	SS	4					0	//			-
ŀ		CLAY, silty, some sand, stiff, brown, wet:		225.04 3.66												-
١.		(TILL)		0.00												-
-4					6	SS	10									1
İ				224.28												1
		END OF BOREHOLE AT 4.42m. BOREHOLE OPEN AND WATER LEVEL AT 2.4m UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND CUTTINGS,	12.42	4.42			\Box									
		AT 2.4m UPON COMPLETION.				L]
- 5		BENTONITE HOLEPLUG AND CUTTINGS, THEN ASPHALT COLDPATCH TO								Ý						
ļ		SURFACE.				٦			_ /							
							1)/							
ŀ									~							-
ŀ					X											-
-6																-
ŀ					1 /											-
ŀ		, and the second			/_	-	_									-
ŀ																-
ļ _								\Diamond								1
7																1
)/	1									
[<	1										
ļ																_
L 8																_
1				1												
ŀ			¥.													-
ŀ																
ŀ		//														-
- 9																-
ŀ																·
ŀ																-
ŀ																1
一	Ш	GROUNDWATER ELE	\/Δ	TIONS	<u>; </u>	_		I.								
•			* / \		_											<i>(</i> − − 1

THURBER2S TEL-28262.GPJ 8/6/20

abla water level upon completion

▼ WATER LEVEL IN WELL/PIEZOMETER

HWY 50 Drainage Improvement **PROJECT** Project No. 28262

LOCATION

March 11, 2020

SHEET 1 OF 1

STARTED N 4 856 244.6 E 604 507.7 March 11, 2020 COMPLETED : DATUM Geodetic

<u>ا</u> پ	HOD	SOIL PROFILE	1.		SA	MPL	_	CC	OMMEN	NTS		∫ ^s	HEAR nat \ rem \	STRE / - • / - •	NGTH	I: Cu, ł Q - Cpen	(Pa X ▲	후	
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC C RESIS	ONE PE	NETRA PLOT	ATION	W.	10 	80 L CONT	12 	0 .	160 ENT	ADDITIONAL LAB. TESTING	PIEZOMETEF OR STANDPIPE INSTALLATIOI
בֿ	BOF		STR	(m)	z		BLC	20 40 I I	60 I	80 I	100 	1	10 I	20 	30		40 	7 7	
		GROUND SURFACE ASPHALT: (200mm)		230.00															
		SAND, some gravel, brown, moist	2,52.	0.00															
		Granz, como granos, promi, mosec			1	GS						0							
1		CLAY, silty, some sand to sandy, trace gravel, stiff to hard, grey to brown, moist: (TILL)		229.39 0.61		ss	11						(5					
	δ.				3	ss	32	Grain Size Anal Gr 6%/ Sa 21%	ysis: 6/ Si 49%	%/ CL24	.%		a		<u></u>	>			
2	Solid Stem Augers							G, 675, 54 217	o, e. 10,	., G. Z.									
3	Solic				4	SS	32							0				Ø	
					5	ss	34						c	,					
4					6	SS	24							0					
5		END OF BOREHOLE AT 4.42m. BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND CUTTINGS, THEN ASPHALT COLDPATCH TO SURFACE.	3232	225.58 4.42					>/										
6										\ \ >									
		4																	
7																			
8																			
9																			
		CDOLINDWATER ELE	1/4	TIONS															
		GROUNDWATER ELE				•	7.						_						
			OMPL	ETION		7	<u> </u> ∨	ATER LEVE	EL IN \	WELL	/PIEZC	METE	R		GGED ECKE		SZ CZ		THUI

HWY 50 Drainage Improvement **PROJECT** Project No. 28262

LOCATION

April 6, 2020

SHEET 1 OF 1

STARTED N 4 856 315.4 E 604 407.8 April 6, 2020 COMPLETED :

DATUM Geodetic

ا لِا	НОБ	SOIL PROFILE			SA	MPL	_	COMMENTS		SHEAR S nat V - rem V -	TRENGTH: Cu,	KPa X	ج د ا	
(metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENE RESISTANCE PLO 20 40 60 80		40 6 L WATER C wp I	80 120 	160 	ADDITIONAL LAB. TESTING	PIEZOMETEF OR STANDPIPE INSTALLATIO
\dashv	Ī	GROUND SURFACE	o o	231.00			_							
		ASPHALT: (150mm) SAND, trace silt, some gravel, very dense,	***	0.00 0.15										Asphalt Concrete
		grey, dry: (FILL)		230.09	1	ss	84			0				Concrete
		CLAY, silty, some sand to sandy, trace gravel, very stiff to hard, brown, moist: (TILL)		0.91	2	SS	16			0		>>•		Bentonite
!	n Augers				3	ss	23			O		>>•		Filter Sand
	Solid Stem Augers				4	ss	33	Grain Size Analysis: Gr 2%/ Sa 23%/ Si 49%/ C	26%	- -	1	>> A	>	
3					5	ss	58			0		>> 4		Slotted Screen
1				226.58	6	SS	38			0		>>•		Sand
5		END OF BOREHOLE AT 4.42m. BOREHOLE OPEN AND DRY UPON COMPLETION. Well installation consists of 25mm diameter Schedule 40 PVC pipe with a 1.52m slotted screen. WATER LEVEL READINGS: DATE DEPTH(m) ELEV.(m) Apr 06/20 Dry - May 26/20 3.00 228.00	N/X/	4.42										<u> </u>
i														
,								7						
3														
9														
		GROUNDWATER ELE	VA ⁻	TIONS	<u></u>	1					1 1	1 1		
		¥ WATER LEVEL UPON CO				Ž		/ATER LEVEL IN WE ay 26, 2020	LL/PIEZC	METER	LOGGED :	SB CZ		THUR

HWY 50 Drainage Improvement **PROJECT** Project No. 28262

LOCATION

March 11, 2020

SHEET 1 OF 1

STARTED N 4 856 382.3 E 604 369.0 March 11, 2020 COMPLETED DATUM Geodetic

Ē	00	3	SOIL PROFILE			SA	MPL	LES	COMMENTS	SHEAR nat \	STRENG	TH: Cu, K Q -	(Pa	ا ا	
DEPTH SCALE (metres)	BOBING METHOD	INIO INIE I	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	rem \ 40 WATER wp		L F PERCE	60 ENT	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
	- a	3	ODOLINID OLIDEACE	STF	(m)	┡		В	20 40 60 80 100	10			40	-	
-			GROUND SURFACE ASPHALT: (200mm)		231.40 0.00										
		-	SAND and GRAVEL, grey, moist	\$	1	1	GS			0					
- 1			SAND, some gravel, brown, moist CLAY, silty, some to trace sand, trace gravel, very stiff to hard, brown to grey, moist: (TILL)		230.64 0.76 0.91		ss	11							
-2	Augers					3	ss	34			0				
· 3	Solid Stem Augers					4	ss	27	Grain Size Analysis: Gr 2%/ Sa 17%/ Si 41%/ Cl 40%	C				2	
Ü						5	ss	40		0					
-4					226.98	6	SS	25		0	<i>?</i>				
- 5			END OF BOREHOLE AT 4.42m. BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND CUTTINGS, THEN ASPHALT COLDPATCH TO SURFACE.	WX	4.42										
- 6															
- 7															
-8															
- 9															
				\/^-	 	Ļ									
			GROUNDWATER ELE				7	Z _V	VATER LEVEL IN WELL/PIEZO	METER	LOGGE	ED :	SZ CZ		

HWY 50 Drainage Improvement **PROJECT** Project No. 28262

LOCATION

March 5, 2020

SHEET 1 OF 1

STARTED N 4 856 471.9 E 604 254.7 March 5, 2020 COMPLETED : DATUM Geodetic

ц	ОО	SOIL PROFILE			SA	MPL	ES	COMMENTS		SHEAR S	TRENG	ΓΗ: Cu, I Q -	KPa X	٥١	
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT 20 40 60 80 100	W	40 │ /ATER C wp I ——	80 L ONTENT	120 Γ, PERC	160 ENT	ADDITIONAL LAB. TESTING	PIEZOMETE OR STANDPIPE INSTALLATIC
		GROUND SURFACE		233.00											_
		ASPHALT: (200mm) SAND, some silt, some gravel, brown,	***	0.00	J										
		moist: (FILL)		0.20	1	GS			0						
1		CLAY, silty, some sand to sandy, trace gravel, very stiff to hard, brown, moist: (TILL)		232.09 0.91	2	ss	15	Grain Size Analysis: Gr 4%/ Sa 24%/ Si 45%/ Cl 27%		0					Bentonite
	Augers				3	ss	35			0					Filter Sand
	Solid Stem Augers	Very Stiff			4	SS	26							^	
3					5	ss	24							Y	Screen
ı		Hard		200	6	SS	42								Sand
5		END OF BOREHOLE AT 4.42m. Well installation consists of 25mm diameter Schedule 40 PVC pipe with a 1.52m slotted screen.	XX	228.58 4.42											<u>:-</u>
		WATER LEVEL READINGS: DATE DEPTH(m) ELEV.(m) Mar 05/20 Dry - May 26/20 3.00 230.00													
6							/_								
7								?							
					<										
3				<i>\</i>											
9															
		GROUNDWATER ELE				_	_								
		✓ WATER LEVEL UPON CC	MPL	LETION	1	Ī		VATER LEVEL IN WELL/PIEZC flay 26, 2020	METE	R	LOGGE	ED :	AF CZ		THUR

HWY 50 Drainage Improvement **PROJECT** Project No. 28262

LOCATION

STARTED March 5, 2020 SHEET 1 OF 1

March 5, 2020 N 4 856 526.0 E 604 223.0 COMPLETED

DATUM Geodetic

u I	8	SOIL PROFILE			SA	MPL	ES		CO	MMEN	ITS		S	HEAR nat V rem V	STREN	IGIH	: Cu, k Q -	(Pa K	. (1)	
DEP IN SCALE (metres)	BORING METHOD		PLOT	EI EV	띪	ш	0.3m	DYNA	MIC CC	ONE PE	NETRA	ATION	- 4	40 	80 l	12I	0 1	160 	ADDITIONAL LAB. TESTING	PIEZOMETER OR
(me	ORING	DESCRIPTION	STRATA PLOT	DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m		~	<u> </u>	_		v	ATER		w		wl	ADDI1	STANDPIPE INSTALLATIO
\dashv	<u> </u>	GROUND SURFACE	ST		\vdash		ā	20	40 	60	80	100 	<u> </u>	10	20	30		40		
\dashv	+	ASPHALT: (175mm)		234.30 0.00																
		SAND, some silt, some gravel, brown, moist: (FILL)		0.18	<u> </u>															
		most. (FIEE)	\bowtie		1	GS							0							
			\bowtie]												
1		CLAY, silty, sandy to some sand, trace gravel, stiff to firm, brown, moist: (TILL)	***	233.39 __ 0.91	2	SS	8	Grain Size Gr 4%/ S	e Analys	sis:		10/								
		gravel, stiff to firm, brown, moist: (TILL)			-	33	0	GI 470/ 3	oa 3 1 70/	31 44 7	0/ CIZI	1 70								
																\wedge				
	gers																			
2	n Au				3	SS	4								$\langle \langle \rangle$					
_	Solid Stem Augers											\overline{A}								
	Solic												\times							
		Very stiff to hard			4	SS	20					^		0						
3										47					`				1	
,								1					ĺ							
					5	SS	31							0				1		
													/							
					6	ss	50/					, ·		0						
4		END OF BOREHOLE AT 4.06m. BOREHOLE OPEN AND DRY UPON	WX/	230.24 4.06			0.10		M						\ \ \					
		I COMPLETION																		
		BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND CUTTINGS, THEN ASPHALT COLDPATCH TO							7					/						
		SURFACE.						1					>//							
5						K				7/										
											~									
									\'		>									
6							4_													
					/_															
								\sim												
7								ľ												
							1													
					\ \ \															
3				/																
			I																	
9																				
		CDOLINDWATED ELE	1/^-	TIONS	Ļ															
		GROUNDWATER ELE					7.					=		_						
		$^{ u}$ water level upon co	MPL	ETION		7	- ∨	VATER L	.EVE	L IN \	WELL	/PIEZC	METE	R		GED CKE		AF CZ		

HWY 50 Drainage Improvement **PROJECT** Project No. 28262

LOCATION

March 5, 2020

SHEET 1 OF 1

STARTED March 5, 2020 COMPLETED :

N 4 856 567.9 E 604 157.8

DATUM Geodetic

SOIL PROFILE SAMPLES COMMENTS	40	CONTENT	120 _ Г, PERC ———	160	ADDITIONAL LAB. TESTING	PIEZOMETEF OR STANDPIPE INSTALLATION
CROUND SURFACE 235.80	0					
ASPHALT: (200mm) SAND, some silt, some gravel to gravelly, brown, moist: (FILL) Dense 2 SS 35 Compact Compact Loose, wet ASPHALT: (200mm) 0.00 1 GS 1 Grain Size Analysis: Gr 22%/Sa 54%/ Si & Cl 24% 4 SS 9	0					
SAND, some silt, some gravel to gravelly, brown, moist: (FILL) 1 GS 2 SS 35 Dense Compact Compact Loose, wet 3 SS 9	0					
1 Dense 2 SS 35 Compact Compact Loose, wet Dense 1 GS 3 SS 13 Grain Size Analysis: Gr 22%/Sa 54%/ Si & Cl 24% 4 SS 9	0					
2 September Dense 2 35 35 35 35 35 35 35	0					
2	0					
2	0					
2 By European Loose, wet Loose, wet 5 SS 3	0					
2 Solution Loose, wet Loose, wet 5 SS 3	0					1
2 Solution Loose, wet Loose, wet 5 SS 3	0					
3 Loose, wet						$ \underline{\nabla}$
3 Loose, wet						
3	0					
					2	
Very loose 5 SS 3					1	
			/			
CLAY, silty, some sand, trace gravel, stiff to very stiff, brown to grey, moist: (TILL)		9	Ť			
4						
6 SS 29		2				
231.38 END OF BOREHOLE AT 4.42m. 4.42						
END OF BOREHOLE AT 4.42m. BOREHOLE OPEN AND WATER LEVEL AT 2.1m UPON COMPLETION. BOREHOLE BACKFILLED WITH						
BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND CUTTINGS, THEN ASPHALT COLDPATCH TO	*					
SURFACE.						
5						
9						
CROUNDWATER ELEVATIONS						<u> </u>
GROUNDWATER ELEVATIONS	o====					
WATER LEVEL UPON COMPLETION ■ WATER LEVEL IN WELL/PIEZO	OMETER	LOGGE	ED :	AF		

HWY 50 Drainage Improvement **PROJECT** Project No. 28262

LOCATION

March 10, 2020

SHEET 1 OF 1

STARTED N 4 856 638.0 E 604 108.5 March 10, 2020 COMPLETED : DATUM Geodetic

\vdash	_	_	TED : March 10, 2020						000 000.0 E 004 100.0	DATUM Geodetic
Щ		3	SOIL PROFILE			SA	MPL	ES.	COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - ● Q - X rem V - ● Cpen ▲ ₹ ≥
DEPTH SCALE (metres)	THE	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT 20 40 60 80 100	nat V - ♣ Q - ★ rem V - ♠ Cpen ▲ 40 80 120 160 WATER CONTENT, PERCENT wp
			GROUND SURFACE		236.90					
			ASPHALT: (175mm)		0.00					
			SAND, some silt, some gravel, brown, moist: (FILL)		0.18 235.99	1	GS			
- 1 -			SAND, some silt, some gravel, trace clay, dense to loose, brown, moist: (FILL)		0.91		SS	31		
-2	Solid Stem Augers				234.61	3	SS	10		
	Solid St		CLAY, silty, some sand to sandy, trace gravel, firm to stiff, brown, moist		2.29	4	ss	7	Grain Size Analysis: Gr 6%/ Sa 24%/ Si 42%/ Cl 28%	Ю
-						5	SS	14		
-4 - -			END OF BOREHOLE AT 4.06m.		232.48 4.42		SS	11		
- 5 - 5			END OF BOREHOLE AT 4.06m. BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND CUTTINGS, THEN ASPHALT COLDPATCH TO SURFACE.							
-6										
- 7									7	
-						\ \ 				
-8 - - 9					/					
9			GROUNDWATER ELEV	/^7	FIONS					

GROUNDWATER ELEVATIONS

▼ WATER LEVEL IN WELL/PIEZOMETER

HWY 50 Drainage Improvement **PROJECT** Project No. 28262

LOCATION

SHEET 1 OF 1

STARTED March 9, 2020 N 4 856 678.3 E 604 043.7 March 9, 2020 COMPLETED : DATUM Geodetic

\vdash		_	1ED : March 9, 2020						000 070.3 E 004 043.7		S	HFAR S	TRENG	TH: Cu		T	Geodetic	
Į.	GOTELLW CIVID OF	5	SOIL PROFILE	—	_	SA	MPL		COMMENTS	_		nat V rem V	STRENG - # - •	Q Cpe	- X 1 A	NG A	DIE 701 (=	TED
DEPTH SCALE (metres)	[_ ∐ ∑		STRATA PLOT		监		BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT			10 L	80	120	160	ADDITIONAL LAB. TESTING	PIEZOME OR	
PTH (met	2	5	DESCRIPTION	TAF	ELEV.	NUMBER	TYPE	NS/C	RESISTANCE PLOT				ONTEN	T, PER			STANDP INSTALLA	
ä	0	ב כ		TRA	DEPTH (m)	₹	-	LO N	20 40 60 80 100			rp I — 0	20 O	30	H wl 40	A 3	INSTALLA	TION
_	۲	Н	GROUND SURFACE	S	<u> </u>			ш	1 1 1 1			Ĭ	1	-	+	+		
-	-	Н	ASPHALT: (200mm)		237.40 0.00													
ŀ			SAND, some silt, and gravel, brown, moist:	***	0.20													
-			(FILL)	₩	1						0							
ŀ				\bowtie	1	1	GS											
ŀ				₩	236.49													
- 1			SAND, gravelly, some silt, trace clay, compact, brown, moist: (FILL)	\bowtie	0.91	2	ss	14			0						Bentonite	
ŀ				\bowtie														
ŀ				₩	1													
ŀ				\bowtie														
	gers			\bowtie	1	3	SS	20		4	0	/						
- 2	J. Au			₩	1					5								
	Solid Stem Augers			\bowtie													Filter Sand	
	pilos			\bowtie		4	SS	16	Grain Size Analysis: Gr 29%/Sa 49%/ Si & Cl 22%		6	ì						目.
Ī	00			₩		4	33	10	GI 29%/ 3a 49%/ 3I & GI 22%	\wedge	1						T	
- 3				\bowtie						_	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					/		
				\bowtie							Ĭ							目
				₩		5	ss	15			0						Slotted Screen	: 目:
				\bowtie														
-				\bowtie						\vee								目
-4				\bowtie														: H:
ļ [*]				\bowtie		6	SS	13			Ø		>				Sand	
ŀ				\bowtie	232.98												[
ŀ			END OF BOREHOLE AT 4.42m. Well installation consists of 25mm diameter		4.42													
-			Schedule 40 PVC pipe with a 1.52m slotted screen.															
- 5							K			$\overline{}$								
ŀ			WATER LEVEL READINGS:															
ŀ			DATE DEPTH(m) ELEV.(m) Mar 09/20 Dry -															
ŀ			May 26/20 2.80 234.60															
ŀ				\times)										
-6) .	_										
ŀ				Ì			1		<i>y</i>									
Ī								_										
Ī																		
- 7									$\hat{\gamma}$							1		
[′																		
						l ,		1										
						<	1											
ļ			× \															
-8																		
ļ [*]				//	1											1		
ŀ																		
-																1		
ŀ			//													1		
- 9 - - -																		
ŀ																		
-																		
ł																		
				Ļ	<u> </u>	L												
i			GROUNDWATER ELEV	/A ⁻	TIONS	3												

GROUNDWATER ELEVATIONS

▼ WATER LEVEL IN WELL/PIEZOMETER May 26, 2020

HWY 50 Drainage Improvement **PROJECT** Project No. 28262

LOCATION

March 10, 2020

STARTED March 10, 2020 COMPLETED :

N 4 856 744.4 E 603 998.8

SHEET 1 OF 1 DATUM Geodetic

	_	OOU PROFILE			٦,			000 744.						SHEAF	RSTF	RENGT	H: Cu.			Geodelic
H H	무	SOIL PROFILE	-		SA	MPL			COI	MMEN	TS]	nat rem	V - V -		H: Cu, Q - Cpen	×	P R R	DIEZOMETED
DEPTH SCALE (metres)	BORING METHOD		STRATA PLOT	ELEV.	띪	ш	BLOWS/0.3m	DYNAM F	IIC CC	NE PE	NETRA	ATION		40 	80 	1	20 	160 	ADDITIONAL LAB. TESTING	PIEZOMETER OR
me H	SING	DESCRIPTION	ΔTA	DEPTH	NUMBER	TYPE	/SM		\L010		FLOT				R COI	NTENT	, PERC	ENT I wl	DDI T.B.	STANDPIPE INSTALLATION
۱ä	l g		STR	(m)	ž	ľ	BLC	20	40	60	80	100		vp I — 10	20	;	30	40	4 5	
		GROUND SURFACE	Ľ	237.80										\perp	\exists^{\dagger}					
		ASPHALT: (200mm)		0.00																
[SAND, some silt, some gravel, brown, moist: (FILL)		0.20																
1		,	\bowtie		1	GS							р							
1			\bowtie																	
- 1		SAND, silty, some clay, trace gravel, compact, brown, moist: (FILL)	₩	236.89 0.91	2	SS	25						0							
ŀ		compact, brown, moist: (FILL)			-	33	23													
ŀ			\bowtie	236.28												^				
ŀ		CLAY, silty, sandy, trace gravel, stiff to very stiff, brown, moist: (TILL)		1.52				Oi Oi	A l							/_`				
ŀ	ers	vory sun, brown, moist. (TILE)			3	ss	11	Grain Size Gr 4%/ Sa	Analys a 23%/	sis: 'Si 46%	/ CI 27	' %		c						
-2	Aug																			•
ŀ	Stem													$\uparrow \setminus$						
İ	Solid Stem Augers				4	SS	20													
[8				4	33	30					^		0						
- 3)						1	
ļ												Z .								
1					5	ss	27							0			6)/		
ŀ													/_				ľ			
-					-							\								
-4					6	SS	71													-
ŀ		Hard		1	١	33									2					
t		END OF BOREHOLE AT 4.42m.	WXZ	233.38 4.42								`								
İ		END OF BOREHOLE AT 4.42m. BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND CUTTINGS,												1						
- 5		BENTONITE HOLEPLUG AND CUTTINGS,						1												
		THEN ASPHALT COLDPATCH TO SURFACE.						\ \	\	7/										
1								\		//										
1											<i>~</i>									
-)		\\											
-6)											
ŀ									-/											
t		Ĭ.			<	_	_	/												
İ																				
7								\nearrow												
['																				
1					/															
1																				
}																				
-8																				-
ł			//																	
ł			1																	
İ)/																		
		V V																		
9																				
<u> </u>																				
9 -																				
<u> </u>																				
· 1		GROUNDWATER ELE	١/٨-	TIONIS	2															

GROUNDWATER ELEVATIONS

▼ WATER LEVEL IN WELL/PIEZOMETER

HWY 50 Drainage Improvement **PROJECT** Project No. 28262

LOCATION

STARTED March 9, 2020 SHEET 1 OF 1 March 9, 2020 N 4 856 800.8 E 603 918.1 COMPLETED DATUM Geodetic

	O.	SOIL PROFILE			SA	MPL	LES	COMMEN	TS		S	HEAR S nat V - rem V -	TRENG1	ΓΗ: Cu, ŀ Q -	(Pa X	. (0	
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PE RESISTANCE	NETRATIO PLOT	N	W	40 8 L ATER C	30 1 L	120 	160 _ ENT	ADDITIONAL LAB. TESTING	PIEZOMETEF OR STANDPIPE INSTALLATIOI
믭	BOR		STR/	(m)	ĭ	[BLO	20 40 60		0		/p I ——			wl 40	₹ ጟ	
\neg	Т	GROUND SURFACE	+ "	237.90	T											T	
		ASPHALT: (175mm)		0.00													
		SAND and SILT, trace gravel, brown, moist: (FILL)		0.18	<u> </u>												
		moist. (FILL)	\bowtie	1	1	GS					0						
				1													
		OLAY site and the transport of the site of	\bigotimes	236.99 0.91				Grain Size Analysis:									
1		CLAY, silty, sandy, trace gravel, very stiff, brown, moist: (TILL)		0.91	2	ss	19	Gr 2%/ Sa 26%/ Si 41%	/ CI 31%			0					
													^				
	,				<u>_</u> ا		0.7										
2	rger				3	55	27					9/					
۱ ۱	Solid Stem Augers			1								<u></u>					
	Ste																
	Solic	Hand to come at the			4	ss	34					0					
		Hard to very stiff								\wedge						^	
3																1	
				1	5	SS	36					0			X		
											/_						
										> \							
4					6	0	23					0					
						00	23					V					
ŀ		END OF BOREHOLE AT 4.42m. BOREHOLE OPEN AND DRY UPON	1/3/	233.48 4.42													
		COMPLETION.				Ι.)/	1					
_		BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND CUTTINGS,									> <						
5		THEN ASPHALT COLDPATCH TO SURFACE.															
6			\times				/	\ /									
					1	1											
		<u> </u>			/_												
								\Diamond									
7				\ \			1										
)/											
					<	1											
8																	
Ĭ				1													
			X														
9																	
!		GROUNDWATER ELE	VA	TIONS	5	1		<u> </u>					1	1	1	1	
		¥ WATER LEVEL UPON CC				_	Z 1/	ATER LEVEL IN V	VFII/ÞI	F7∩I	METE	R	LOGGE	:D ·	MA		
		WATER LEVEL OF ON OC	, 1 V 1 L		•	_	٧	LEVEL IIV V	• L LL/I I		*:- ! L		CHECK		MA CZ		
													J. 1201				THUR

HWY 50 Drainage Improvement **PROJECT** Project No. 28262

LOCATION

April 7, 2020

SHEET 1 OF 1

STARTED April 7, 2020 N 4 856 888.0 E 603 850.7 COMPLETED : DATUM Geodetic

		SOIL PROFILE			SA	MPL		856 888.0	COMME			8	SHEAR,	STRENG	TH: C	Cu, KF			Geodetic
DEPTH SCALE (metres)	BORING METHOD	COLLINOILE	Ϊ́	1	T		_					1	nat V rem V 40	STRENG - • - • 80	Cr 120	Q - X oen ▲ 16		ADDITIONAL LAB. TESTING	PIEZOMETE
(metres)	3 ME		STRATA PLOT	ELEV.	3ER	μ	BLOWS/0.3m	DYNAMIC RES	CONE I	PENETR CE PLOT	ATION							TEST	OR STANDPIPE
<u>-</u> ق	RING	DESCRIPTION	ATA	DEPTH	NUMBER	TYPE)WS		\geq				/ATER (wp I——	CONTEN	1, PE	RCEI —I w		AB. T	INSTALLATIO
בֿ	BOF		STR	(m)	Ž		BLC	20 40	60	80	100		70	20	30	40		" "	
		GROUND SURFACE		238.60															
\neg		ASPHALT: (150mm)	XXX	0.00											T				
		SAND, trace silt and gravel, trace oxide, dense, brown, moist: (FILL)	\bowtie	0.15															
			\bowtie	*	1	SS	46					0							
			\bowtie	1															
1			\bowtie	207.50								0							
'		CLAY, silty, sandy, trace to some gravel, very stiff to hard, brown, moist: (TILL)		237.53 1.07	2	SS	24					,						<u></u>	
		very stiff to hard, brown, moist: (TILL)											1						
	Solid Stem Augers							-											
	٦ ٩			1	3	ss	48						0			>			
2	Ster				3	33	40										>>	1	
_	Solid							-					K.						
	"							1					$\langle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$						
					4	ss	63						0				>>	↓	
																		\wedge	
3				1]										1	
								Grain Size An	alysis:										
				4	5	SS	66	Grain Size An Gr 16%/Sa 2	1%/ Si 40	0%/ CI 2	3%		0				>>	†	
ļ	\perp	END OF PODELIOLE AT 2.22		234.94 3.66		_	1					1							
		END OF BOREHOLE AT 3.66m. BOREHOLE OPEN AND DRY UPON		3.66															
4		COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND CUTTINGS,																	
		THEN ASPHALT COLDPATCH TO											//	>					
		SURFACE.									`								
							И)/	1						
								1R				\/\/							
5						K				_	/	1							
								//		/									
								\\	//		//								
				/_				\	//	\wedge									
6									1										
۱ ۲							_		1/										
								/											
								<u> </u>											
7								/											
					(V													
					ľ														
8				<i>/</i>															
			//																
			1																
)/																	
		<u> </u>																	
9																			
		GROUNDWATER ELE	VA	TIONS	5		-	•					-	1					
						3	Z v	VATER LEV	/EI IN	\ ∧ /⊏I	/DI⊏ <i>70</i>)METE	:p				0.0		
		- WATER LEVEL UPON CO	ורוויוי	LETION	ı	-	- v	VAIER LEV	CL IIV	vv⊏L	L/FIEZ(JIVI⊏ I E	-17	LOGG			SB		
														CHEC	νED	: (CZ		THUR

HWY 50 Drainage Improvement **PROJECT** Project No. 28262

LOCATION

COMPLETED :

STARTED

March 10, 2020 March 10, 2020

N 4 856 940.1 E 603 773.5

SHEET 1 OF 1 DATUM Geodetic

J	۵	SOIL PROFILE			SΔ	MPL	FS	COMME	NTS		S	HEAR S	T <u>R</u> ENG1	H: Cu, k		ATUM		
DEPTH SCALE (metres)	BORING METHOD	SOIL PROFILE	Τμ				_				1	HEAR S' nat V - rem V -	•	Q - Cpen	K ∆ 60	ADDITIONAL LAB. TESTING	PIEZON	ИЕТЕ
etres	3 ME		STRATA PLOT	ELEV.	Ä	سِ ا	BLOWS/0.3m	DYNAMIC CONE P RESISTANC	ENETR	ATION						TION	OF STAND	₹
٤	RING	DESCRIPTION	ATA	DEPTH	NUMBER	TYPE)WS	>	_			ATER C	ONTENT	, PERCE		ADDI AB. 1	INSTALL	
	BO		STR	(m)	Z		BLC	20 40 60 	80 I	100			20 :		40 	L``	<u> </u>	
		GROUND SURFACE		239.70														
		ASPHALT: (200mm)	XXXX	0.00														
		SAND , some silt, some gravel, brown, moist: (FILL)	\bowtie	0.20	1	GS					0							
			\bowtie		Ľ	00					ľ							
			\bowtie	238.79														
1		SAND, silty, some clay, trace gravel, compact, brown, moist: (FILL)		0.91	2	ss	13					0					Bentonite	
		compact, promi, mode (i interpretation)	\bowtie															
		CLAY, silty, some sand to sandy, trace to		238.25 1.45									\wedge					
		CLAY, silty, some sand to sandy, trace to some gravel, hard, brown, moist: (TILL)						Grain Size Analysis: Gr 5%/ Sa 21%/ Si 46					/_					
2	gers				3	SS	30	Gr 5%/ Sa 21%/ Si 46	%/ CI 28	3%		0/		_				
<u> </u>	۳ ا											/					Filter Sand	
	Solid Stem Augers																	
	Solici				4	ss	47					0						
																\wedge		
3																1	Sotted	
					_												Screen	
					5	SS	42					0			1			
					\vdash	\vdash					<u>/</u>							
										, v		\rightarrow						
1		Very Stiff			6	SS	20					0					Sand	
				235.28														
Ī	\top	END OF BOREHOLE AT 4.42m. Well installation consists of 25mm diameter Schedule 40 PVC pipe with a 1.52m slotted		4.42														<u></u>
		Schedule 40 PVC pipe with a 1.52m slotted screen.																
,					1						P .							
		WATER LEVEL READINGS:						\\										
		DATE DEPTH(m) ELEV.(m) Mar 10/20 Dry -			1			\\//	<)/								
		May 26/20 3.10 236.60					1	\(
					X				>									
}		/					4_											
- [7										
					(
,							>	?										
					6	V												
١ ا																		
- [1/															
			1															
		, v																
				<u> </u>	L]							
		GROUNDWATER ELE																
		$\overline{egin{array}{c} egin{array}{c} L	ETION		Ţ	Z _V	ATER LEVEL IN	WELL	./PIEZC	METE	R	LOGGE	D :	MA				
								ay 26, 2020					CHECK		CZ		TH	

HWY 50 Drainage Improvement **PROJECT** Project No. 28262

LOCATION

March 10, 2020

SHEET 1 OF 1

STARTED March 10, 2020 COMPLETED

N 4 857 011.7 E 603 723.6

DATUM Geodetic

ш	ОО	SOIL PROFILE			SA	MPL	ES	COMMENTS		SHEAR S	STRENGT - # - •	H: Cu, I Q -	KPa X	. (2)	
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	v	40 	80 1 CONTENT	20 L , PERC	160 	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
ă	BOF		STR,	(m)	ž		BLC	20 40 60 80 100		wp 1 10		-	40 	4 5	
		GROUND SURFACE ASPHALT: (200mm)		240.90 0.00											
		SAND, some silt, some gravel, brown,	***	0.20											
		moist: (FILL)		X	1	GS			0						
1		CLAY, silty, some sand, trace to some gravel, stiff to very stiff, brown, moist: (TILL)		239.99 0.91	2	SS	13			0					
2	Augers				3	ss	26	Grain Size Analysis: Gr 1%/ Sa 17%/ Si 47%/ Cl 35%		0		7			
	Solid Stem Augers	Hard			4	ss	45			0				\sim	
3					5	ss	47			0				X	
4				236.48	6	ss	34			o	>				
5		END OF BOREHOLE AT 4.42m. BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND CUTTINGS, THEN ASPHALT COLDPATCH TO SURFACE.	,	4.42		<									
6															
7															
8					4										
9															
		GROUNDWATER ELE	VA	TIONS	3					1	'	1	'		
		▼ WATER LEVEL UPON CO				Ţ	Z _V	/ATER LEVEL IN WELL/PIEZO	MET	ΞR	LOGGE		MA CZ		THURE

HWY 50 Drainage Improvement **PROJECT** Project No. 28262

LOCATION

STARTED

March 9, 2020

SHEET 1 OF 1

March 9, 2020 COMPLETED

N 4 857 054.5 E 603 656.9

DATUM Geodetic

ų	0	SOIL PROFILE			SA	MPL	ES	COMMENTS		SHEAR S nat V rem V	STRENG	ΓΗ: Cu, ŀ Q -	(Pa X	ان	
DEFIN SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATIO RESISTANCE PLOT 20 40 60 80 10		VATER (WATER (WP I 10	SONTEN	120 Г, PERC	160 ENT	ADDITIONAL LAB. TESTING	PIEZOMETEF OR STANDPIPE INSTALLATION
	"	GROUND SURFACE	S	241.60	\vdash		Ш		-	i i	Ť	1	Ť	\vdash	
		ASPHALT: (200mm)		0.00											
		SAND, some silt, trace gravel, brown, moist: (FILL)		0.20	_					_					
		, ,			1	GS				0					
				240.69											
1		CLAY, silty, trace sand and gravel, very stiff to hard, brown, moist: (TILL)		0.91	2	SS	18				0				
	2				3	ss	25	Grain Size Analysis: Gr 4%/ Sa 10%/ Si 49%/ Cl 37%							
2	Auge								4						
	Solid Stem Augers														
	Solid				4	ss	45			0					
									\wedge					\wedge	
3															
					5	ss	44		<						
												\/			
									\						
1					6	SS	31								
				237.18	Ù						>				
Ī		END OF BOREHOLE AT 4.42m. BOREHOLE OPEN AND DRY UPON	T	4.42											
		COMPLETION. BOREHOLE BACKFILLED WITH													
5		BENTONITE HOLEPLUG AND CUTTINGS, THEN ASPHALT COLDPATCH TO SURFACE.				K									
6							_								
					/_										
								\uparrow							
7															
					6										
					ĺ										
8															
٠				1											
			X												
)/													
9		<u> </u>													
_	-	GROUNDWATER ELE	VA	TIONS	5						'	1	•		
		$\overline{igspace}$ water level upon co	OMPI	LETION		Ž	<u> </u>	/ATER LEVEL IN WELL/PII	EZOI	METER	LOGGE	D :	MA		
												ED :			THURI

PROJECT : HWY 50 Drainage Improvement Project No. 28262

LOCATION :

 STARTED
 :
 April 7, 2020
 SHEET 1 OF 1

 COMPLETED
 :
 April 7, 2020
 N 4 857 127.1 E 603 605.7
 DATUM Geodetic

COM	IPLE	TED : April 7, 2020				ſ	N 4	857 127.1 E 603 605.7			TUM	Geodetic
щ	ОD	SOIL PROFILE			SA	MPL	ES	COMMENTS	SHEAR STRENGTH: Cu, nat V - ♣ Q - rem V - ● Cpen	KPa X	Ğ	
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT 20 40 60 80 100	40 80 120 WATER CONTENT, PERC	160 	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
		GROUND SURFACE	.,	242.40								
Augers		ASPHALT: (150mm) SAND, gravelly, trace silt, very dense, brown, dry: (FILL)		0.00_ 0.15 241.64	1	ss	52	Grain Size Analysis: Gr 20%/ Sa 72%/ Si & Cl 8%	0			
- 1 - 1 Solid Stem Augers		CLAY, silty, some sand to sandy, trace gravel, very stiff, brown, moist: (TILL)		0.76		SS	29		0	•		Bentonite
-2 -					3	SS	47	Grain Size Analysis: Gr 8%/ Sa 25%/ Si 45%/ Cl 22%	0	>>		<u>√</u> er Sand
- 3					4	ss	87		0	***	>	Slotted Screen
[. - -		END OF BOREHOLE AT 3.66m. Well installation consists of 25mm diameter Schedule 40 PVC pipe with a 1.52m slotted		238.74 <u></u> 3.66	5	ss	72		0	>> ^		
-4 - - -		WATER LEVEL READINGS: DATE DEPTH(m) ELEV.(m)										- - - -
- - 5 - -		Apr 07/20 Dry - May 26/20 2.10 240.30										- -
-6 - -												- -
- 7 - - -												-
-8 -8 -												-
- 9 - -												-
┝		GROUNDWATER ELE	 \/Δ¯	LIONS	<u></u>					1		

GROUNDWATER ELEVATIONS

THURBER2S TEL-28262.GPJ 8/6/20

 $\underline{\nabla}$ water level upon completion

▼ WATER LEVEL IN WELL/PIEZOMETER
May 26, 2020

HWY 50 Drainage Improvement **PROJECT** Project No. 28262

LOCATION

March 5, 2020

SHEET 1 OF 1

STARTED N 4 857 184.7 E 603 516.6 March 5, 2020 COMPLETED : DATUM Geodetic

щ	Ð	SOIL PROFILE		_	SA	MPL	LES	СО	MMENTS		S	HEAR S nat V - rem V -	TRENGT	TH: Cu, k Q - C	(Pa	٦ <u>٥</u>		
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CO RESIS	ONE PENE STANCE PL 60 8		W	40 & L /ATER C vp I——	BO 1 L ONTENT	120 1 	60 L	ADDITIONAL LAB. TESTING	PIEZOM OF STAND INSTALL	R PIPE
		GROUND SURFACE ASPHALT: (200mm)		243.00 0.00														
		SAND, some silt, trace gravel, brown,	- XXX	0.00	J													
		moist: (FILL)			1	GS					0							H
																		I
1					2	SS	9										Bentonite	I
		Loose	\boxtimes	241.63													_	ı
		CLAY , silty, trace sand and gravel, firm, grey, moist: (FILL)		1.37									^					ı
	ers				3	ss	6											
:	n Aug																Filter Sand	
	Solid Stem Augers	CLAY, silty, some sand to sandy, trace gravel, very stiff to hard, grey, wet: (TILL)		240.71 2.29														
	Soli	graver, very still to hard, grey, wet. (TILL)			4	ss	16					0						
																<i>?</i>	Slotted	
								Grain Size Analy	eie:		<u></u>						Screen	
					5	SS	31	Grain Size Analy Gr 5%/ Sa 24%	/ Si 45%/ C	1 26%		p -	 					
																	Sand	
				5.0	6	SS	28										Sanu	
ŀ		END OF BOREHOLE AT 4.42m. Well installation consists of 25mm diameter	_XX	238.58 4.42														<u> </u>
		Schedule 40 PVC pipe with a 1.52m slotted screen.																
						K			>_		7							
		WATER LEVEL READINGS: DATE DEPTH(m) ELEV.(m)																
		Mar 05/20 3.73 239.27 May 26/20 1.10 241.90																
								\										
							_	\ \ \ \										
					/_	_												
						/												
					<													
				V														
			\mathbb{Y}															
_		GROUNDWATER ELE				1						1	1	1	1			
		$\overline{igspace}$ water level upon co	OMPI	LETION	1	Ž		VATER LEVE	L IN WE	LL/PIEZ	OMETE	R	LOGGE	ED :	AF			
							Ν	lay 26, 2020					CHECK	ED :	CZ		TH	IURI

HWY 50 Drainage Improvement **PROJECT** Project No. 28262

LOCATION

March 4, 2020

SHEET 1 OF 1

STARTED N 4 857 262.5 E 603 469.9 March 4, 2020 COMPLETED : DATUM Geodetic

لِا	HO	SOIL PROFILE	1.		SA	MPL	_	COM	IMEN	TS		l s	nat V rem V	TRENG • • • •	rm: C	u, KF Q - X en ▲	d	⁴	D/===:
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CON RESISTA	NE PE ANCE	NETRA PLOT	TION	4	40 	80 L ONTEN	120 T, PE	16 	60	ADDITIONAL LAB. TESTING	PIEZOMETE OR STANDPIPE
ت ڏ	BORIN	DESCRIPTION	STRAT	DEPTH (m)	NUN	`_	BLOW	20 40	60	 80	100	w	vp I —	O ^W		—l w	1	ADI LAB.	INSTALLATIC
寸		GROUND SURFACE	Ű	243.70				1											
		ASPHALT: (175mm)	×××	0.00															
		SAND, some silt, some gravel, brown, moist: (FILL)	\otimes	0.10	1	GS						0							
					Ë	-													
1		Dense to compact			2	ss	33					С							
		·																	
	ers				3	SS	16	Grain Size Analysis Gr 20%/Sa 68%/	s: Si &	CI 12%			0			>			
2	Aug r		X	241.57															
	Solid Stem Augers	CLAY, silty, some sand, trace gravel, very stiff, grey, moist: (TILL)		2.13															
	Solid				4	ss	24						0						
									4									\Diamond	
3																			
					5	ss	26				<								
																<i>//</i>			
1					6	SS	26						0						
				239.28									V	,					
Ī		END OF BOREHOLE AT 4.42m. BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH		4.42			7												
		COMPLETION. BOREHOLE BACKFILLED WITH																	
5		BENTONITE HOLEPLUG AND CUTTINGS, THEN ASPHALT COLDPATCH TO SURFACE.				K			>,										
										</td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
									/										
3							4_												
					/_														
								\uparrow											
7																			
					6														
8																			
۱ ۲				1															
			X																
9		<u> </u>																	
´																			
		GROUNDWATER ELE	VA	TIONS	5			1					1	1					
			OMPI	LETION	I	Ţ	Z _V	/ATER LEVEL	IN V	VELL/	PIEZO	METE	:R	LOGG	ED	: /	AF		
														CHEC			CZ		THUR

HWY 50 Drainage Improvement **PROJECT** Project No. 28262

LOCATION

March 4, 2020

SHEET 1 OF 1

STARTED March 4, 2020 N 4 857 326.8 E 603 375.2 COMPLETED : DATUM Geodetic

-	_	SOIL PROFILE			64	MPL		007 020		MMEN			S	HEAR	STR	ENGT	H: Cu,			Geodelic
ALE -	5	SOIL PROFILE	Γ μ	1	SA	IVIPL			- 00	IVIIVIEN	15		l	nat \ rem \	/ - + / - •)	H: Cu, Q - Cpen	×	A B	PIEZOMETER
DEPTH SCALE (metres)	BORING METHOD	Σ Σ	STRATA PLOT	ELEV.	띪	,,,	BLOWS/0.3m	DYNA	MIC CC	NE PE	NETRA	ATION		40 	80 	1:	20 I	160 	ADDITIONAL LAB. TESTING	OR
E B	Ž.	DESCRIPTION	TAI	DEPTH	NUMBER	TYPE	WS/i		KESIS	MINCE	PLOT		W	ATER	CON	ITENT	PERC		B. TI	STANDPIPE INSTALLATION
씸	200	X	TRA	(m)	≥	-	3LO'	20	40	60	80	100		vp I —	20		i0	wl 40	₹≤	
	H	GROUND SURFACE	S	244.00	\vdash			l l			<u> </u>			1	+		Ĺ	+	+	
-	H	ASPHALT: (175mm)		244.90 0.00											+					
ŀ		SAND, some silt, some gravel, brown, moist: (FILL)		0.18																
ŀ		moist: (FILL)	\bowtie		1	GS							0							
ŀ			\bowtie																	
ŀ			\bowtie	243.99																
- 1		CLAY, silty, some sand. trace gravel, very stiff, brown, moist		0.91	2	ss	21	Grain Size Gr 2%/ S	Analys	sis: / Si 46%	/ CI 37	' %		0						
ŀ		Still, DIOWII, MOIST			-									•						
ŀ																^				
ŀ																/ `				
ŀ	2				3	SS	27							0	//					
-2	√uge																			
ŀ	me																			
ŀ	Solid Stem Augers												$\langle \rangle \langle$							
ŀ	Soli				4	ss	27								0					
-															>				\wedge	
- 3																Ì			1	
ŀ												/ ,								
					5	SS	28										6	//		
1																	v			
1				1																
-4																				
1					6	SS	28							\ °						
1	Ш			240.48																
1		END OF BOREHOLE AT 4.42m. BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND CUTTINGS,		4.42					1					X						
ŀ		COMPLETION. BOREHOLE BACKFILLED WITH																		
- 5		BENTONITE HOLEPLUG AND CUTTINGS, THEN ASPHALT COLDPATCH TO						1					>							
		SURFACE.						\		7/										
1			ľ																	
ŀ											<u> </u>									
1									//	_/										
-6							/)	_/										
`						1			_}											
1					/_															
1								/												
ŀ								_					1							
- 7							$\overline{}$													
1																				
1					/															
1					~															
1																				
-8																				
1				1									1							
1			Y .																	
1													1							
- 9																				
ò													1							
5													1							
9																				
<u> </u>																				
-1		GROUNDWATER ELEV	\/\	TIONS																

GROUNDWATER ELEVATIONS

▼ WATER LEVEL IN WELL/PIEZOMETER

HWY 50 Drainage Improvement **PROJECT** Project No. 28262

LOCATION

March 4, 2020

SHEET 1 OF 1

STARTED N 4 857 397.9 E 603 330.7 March 4, 2020 COMPLETED : DATUM Geodetic

SOIL PROFILE	п	5	3	SOIL PROFILE			SA	MPL	ES		CO	MMEN	TS		SI	HEAR	STRE	ENGTI	H: Cu, Q	KPa - X		
GROUND SURFACE ASPHALT: (200mm) SAND Some silt, some gravel, brown, moist: (Fill.) CLAY, silty, some sand, trace gravel, firm to very stiff, grey, moist: (Till.) CLAY, silty, some sand, trace gravel, firm to very stiff, grey, moist: (Till.) CLAY, silty, some sand, trace gravel, firm to very stiff, grey, moist: (Till.) A SS 21 END OF BOREHOLE AT 4.42m. BOREHOLE OPEN AND DRY UPON COMPLETION. COMPLETION. COMPLETION. STREAM SPHALT COLORAFILED WITH BENT ONTE TOLEPLUS AND CUTTINGS, THEN ASPHALT COLORAFILED WITH BENT ONTE HOLEPLUS AND CUTTINGS. THEN ASPHALT COLORAFILED WITH BENT ONTE HOLEPLUS AND CUTTINGS. THEN ASPHALT COLORAFILED WITH BENT ONTE HOLEPLUS AND CUTTINGS.	DEPTH SCALE (metres)	H			Ю.		~		3m	DANV	AIC CC	NE DE	NETD/	ATION	4	rem \	′ - ● 80	12	Cper 20	n ▲ 160	NAL SAL	PIEZOMETER
GROUND SURFACE ASPHALT: (200mm) SAND Some silt, some gravel, brown, moist: (Fill.) CLAY, silty, some sand, trace gravel, firm to very stiff, grey, moist: (Till.) CLAY, silty, some sand, trace gravel, firm to very stiff, grey, moist: (Till.) CLAY, silty, some sand, trace gravel, firm to very stiff, grey, moist: (Till.) A SS 21 END OF BOREHOLE AT 4.42m. BOREHOLE OPEN AND DRY UPON COMPLETION. COMPLETION. COMPLETION. STREAM SPHALT COLORAFILED WITH BENT ONTE TOLEPLUS AND CUTTINGS, THEN ASPHALT COLORAFILED WITH BENT ONTE HOLEPLUS AND CUTTINGS. THEN ASPHALT COLORAFILED WITH BENT ONTE HOLEPLUS AND CUTTINGS. THEN ASPHALT COLORAFILED WITH BENT ONTE HOLEPLUS AND CUTTINGS.	netre	N C	2	DESCRIPTION	A PL		1BER	핊	S/0.3	DYNAN	RESIS	TANCE	PLOT	ATION	W	L ATER	CON.	TENT,	PER	CENT	ᅴᆴ	STANDPIPE
GROUND SURFACE ASPHALT: (200mm) SAND Some silt, some gravel, brown, moist: (Fill.) CLAY, silty, some sand, trace gravel, firm to very stiff, grey, moist: (Till.) CLAY, silty, some sand, trace gravel, firm to very stiff, grey, moist: (Till.) CLAY, silty, some sand, trace gravel, firm to very stiff, grey, moist: (Till.) A SS 21 END OF BOREHOLE AT 4.42m. BOREHOLE OPEN AND DRY UPON COMPLETION. COMPLETION. COMPLETION. STREAM SPHALT COLORAFILED WITH BENT ONTE TOLEPLUS AND CUTTINGS, THEN ASPHALT COLORAFILED WITH BENT ONTE HOLEPLUS AND CUTTINGS. THEN ASPHALT COLORAFILED WITH BENT ONTE HOLEPLUS AND CUTTINGS. THEN ASPHALT COLORAFILED WITH BENT ONTE HOLEPLUS AND CUTTINGS.	, PF	NIN		DESCRIFTION	RAT		NON	≽	NO.		_	≥_			w	rp I —		\circ^{w}		l wl	ADE	i INSTALLATION
ASPHALT: (200mm) 0.00 0.		, a	á		ST	(111)			<u>B</u>	20 	40 I	60 L	80 l	100 	1	0	20	3	0	40		
SAND, some silt, some gravel, brown, moist: (FILL) Loose CLAY, silty, some sand, trace gravel, firm to very stilf, grey, moist: (TILL) 2 SS 7 CRain Size Analysis: Gr 0%/ Sa 14%/ Si 44%/ Cl 42% 4 SS 21 END OF BOREHOLE AT 4.42m. BOREHOLE PEN AND DRY UPON COMPLETION COMPL						245.30															_	-
Loose Loose CLAY, silty, some sand, trace gravel, firm to very stiff, grey, moist: (TILL) 3 SS 7 Grain Size Analysis: Gr 0%/ Sa 14%/ Cl 42% 4 SS 21 5 SS 21 END OF BOREHOLE AT 4.42m. BOREHOLE CPEN AND DRY UPON GORGHOLE BACKFILLED WITH BENT ONLY ENDE PLOTE OF THE NAME OF THE N					***																	
Loose Loose CLAY, silty, some sand, trace gravel, firm to very stiff, grey, moist: (TILL) 3 SS 7 Grain Size Analysis: Gr 0%/ Sa 14%/ Si 44%/ CI 42% 4 SS 21 5 SS 21 5 SS 21 6 SS 18 A BOREHOLE OFEN AND DRY UPON COMPLETION, BOREHOLE POTEN AND DRY UPON COMPLETION, BOREHOLE OFEN AND DRY UPON COMPLETION, BOREHOLE BATE ALSON THEN ASPHALT COLDAPATCH TO				moist: (FILL)	₩	0.20		GS							0							
Losse CLAY, silty, some sand, trace gravel, firm to very stiff, grey, moist: (TILL) 3 SS 7 Grain Size Analysis: Gr 0%/ Sa 14%/ Si 44%/ Cl 42% 4 SS 21 5 SS 21 6 SS 18 END OF BOREHOLE AT 4.42m, BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND CUTTINGS, THEN ASPHALT COLOPATON TO					₩		Ė	-							ľ							
Losse CLAY, silty, some sand, trace gravel, firm to very stiff, grey, moist: (TILL) 3 SS 7 Grain Size Analysis: Gr 0%/ Sa 14%/ Si 44%/ Cl 42% 4 SS 21 5 SS 21 6 SS 18 END OF BOREHOLE AT 4.42m, BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND CUTTINGS, THEN ASPHALT COLOPATON TO					₩																	
Losse CLAY, silty, some sand, trace gravel, firm to very stiff, grey, moist: (TILL) 3 SS 7 Grain Size Analysis: Gr 0%/ Sa 14%/ Si 44%/ Cl 42% 4 SS 21 5 SS 21 6 SS 18 END OF BOREHOLE AT 4.42m, BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND CUTTINGS, THEN ASPHALT COLOPATON TO	1				₩		2	ss	7													
CLAY, silty, some sand, trace gravel, firm to very stiff, grey, moist: (TILL) 1.52 3 SS 7 Grain Size Analysis: Gr 0%/ Sa 14%/ Cl 42% 4 SS 21 5 SS 21 6 SS 18 4.42 BOREHOLE AT 4.42m. BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND CUTTINGS, THEN ASPHALT COLOPATCH TO				Loose	₩																	
The property of the property o					₩	243.78												\wedge				
Send of Borehole at 4.42m. Borehole open and dry upon completion. Borehole Backfilled with Bentonite Holeplug and cuttings, Then Asphala to Colopator to Completion. Borehole Backfilled with Bentonite Holeplug and cuttings, Then Asphala to Colopator to Completion.				CLAY, silty, some sand, trace gravel, firm		1.52				Cuain Sina	A b											
END OF BOREHOLE AT 4.42m. BOREHOLE OPEN AND DRY UPON COMPLETION BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND CUTTINGS, THEN ASPHALT COLDPATCH TO		ers		to vory stan, groy, moist. (TLE)			3	ss	7	Gr 0%/ Sa	a 14%/	Si 44%	/ CI 42	2%		4	//+		\circ			
END OF BOREHOLE AT 4.42m. BOREHOLE OPEN AND DRY UPON COMPLETION BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND CUTTINGS, THEN ASPHALT COLDPATCH TO	2	Aug																				
END OF BOREHOLE AT 4.42m. BOREHOLE OPEN AND DRY UPON COMPLETION BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND CUTTINGS, THEN ASPHALT COLDPATCH TO		tem																				
END OF BOREHOLE AT 4.42m. BOREHOLE OPEN AND DRY UPON COMPLETION BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND CUTTINGS, THEN ASPHALT COLDPATCH TO		S pilo													X	(
END OF BOREHOLE AT 4.42m. BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND CUTTINGS, THEN ASPHALT COLDPATCH TO		Š					4	SS	21					^			9		^			
END OF BOREHOLE AT 4.42m. BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND CUTTINGS, THEN ASPHALT COLDPATCH TO												4			/ //						2	
END OF BOREHOLE AT 4.42m. BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND CUTTINGS, THEN ASPHALT COLDPATCH TO	3														\rightarrow							
END OF BOREHOLE AT 4.42m. BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND CUTTINGS, THEN ASPHALT COLDPATCH TO							5	SS	21				//									
END OF BOREHOLE AT 4.42m, BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND CUTTINGS, THEN ASPHALT COLDPATCH TO							ľ										Ĭ		<	7		
END OF BOREHOLE AT 4.42m, BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND CUTTINGS, THEN ASPHALT COLDPATCH TO																						
END OF BOREHOLE AT 4.42m, BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND CUTTINGS, THEN ASPHALT COLDPATCH TO														_		Ĭ						
END OF BOREHOLE AT 4.42m. BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND CUTTINGS, THEN ASPHALT COLDPATCH TO							6	ss	18								ŏ		A			
I I THEN ASPRALI COLUPATOR TO I I I I I I I I I I I I I I I I I I						240.88										\searrow	7					
I I THEN ASPRALI COLUPATOR TO I I I I I I I I I I I I I I I I I I				END OF BOREHOLE AT 4.42m. BOREHOLE OPEN AND DRY UPON		4.42					1											
I I THEN ASPRALI COLUPATOR TO I I I I I I I I I I I I I I I I I I				COMPLETION. BOREHOLE BACKFILLED WITH																		
SURFACE	;			BENTONITE HOLEPLUG AND CUTTINGS, THEN ASPHALT COLDPATCH TO)							
				SURFACE.						\		7/										
										`			/)/								
									1)		\ \											
	;						\nearrow		/)											
								1			-//											
				<u> </u>			/_			/												
										\nearrow												
									/													
								/														
							4	1														
					//	/																

GROUNDWATER ELEVATIONS

▼ WATER LEVEL IN WELL/PIEZOMETER

HWY 50 Drainage Improvement **PROJECT** Project No. 28262

LOCATION

March 9, 2020

SHEET 1 OF 1

STARTED N 4 857 448.1 E 603 249.8 March 9, 2020 COMPLETED :

DATUM Geodetic

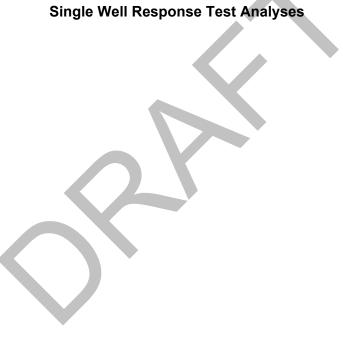
ш	ᄋ	SOIL PROFILE		,	SA	AMPL	ES	COMMENTS	SHEAR S nat V · rem V ·	TRENGTH: C	Cu, KPa Q - X nen A	L 1G	
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT 20 40 60 80 100	40 WATER C wp	80 120 ONTENT, PE	160 	ADDITIONAL LAB. TESTING	PIEZOMETEI OR STANDPIPE INSTALLATIO
		GROUND SURFACE	0,	245.90									
		ASPHALT: (175mm)	11 117	0.00	J								
		SAND, some silt, some gravel, brown, moist: (FILL)		0.10	1	GS							
1		CLAY, silty, some sand to sandy, trace gravel, very stiff to hard, brown, moist: (TILL)		244.99 0.91		ss	14	Grain Size Analysis: Gr 5%/ Sa 39%/ Si 37%/ Cl 19%	0				Bentonite
	ers				3	ss	18		0/		>		
2	Solid Stem Augers												And
,	Sol				4	ss	34		0			<i>?</i>	
					5	ss	52		0				Slotted Screen
ļ					6	SS	34		0				Sand
		END OF BOREHOLE AT 4.42m. Well installation consists of 25mm diameter Schedule 40 PVC pipe with a 1.52m slotted screen.		241.48 4.42									
5		WATER LEVEL READINGS: DATE DEPTH(m) ELEV.(m)											
6		Mar 09/20 Dry - May 26/20 2.20 243.70											
					/								
7								2					
					<								
3													
9													
		GROUNDWATER ELE	:\/^-		Ļ								
						•	,						
		$\overline{\lor}$ water level upon co	JMPL	LETION	1	-1		VATER LEVEL IN WELL/PIEZO 1ay 26, 2020	METER	LOGGED CHECKED	: MA : CZ		THUR

HWY 50 Drainage Improvement **PROJECT** Project No. 28262

LOCATION

March 4, 2020

SHEET 1 OF 1

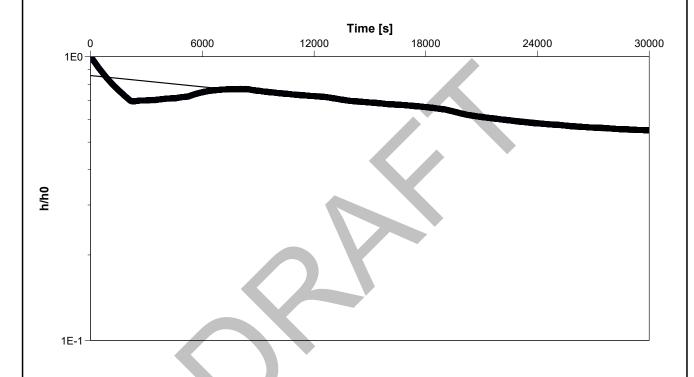

STARTED N 4 857 530.1 E 603 184.3 March 4, 2020 COMPLETED DATUM Geodetic

щ	0	SOIL PROFILE			SA	MPL	ES	COMMENTS	3	nat V	TRENG	Q -	KPa K	ا ق، ا	
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	W	40 ⊥ ATER C /p I──	80 L ONTENT	20 I , PERC	160 ENT wl	ADDITIONAL LAB. TESTING	PIEZOMETEF OR STANDPIPE INSTALLATIO
\dashv	<u>M</u>	GROUND SURFACE	ST	-	_		B	20 40 60 80 100		10	20	30	40	\vdash	
		ASPHALT: (175mm)		246.70 0.00											
		SAND, some silt, some gravel, brown,	***	0.20											
		moist: (FILL)	\bowtie		1	GS			0						
1		CLAY, silty, some sand to sandy, trace gravel, very stiff, brown, moist: (TILL)		245.79 0.91	2	ss	17	Grain Size Analysis: Gr 3%/ Sa 26%/ Si 45%/ Cl 26%		0		•			
2	ders				3	SS	24			0 /					
_	Solid Stem Augers														
	Solid				4	ss	34			0			>>,		
3															
					5	SS	31			0			>>,	estriction ig	
4		Stiff		242.28	6	SS	12			C		•			
5		END OF BOREHOLE AT 4.42m. BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND CUTTINGS, THEN ASPHALT COLDPATCH TO SURFACE.	1/8/	4.42					>						
6															
,					<										
7					4										
8															
9															
		GROUNDWATER ELE	VA	TIONS	3						•		•		
		$\overline{egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} arra$	MDI	ETION	ı		Z v	VATER LEVEL IN WELL/PIEZO	METE	D	LOGGE	:D :	AF		

Appendix D

Slug	Test	Analysis	Report
------	------	-----------------	--------

Project: Highway 50 Stormwater Sewer


Number: 28262

Client: Region of Peel

Location: Bolton, Ontario	Slug Test: 20-08A	Test Well: 20-08A
Test Conducted by: LP		Test Date: 2020-08-12
Analysis Performed by: LP	20-08 SWRT Analysis	Analysis Date: 2020-08-12

Aquifer Thickness:

Checked by: DH

Observation Well	Hydraulic Conductivity [m/s]	
20-08A	1.1 × 10 ⁻⁸	

Slug Test Analysis Report

Project: Highway 50 Stormwater Sewer

Number: 28262

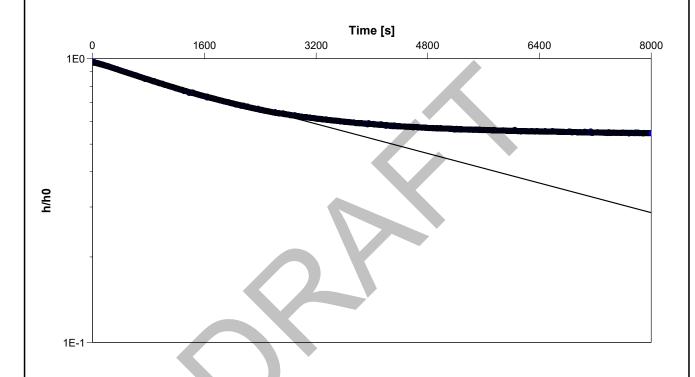
Client: Region of Peel

Location: Bolton, Ontario

Slug Test: 20-16A

Test Well: 20-16A

Test Date: 2020-08-12


Analysis Performed by: LP

20-16 SWRT Analysis

Analysis Date: 2020-08-12

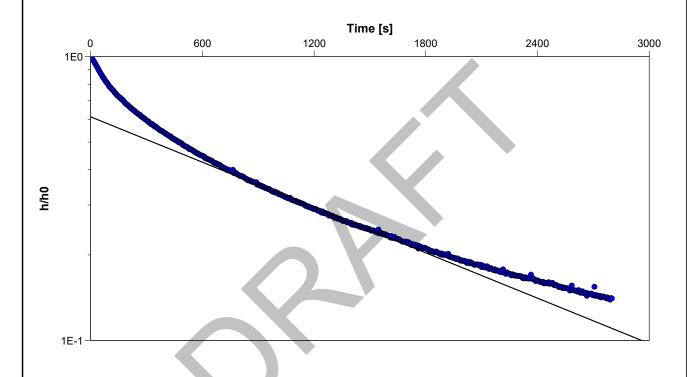
Aquifer Thickness:

Checked by: DH

Observation Well	Hydraulic Conductivity	
	[m/s]	
20-16A	1.1 × 10 ⁻⁷	

Slug Test Analysis Report

Project: Highway 50 Stormwater Sewer


Number: 28262

Client: Region of Peel

Location: Bolton, OntarioSlug Test: 20-20ATest Well: 20-20ATest Conducted by: LPTest Date: 2020-08-12Analysis Performed by: LP20-20 SWRT AnalysisAnalysis Date: 2020-08-12

Aquifer Thickness:

Checked by: DH

Observation Well	Hydraulic Conductivity	
	[m/s]	
20-20A	5.2 × 10 ⁻⁷	

Sluce	Toet	Analy	<i>i</i> eie	Pa	nort
Jiug	1691	Allal	yolo	1/6	PUIL

Project: Highway 50 Stormwater Sewer

Number: 28262

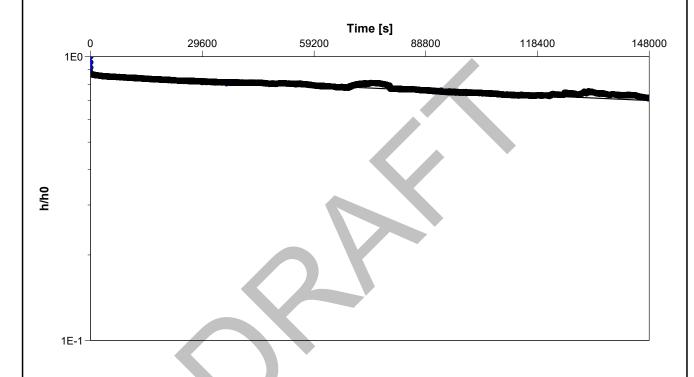
Client: Region of Peel

Location: Bolton, Ontario

Slug Test: 20-24A

Test Well: 20-24A

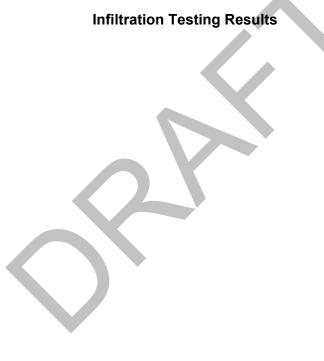
Test Date: 2020-08-12


Analysis Performed by: LP

20-24 SWRT Analysis

Analysis Date: 2020-08-12

Aquifer Thickness:


Checked by: DH

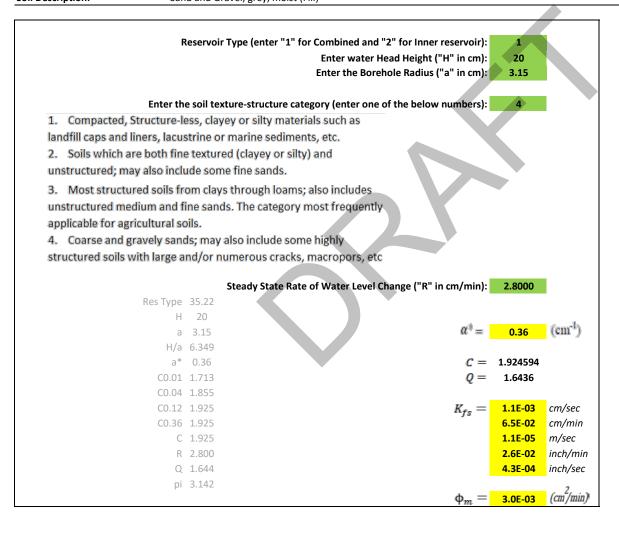
Observation Well	Hydraulic Conductivity	
	[m/s]	
20-24A	9.8 × 10 ⁻¹⁰	

Appendix E

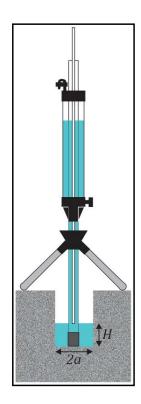
SOILMOISTURE Guelph Permeameter

Calculation formulas related to shape factor (C). Where H_1 is the first water head height (cm), H_2 is the second water head height (cm), a is borehole radius (cm) and a* is microscopic capillary length factor which is decided according to the soil texture-structure category. For one-head method, only C_1 needs to be calculated while for two-head method, C_1 and C_2 are calculated (Zang et al., 1998).

Soil Texture-Structure Category	α*(cm ⁻¹)	Shape Factor
Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc.	0.01	$C_1 = \left(\frac{H_1/a}{2.102 + 0.118(H_1/a)}\right)^{0.655}$ $C_2 = \left(\frac{H_2/a}{2.102 + 0.118(H_2/a)}\right)^{0.655}$
Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.	0.04	$C_1 = \left(\frac{H_1/a}{1.992 + 0.091(^{H_1}/a)}\right)^{0.683}$ $C_2 = \left(\frac{H_2/a}{1.992 + 0.091(^{H_2}/a)}\right)^{0.683}$
Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.	0.12	$C_1 = \left(\frac{\frac{H_1/_a}{2.074 + 0.093(^{H_1}/_a)}\right)^{0.754}$ $C_2 = \left(\frac{\frac{H_2/_a}{2.074 + 0.093(^{H_2}/_a)}\right)^{0.754}$
Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macro pores, etc.	0.36	$C_1 = \left(\frac{H_1/a}{2.074 + 0.093(^{H_1}/a)}\right)^{0.754}$ $C_2 = \left(\frac{H_2/a}{2.074 + 0.093(^{H_2}/a)}\right)^{0.754}$

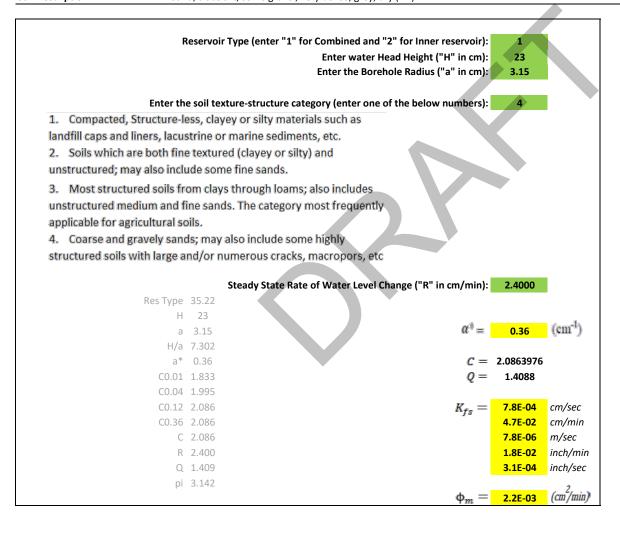

Calculation formulas related to one-head and two-head methods. Where R is steady-state rate of fall of water in reservoir (cm/s), K_{fs} is Soil saturated hydraulic conductivity (cm/s), Φ_m is Soil matric flux potential (cm²/s), a^* is Macroscopic capillary length parameter (from Table 2), a is Borehole radius (cm), H_1 is the first head of water established in borehole (cm), H_2 is the second head of water established in borehole (cm) and C is Shape factor (from Table 2).

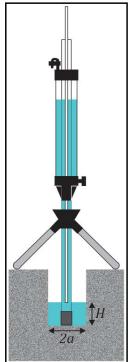
One Head, Combined Reservoir	$Q_1 = \bar{R}_1 \times 35.22$	$K_{fs} = \frac{C_1 \times Q_1}{2\pi H_1^2 + \pi a^2 C_1 + 2\pi \left(\frac{H_1}{a^*}\right)}$ $C_1 \times Q_2$
One Head, Inner Reservoir	$Q_1 = \bar{R}_1 \times 2.16$	$\Phi_m = \frac{C_1 \times Q_1}{(2\pi H_1^2 + \pi a^2 C_1)a^* + 2\pi H_1}$
Two Head, Combined Reservoir	$Q_1 = \bar{R}_1 \times 35.22$ $Q_2 = \bar{R}_2 \times 35.22$	$G_{1} = \frac{H_{2}C_{1}}{\pi(2H_{1}H_{2}(H_{2} - H_{1}) + a^{2}(H_{1}C_{2} - H_{2}C_{1}))}$ $G_{2} = \frac{H_{1}C_{2}}{\pi(2H_{1}H_{2}(H_{2} - H_{1}) + a^{2}(H_{1}C_{2} - H_{2}C_{1}))}$ $K_{fs} = G_{2}Q_{2} - G_{1}Q_{1}$ $G_{3} = \frac{(2H_{2}^{2} + a^{2}C_{2})C_{1}}{2\pi(2H_{2}H_{2}(H_{2} - H_{2}) + a^{2}(H_{2}C_{2} - H_{2}C_{1}))}$
Two Head, Inner Reservoir	$Q_1 = \overline{R}_1 \times 2.16$ $Q_2 = \overline{R}_2 \times 2.16$	$G_4 = \frac{(2H_1^2 + a^2C_1)C_2}{2\pi (2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))}$ $\Phi_m = G_3Q_1 - G_4Q_2$


Saturated Hydraulic Copnductivity Calculations

Project:	Highway 50 Stormwater Sewer
Number:	28262
Performed by:	LP
Test ID:	Test Pit 20-02
Test Pit Easting (m):	-
Test Depth (mbgs):	0.56
Soil Description:	Sand and Gravel, grey, moist (Fill)

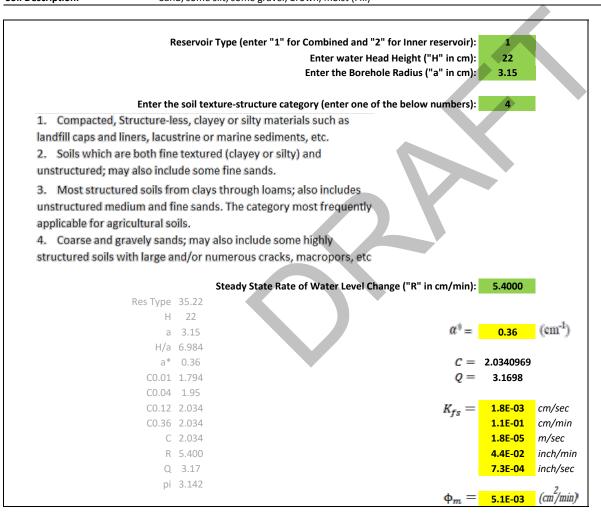
Region of Peel
АН
-
-
-

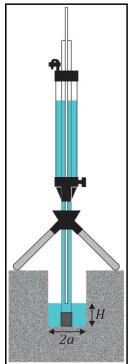



Saturated Hydraulic Copnductivity Calculations

Project:	Highway 50 Stormwater Sewer	
Number:	28262	
Performed by:	LP	
Test ID:	Test Pit 20-06	
Test Pit Easting (m):	-	
Test Depth (mbgs):	0.48	
Soil Description:	Sand, trace silt, some gravel, very dense, grey, dry (F	

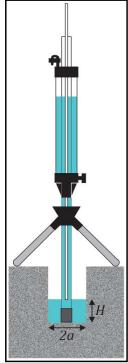
Test Date:	2020-05-27
Client:	Region of Peel
Checked by:	АН
Soil Sample ID:	-
Test Pit Northing (m):	-
Test Elevation (masl):	-




Saturated Hydraulic Copnductivity Calculations

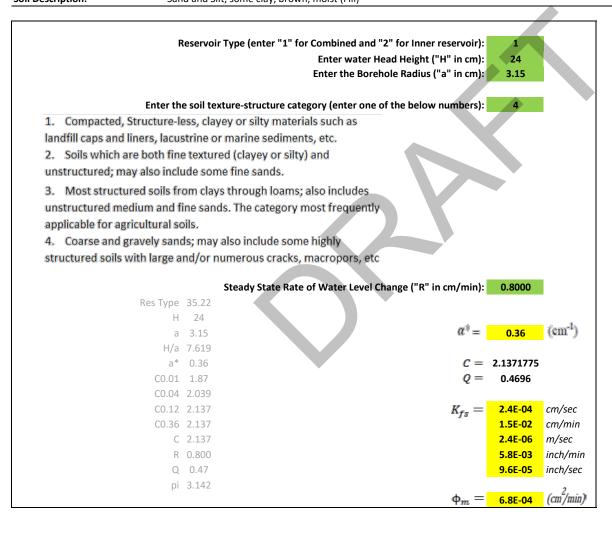
Project:	Highway 50 Stormwater Sewer
Number:	28262
Performed by:	LP
Test ID:	Test Pit 20-08
Test Pit Easting (m):	-
Test Depth (mbgs):	0.41
Soil Description:	Sand, some silt, some gravel, brown, moist (Fill)

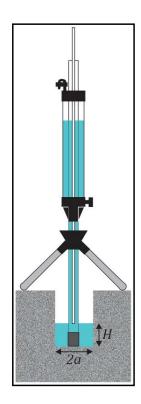
2020-05-27
Region of Peel
AH
-
-
-



Project:	Highway 50 Stormwater Sewer
Number:	28262
Performed by:	LP
Test ID:	Test Pit 20-12
Test Pit Easting (m):	-
Test Depth (mbgs):	0.48
Soil Description:	Sand some silt and gravel brown moist (Fill)

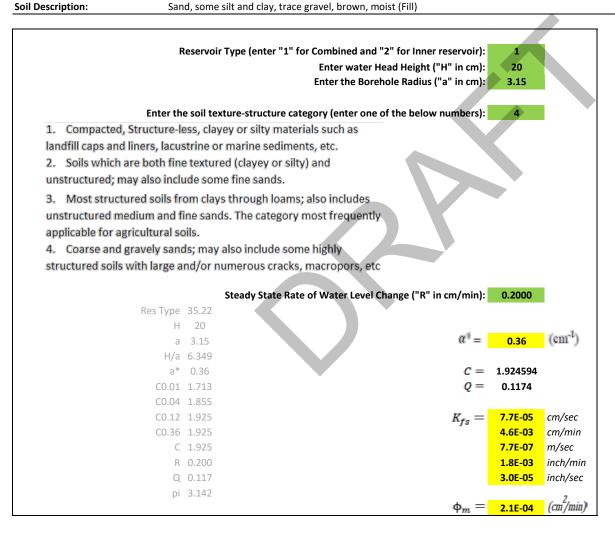
2020-05-27
Region of Peel
AH
-
-
-

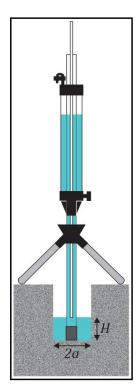

Reservoir Type (enter "1" for Combined and "2" for Inner reservoir): Enter water Head Height ("H" in cm): 21 Enter the Borehole Radius ("a" in cm): 3.15 Enter the soil texture-structure category (enter one of the below numbers): 1. Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc. 2. Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands. 3. Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils. 4. Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macropors, etc Steady State Rate of Water Level Change ("R" in cm/min): Res Type 35.22 H 21 0.36 (cm⁻¹) a 3.15 H/a 6.667 a* 0.36 *C* = 1.9801925 C0.01 1.755 2.8176 C0.04 1.903 CO.12 1.98 1.7E-03 cm/sec 1.0E-01 cm/min C0.36 1.98 m/sec C 1.98 1.7E-05 4.1E-02 inch/min R 4.800 6.9E-04 inch/sec Q 2.818 pi 3.142 $\Phi_m = 4.8E-03 \quad (cm^2/min)$



Project:	Highway 50 Stormwater Sewer
Number:	28262
Performed by:	LP
Test ID:	Test Pit 20-14
Test Pit Easting (m):	-
Test Depth (mbgs):	0.37
Soil Description:	Sand and Silt some clay brown moist (Fill)

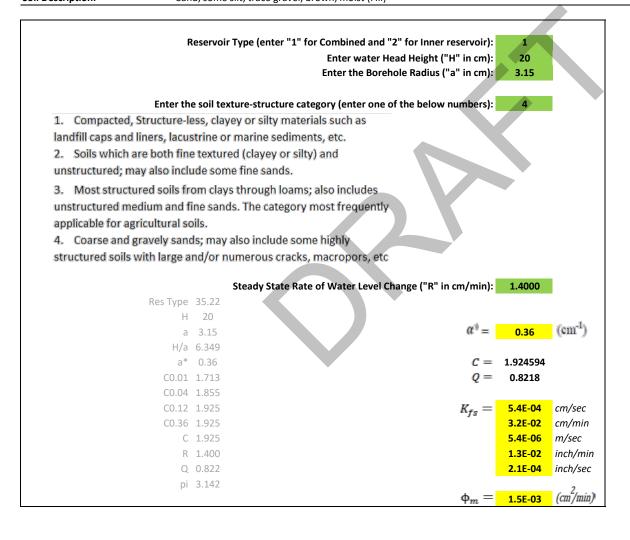
Test Date:	2020-05-27
Client:	Region of Peel
Checked by:	АН
Soil Sample ID:	-
Test Pit Northing (m):	-
Test Elevation (masl):	-

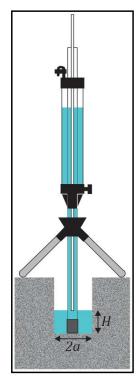




Project:	Highway 50 Stormwater Sewer
Number:	28262
Performed by:	LP
Test ID:	Test Pit 20-18
Test Pit Easting (m):	-
Test Depth (mbgs):	0.54
Soil Description:	Sand, some silt and clay, trace gravel, brown, moist (

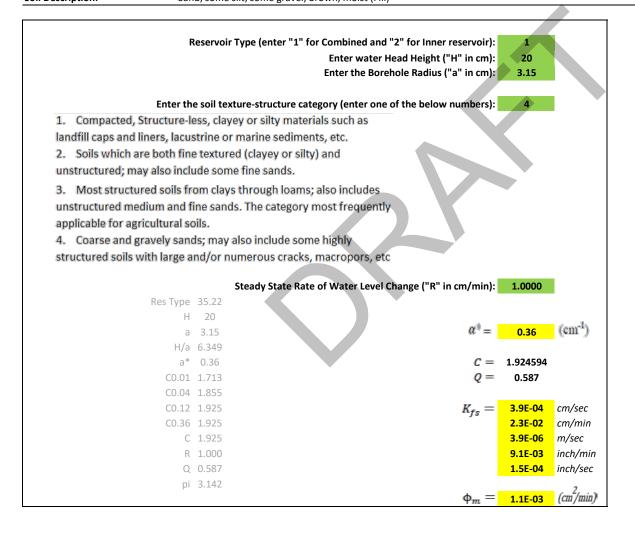
Test Date:	2020-05-27
Client:	Region of Peel
Checked by:	АН
Soil Sample ID:	-
Test Pit Northing (m):	-
Test Elevation (masl):	-

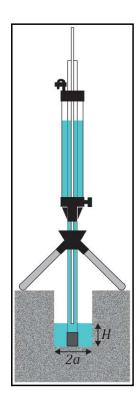




Project:	Highway 50 Stormwater Sewer
Number:	28262
Performed by:	LP
Test ID:	Test Pit 20-20
Test Pit Easting (m):	-
Test Depth (mbgs):	0.46
Soil Description:	Sand, some silt, trace gravel, brown, moist (Fill)

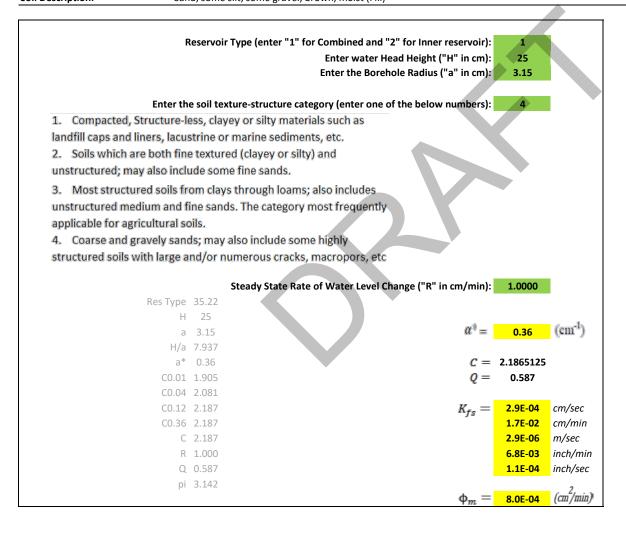
2020-05-27
Region of Peel
AH
-
-
-

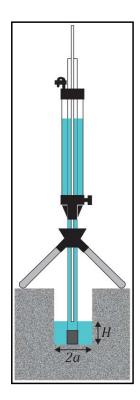




Project:	Highway 50 Stormwater Sewer
Number:	28262
Performed by:	LP
Test ID:	Test Pit 20-22
Test Pit Easting (m):	-
Test Depth (mbgs):	0.33
Soil Description:	Sand, some silt, some gravel, brown, moist (Fill)

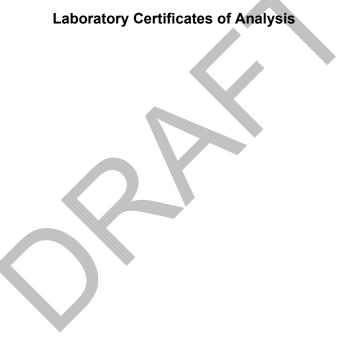
Region of Peel
АН
-
-
-





Project:	Highway 50 Stormwater Sewer
Number:	28262
Performed by:	LP
Test ID:	Test Pit 20-24
Test Pit Easting (m):	-
Test Depth (mbgs):	0.3
Soil Description:	Sand, some silt, some gravel, brown, moist (Fill)

Region of Peel
АН
-
-
-



Appendix F

October 07, 2020

2 of 2

Date:

Page:

Client: R.V. Anderson Associates

File No.: 28262

E file: 28262 HWY 50 HydroG Draft3.2

CA14682-AUG20 R1

28262

Prepared for

Thurber Engineering Ltd.

First Page

CLIENT DETAIL:	S	LABORATORY DETAILS	s
Client	Thurber Engineering Ltd.	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	103, 2010 Winston Park Drive	Address	185 Concession St., Lakefield ON, K0L 2H0
	Oakville, ON		
	L6H 5R7. Canada		
Contact	Alireza Hejazi	Telephone	705-652-2143
Telephone	416-992-9723	Facsimile	705-652-6365
Facsimile		Email	brad.moore@sgs.com
Email	ahejazi@thurber.ca	SGS Reference	CA14682-AUG20
Project	28262	Received	08/24/2020
Order Number		Approved	08/31/2020
Samples	Ground Water (4)	Report Number	CA14682-AUG20 R1
		Date Reported	08/31/2020

COMMENTS

RL - SGS Reporting Limit

Temperature of Sample upon Receipt: 12 degrees C

Cooling Agent Present:No Custody Seal Present:No

Chain of Custody Number:01670

RL increased for tkn due to sample matrix interference

SIGNATORIES

Brad Moore Hon. B.Sc

SGS Canada Inc. 185 Concession St., Lakefield ON, K0L 2H0

t 705-652-2143 f 705-652-6365

www.sgs.com

TABLE OF CONTENTS

First Page	······································
Index	
Results	3-8
Exceedance Summary	
QC Summary	10-20
Legend	2 [.]
Annexes	22

CA14682-AUG20 R1

Client: Thurber Engineering Ltd.

Project: 28262

Project Manager: Alireza Hejazi

PACKAGE: SANSEW - General Chemi	istry (WATER)		S	ample Number	8	9	10	11
				Sample Name	20-24	20-20	20-16	20-08
1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer D	Discharge - BL_53_2010			Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water
2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Dis	scharge - BL_53_2010			Sample Date	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Parameter	Units	RL	L1	L2	Result	Result	Result	Result
General Chemistry								
Biochemical Oxygen Demand (BOD5)	mg/L	2	300	15	< 4↑	< 4↑	< 4↑	< 4↑
Total Suspended Solids	mg/L	2	350	15	142	296	569	135
Total Kjeldahl Nitrogen	as N mg/L	1.0	100	1	< 1.5↑	< 1.0	1.3	< 0.5↓
PACKAGE: SANSEW - Metals and Inoi	rganics		Sa	ample Number	8	9	10	11
(WATER)				Sample Name	20-24	20-20	20-16	20-08
4 CANOCINA MATERIA DI LETTA CONTROLI	Discharge Di 50 05:5			Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water
.1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Disc.2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Disc.	-			Sample Date	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Parameter	Units	RL	L1	L2	Result	Result	Result	Result
Metals and Inorganics								
Fluoride	mg/L	0.06	10		0.15	0.16	0.14	0.14
Cyanide (total)	mg/L	0.01	2	0.02	< 0.01	0.01	< 0.01	< 0.01
Sulphate	mg/L	2	1500		130	92	62	73
Aluminum (total)	mg/L	0.001	50		0.127	3.41	4.52	0.472
Antimony (total)	mg/L	0.0009	5		0.0014	< 0.0009	< 0.0009	< 0.0009
Arsenic (total)	mg/L	0.0002	1	0.02	0.0011	0.0038	0.0033	0.0010
Cadmium (total)	mg/L	0.00000	0.7	0.008	0.000040	0.000062	0.000118	0.000052
. ,		3						
Chromium (total)	mg/L	0.00008	5	0.08	0.00274	0.00640	0.00883	0.00293
Copper (total)	mg/L	0.0002	3	0.05	0.0012	0.0119	0.0132	0.0020
Cobalt (total)	mg/L	0.00000	5		0.00585	0.00277	0.00887	0.00184
Lead (total)	mg/L	0.00001	3	0.12	0.00073	0.0117	0.00587	0.00095
	-							

CA14682-AUG20 R1

Client: Thurber Engineering Ltd.

Project: 28262

Project Manager: Alireza Hejazi

DAGUAGE CANGEIN AL 4			6.	ımple Number	8	9	10	11
PACKAGE: SANSEW - Metals and Inorg	ganics		36	illible Mullipel	0	9	10	11
WATER)								
			;	Sample Name	20-24	20-20	20-16	20-08
1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Dis	ischarge - BL_53_2010		;	Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water
.2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Discl	harge - BL_53_2010			Sample Date	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Parameter	Units	RL	L1	L2	Result	Result	Result	Result
Metals and Inorganics (continued)								
Manganese (total)	mg/L	0.00001	5	0.05	1.55	3.22	1.69	0.501
Molybdenum (total)	mg/L	0.00004	5		0.00161	0.00118	0.00107	0.00086
Nickel (total)	mg/L	0.0001	3	0.08	0.0090	0.0070	0.0116	0.0052
Phosphorus (total)	mg/L	0.003	10	0.4	< 0.003	0.230	0.130	0.021
Selenium (total)	mg/L	0.00004	1	0.02	0.00014	0.00009	0.00012	0.00077
Silver (total)	mg/L	0.00005	5	0.12	0.00006	< 0.00005	0.00006	< 0.00005
Tin (total)	mg/L	0.00006	5		0.00176	0.00149	0.00169	0.00204
Titanium (total)	mg/L	0.00005	5		0.00326	0.0827	0.0376	0.0108
Zinc (total)	mg/L	0.002	3	0.04	0.007	0.021	0.025	0.008

CA14682-AUG20 R1

Client: Thurber Engineering Ltd.

Project: 28262

Project Manager: Alireza Hejazi

PACKAGE: SANSEW - Microbiology	(WATER)		Sa	mple Number	8	9	10	11
			5	Sample Name	20-24	20-20	20-16	20-08
L1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewe	er Discharge - BL_53_2010		8	Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water
L2 = SANSEW / WATER / Peel Table 2 - Storm Sewer	Discharge - BL_53_2010			Sample Date	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Parameter	Units	RL	L1	L2	Result	Result	Result	Result
Microbiology								
E. Coli	cfu/100mL	-		200	<2↑	< 2↑	<2↑	<2↑
PACKAGE: SANSEW - Nonylphenol	and Ethoxylates		Sa	mple Number	8	9	10	11
(WATER)								
				Sample Name	20-24	20-20	20-16	20-08
L1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewi	er Discharge - BL_53_2010			Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water
L2 = SANSEW / WATER / Peel Table 2 - Storm Sewer	Discharge - BL_53_2010			Sample Date	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Parameter	Units	RL	L1	L2	Result	Result	Result	Result
Nonylphenol and Ethoxylates								
Nonylphenol	mg/L	0.001	0.02		< 0.001	< 0.001	< 0.001	< 0.001
Nonylphenol Ethoxylates	mg/L	0.01	0.2		< 0.01	< 0.01	< 0.01	< 0.01
Nonylphenol diethoxylate	mg/L	0.01			< 0.01	< 0.01	< 0.01	< 0.01
Nonylphenol monoethoxylate	mg/L	0.01			< 0.01	< 0.01	< 0.01	< 0.01
	(444.755)		6-	mala Number	0	9	10	11
PACKAGE: SANSEW - Oil and Grea s	se (WATER)			mple Number	8		10	
				Sample Name	20-24	20-20	20-16	20-08
L1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewi	er Discharge - BL_53_2010			Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water
L2 = SANSEW / WATER / Peel Table 2 - Storm Sewer	Discharge - BL_53_2010			Sample Date	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Parameter	Units	RL	L1	L2	Result	Result	Result	Result
Oil and Grease								
Oil & Grease (total)	mg/L	2			< 2	< 2	< 2	< 2
Oil & Grease (animal/vegetable)	mg/L	4	150		< 4	< 4	< 4	< 4
Oil & Grease (mineral/synthetic)	mg/L	4	15		< 4	< 4	< 4	< 4

CA14682-AUG20 R1

Client: Thurber Engineering Ltd.

Project: 28262

Project Manager: Alireza Hejazi

Samplers: Liviu Parpalea

PACKAGE: SANSEW - Other (ORP) (WAT	ΓER)		Sa	ample Number	8	9	10	11
				Sample Name	20-24	20-20	20-16	20-08
_1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Discha	arge - BL_53_2010			Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water
.2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Discharg	ge - BL_53_2010			Sample Date	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Parameter	Units	RL	L1	L2	Result	Result	Result	Result
Other (ORP)								
рН	No unit	0.05	10	9	6.89	6.98	7.03	6.96
Mercury (total)	mg/L	0.00001	0.01	0.0004	< 0.00001	< 0.00001	0.00001	< 0.00001
			6.	amanla Numban	0		40	44
PACKAGE: SANSEW - PCBs (WATER)				ample Number	8	9	10	11
				Sample Name	20-24	20-20	20-16	20-08
L1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Discha	-			Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water
L2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Discharg				Sample Date	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Parameter	Units	RL	L1	L2	Result	Result	Result	Result
PCBs			1					
Polychlorinated Biphenyls (PCBs) - Total	mg/L	0.0001	0.001	0.0004	< 0.0001	< 0.0001	< 0.0001	< 0.0001
PACKAGE: SANSEW - Phenols (WATER)			Sa	ample Number	8	9	10	11
FACRAGE. SANSEW - FIIEIIOIS (WATER)				Sample Name	20-24	20-20	20-16	20-08
	DI 50 0040			Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water
L1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Dischar L2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Discharg	•			Sample Date	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Parameter	Units	RL	L1	L2	Result	Result	Result	Result
	Office	IXL			Nooull	i (Go uit	Nesult	1/69uit
Phenols					0.000	0.000	0.004	0.000
4AAP-Phenolics	mg/L	0.002	1	0.008	0.006	0.006	0.004	800.0
PACKAGE: SANSEW - SVOCs (WATER)			Sa	ample Number	8	9	10	11
				Sample Name	20-24	20-20	20-16	20-08
L1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Discha	arge - Bl 53 2010			Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water
L2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Discharg	-			Sample Date	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Parameter	Units	RL	L1	 L2	Result	Result	Result	Result

CA14682-AUG20 R1

Client: Thurber Engineering Ltd.

Project: 28262

Project Manager: Alireza Hejazi

PACKAGE: SANSEW - SVOCs (WATER))		Sa	mple Number	8	9	10	11
,	,		8	Sample Name	20-24	20-20	20-16	20-08
.1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Disci	charge - BL_53_2010		8	Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water
2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Discha	arge - BL_53_2010			Sample Date	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Parameter	Units	RL	L1	L2	Result	Result	Result	Result
SVOCs								
di-n-Butyl Phthalate	mg/L	0.002	0.08	0.015	< 0.002	< 0.002	< 0.002	< 0.002
Bis(2-ethylhexyl)phthalate	mg/L	0.002	0.012	0.0088	< 0.002	< 0.002	< 0.002	< 0.002
PACKAGE: SANSEW - VOCs (WATER)			Sa	mple Number	8	9	10	11
			8	Sample Name	20-24	20-20	20-16	20-08
1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Disc	charge - BL_53_2010		S	Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water
SANSEW / WATER / Peel Table 2 - Storm Sewer Discharge - BL_53_2010				Sample Date	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Parameter	Units	RL	L1	L2	Result	Result	Result	Result
/OCs								
Chloroform	mg/L	0.0005	0.04	0.002	< 0.0005	< 0.0005	< 0.0005	< 0.0005
1,2-Dichlorobenzene	mg/L	0.0005	0.05	0.0056	< 0.0005	< 0.0005	< 0.0005	< 0.0005
1,4-Dichlorobenzene	mg/L	0.0005	0.08	0.0068	< 0.0005	< 0.0005	< 0.0005	< 0.0005
cis-1,2-Dichloroethene	mg/L	0.0005	4	0.0056	< 0.0005	< 0.0005	< 0.0005	< 0.0005
trans-1,3-Dichloropropene	mg/L	0.0005	0.14	0.0056	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Methylene Chloride	mg/L	0.0005	2	0.0052	< 0.0005	< 0.0005	< 0.0005	< 0.0005
1,1,2,2-Tetrachloroethane	mg/L	0.0005	1.4	0.017	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Methyl ethyl ketone	mg/L	0.02	8		< 0.02	< 0.02	< 0.02	< 0.02
							. 0 0005	< 0.0005
Styrene	mg/L	0.0005	0.2		< 0.0005	< 0.0005	< 0.0005	V 0.0003
Styrene Tetrachloroethylene (perchloroethylene)	mg/L mg/L	0.0005 0.0005	0.2	0.0044	< 0.0005 < 0.0005	< 0.0005 < 0.0005	< 0.0005	< 0.0005

CA14682-AUG20 R1

Client: Thurber Engineering Ltd.

Project: 28262

Project Manager: Alireza Hejazi

PACKAGE: SANSEW - VOCs - BTEX (W	VATER)		Sa	ample Number	8	9	10	11
				Sample Name	20-24	20-20	20-16	20-08
I = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Disc	charge - BL_53_2010		;	Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water
2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Discha	arge - BL_53_2010			Sample Date	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Parameter	Units	RL	L1	L2	Result	Result	Result	Result
OCs - BTEX								
Benzene	mg/L	0.0005	0.01	0.002	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Ethylbenzene	mg/L	0.0005	0.16	0.002	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Toluene	mg/L	0.0005	0.27	0.002	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Xylene (total)	mg/L	0.0005	1.4	0.0044	< 0.0005	< 0.0005	< 0.0005	< 0.0005
m-p-xylene	mg/L	0.0005			< 0.0005	< 0.0005	< 0.0005	< 0.0005
o-xylene	mg/L	0.0005			< 0.0005	< 0.0005	< 0.0005	< 0.0005

EXCEEDANCE SUMMARY

				SANSEW / WATER	SANSEW / WATE
				/ Peel Table 1 -	/ Peel Table 2
				Sanitary Sewer	Storm Sewer
				Discharge - BL 53 2010	Discharge - BL 53 2010
Parameter	Method	Units	Result	вс_53_2010 L1	ВL_53_2010 L2
Turaniotor	moulou	- Critico	rtodati		
)-24					
Total Suspended Solids	SM 2540D	mg/L	142		15
Manganese	SM 3030/EPA 200.8	mg/L	1.55		0.05
Total Kjeldahl Nitrogen	SM 4500-N C/4500-NO3- F	mg/L	< 1.5		1
20					
					
Total Suspended Solids	SM 2540D	mg/L	296		15
Manganese	SM 3030/EPA 200.8	mg/L	3.22		0.05
-16					
-10					
Total Suspended Solids	SM 2540D	mg/L	569	350	15
Manganese	SM 3030/EPA 200.8	mg/L	1.69		0.05
Total Kjeldahl Nitrogen	SM 4500-N C/4500-NO3- F	mg/L	1.3		1
-08					
Total Suspended Solids	SM 2540D	mg/L	135		15
Manganese	SM 3030/EPA 200.8	mg/L	0.501		0.05

20200831 9 / 22

QC SUMMARY

Anions by discrete analyzer

Method: US EPA 375.4 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Duplicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD AC	Spike	Recove	ry Limits %)	Spike Recovery	Recover	ry Limits
					(%)	Recovery (%)	Low	High	(%)	Low	High
Sulphate	DIO5083-AUG20	mg/L	2	<2	5 20	97	80	120	125	75	125

Biochemical Oxygen Demand

Method: SM 5210 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-007

Parameter	QC batch	Units RL		Method	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank		AC	Spike	Recovery Limits (%)		Spike Recovery	Recove	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Biochemical Oxygen Demand (BOD5)	BOD0045-AUG20	mg/L	2	< 2	11	30	99	70	130	111	70	130

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-[ENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Cyanide (total)	SKA0238-AUG20	mg/L	0.01	<0.01	ND	10	96	90	110	95	75	125

20200831

QC SUMMARY

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Duplicate	LC	S/Spike Blank		M	latrix Spike / Ref	
	Reference			Blank	RPD AC	Spike		ry Limits %)	Spike Recovery	Recove	ry Limits
					(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0350-AUG20	mg/L	0.06	<0.06	ND 10	104	90	110	110	75	125

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-[ENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		М	atrix Spike / Re	of.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ery Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury (total)	EHG0024-AUG20	mg/L	0.00001	< 0.00001	15	20	102	80	120	104	70	130

20200831 11 / 22

QC SUMMARY

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dupl	icate	LC	S/Spike Blank		M	atrix Spike / Ref	ī.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover	•	Spike Recovery		ry Limits %)
							(%)	Low	High	(%)	Low	High
Silver (total)	EMS0163-AUG20	mg/L	0.00005	<0.00005	1	20	102	90	110	93	70	130
Aluminum (total)	EMS0163-AUG20	mg/L	0.001	<0.001	2	20	93	90	110	97	70	130
Arsenic (total)	EMS0163-AUG20	mg/L	0.0002	<0.0002	2	20	102	90	110	104	70	130
Cadmium (total)	EMS0163-AUG20	mg/L	0.000003	<0.000003	3	20	101	90	110	102	70	130
Cobalt (total)	EMS0163-AUG20	mg/L	0.000004	<0.000004	2	20	100	90	110	98	70	130
Chromium (total)	EMS0163-AUG20	mg/L	0.00008	<0.00008	2	20	99	90	110	86	70	130
Copper (total)	EMS0163-AUG20	mg/L	0.0002	<0.0002	0	20	100	90	110	99	70	130
Manganese (total)	EMS0163-AUG20	mg/L	0.00001	<0.00001	1	20	101	90	110	98	70	130
Molybdenum (total)	EMS0163-AUG20	mg/L	0.00004	<0.00004	2	20	102	90	110	103	70	130
Nickel (total)	EMS0163-AUG20	mg/L	0.0001	<0.0001	4	20	101	90	110	101	70	130
Lead (total)	EMS0163-AUG20	mg/L	0.00001	<0.00001	4	20	95	90	110	95	70	130
Phosphorus (total)	EMS0163-AUG20	mg/L	0.003	< 0.003	2	20	100	90	110	NV	70	130
Antimony (total)	EMS0163-AUG20	mg/L	0.0009	<0.0009	10	20	102	90	110	112	70	130
Selenium (total)	EMS0163-AUG20	mg/L	0.00004	<0.00004	7	20	96	90	110	98	70	130
Tin (total)	EMS0163-AUG20	mg/L	0.00006	<0.00006	9	20	97	90	110	NV	70	130
Titanium (total)	EMS0163-AUG20	mg/L	0.00005	<0.00005	15	20	98	90	110	NV	70	130
Zinc (total)	EMS0163-AUG20	mg/L	0.002	<0.002	2	20	101	90	110	101	70	130
Silver (total)	EMS0174-AUG20	mg/L	0.00005	<0.00005	ND	20	98	90	110	95	70	130
Aluminum (total)	EMS0174-AUG20	mg/L	0.001	<0.001	4	20	98	90	110	107	70	130
Arsenic (total)	EMS0174-AUG20	mg/L	0.0002	<0.0002	17	20	98	90	110	100	70	130

20200831 12 / 22

QC SUMMARY

Metals in aqueous samples - ICP-MS (continued)

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duplio	ate	LCS	S/Spike Blank		Ma	atrix Spike / Ref	
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover	•	Spike Recovery		ry Limits %)
						(,,,	(%)	Low	High	(%)	Low	High
Cadmium (total)	EMS0174-AUG20	mg/L	0.000003	<0.000003	ND	20	96	90	110	94	70	130
Cobalt (total)	EMS0174-AUG20	mg/L	0.000004	<0.000004	4	20	96	90	110	98	70	130
Chromium (total)	EMS0174-AUG20	mg/L	0.00008	<0.00008	10	20	95	90	110	97	70	130
Copper (total)	EMS0174-AUG20	mg/L	0.0002	<0.0002	1	20	98	90	110	97	70	130
Manganese (total)	EMS0174-AUG20	mg/L	0.00001	<0.00001	4	20	97	90	110	102	70	130
Molybdenum (total)	EMS0174-AUG20	mg/L	0.00004	<0.00004	2	20	101	90	110	99	70	130
Nickel (total)	EMS0174-AUG20	mg/L	0.0001	<0.0001	1	20	96	90	110	100	70	130
Lead (total)	EMS0174-AUG20	mg/L	0.00001	<0.00001	ND	20	98	90	110	98	70	130
Phosphorus (total)	EMS0174-AUG20	mg/L	0.003	<0.003	9	20	99	90	110	NV	70	130
Antimony (total)	EMS0174-AUG20	mg/L	0.0009	<0.0009	1	20	104	90	110	116	70	130
Selenium (total)	EMS0174-AUG20	mg/L	0.00004	<0.00004	ND	20	94	90	110	97	70	130
Tin (total)	EMS0174-AUG20	mg/L	0.00006	<0.00006	ND	20	93	90	110	NV	70	130
Titanium (total)	EMS0174-AUG20	mg/L	0.00005	<0.00005	8	20	97	90	110	NV	70	130
Zinc (total)	EMS0174-AUG20	mg/L	0.002	<0.002	2	20	95	90	110	106	70	130

20200831 13 / 22

QC SUMMARY

Microbiology

Method: SM 9222D | Internal ref.: ME-CA-[ENV]MIC-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duplicate	LC	CS/Spike Blank		м	atrix Spike / Ref	
	Reference			Blank	RPD AC	Spike		ery Limits %)	Spike Recovery	Recover	-
					(%)	Recovery (%)	Low	High	(%)	Low	High
E. Coli	BAC9417-AUG20	cfu/100mL	-	ACCEPTED	ACCEPTE						

Nonylphenol and Ethoxylates

Method: ASTM D7065-06 | Internal ref.: ME-CA-IENVIGC-LAK-AN-015

Parameter	QC batch	Units	RL	Method	Dup	icate	LCS	S/Spike Blank		Ма	trix Spike / Re	f.)
	Reference			Blank	RPD	AC (9)	Spike	Recover	•	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Nonylphenol diethoxylate	GCM0434-AUG20	mg/L	0.01	< 0.01			81	55	120			
Nonylphenol Ethoxylates	GCM0434-AUG20	mg/L	0.01	< 0.01								
Nonylphenol monoethoxylate	GCM0434-AUG20	mg/L	0.01	< 0.01			91	55	120			
Nonylphenol	GCM0434-AUG20	mg/L	0.001	< 0.001			94	55	120			

20200831 14 / 22

QC SUMMARY

Oil & Grease

Method: MOE E3401 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		M	latrix Spike / Ref	
	Reference			Blank					ry Limits %)	Spike Recovery	Recover	-
					(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (total)	GCM0468-AUG20	mg/L	2	<2	NSS 2	0	105	75	125			

Oil & Grease-AV/MS

Method: MOE E3401/SM 5520F | Internal ref.: ME-CA-IENVIGC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		м	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (animal/vegetable)	GCM0468-AUG20	mg/L	4	< 4	NSS	20	NA	70	130			
Oil & Grease (mineral/synthetic)	GCM0468-AUG20	mg/L	4	< 4	NSS	20	NA	70	130			

pН

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	latrix Spike / Ref	
	Reference	Reference		Blank	RPD	AC (%)	Spike		ery Limits %)	Spike Recovery	Recove	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0344-AUG20	No unit	0.05	NA	0		100			NA		

20200831 15 / 22

QC SUMMARY

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dupli	cate	LC	S/Spike Blank		M	atrix Spike / Re	ī.
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
4AAP-Phenolics	SKA0227-AUG20	mg/L	0.002	<0.002	ND	10	114	80	120	101	75	125
4AAP-Phenolics	SKA0244-AUG20	mg/L	0.002	<0.002	ND	10	101	80	120	92	75	125

Polychlorinated Biphenyls

Method: MOE E3400/EPA 8082A | Internal ref.: ME-CA-[ENV]GC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	•		LC	S/Spike Blank		M	latrix Spike / R	ef.
	Reference			Blank	RPD	AC	Spike	Recove	-	Spike Recovery		ery Limits (%)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Polychlorinated Biphenyls (PCBs) - Total	GCM0451-AUG20	mg/L	0.0001	<0.0001	ND	30	99	60	140	92	60	140

20200831 16 / 22

QC SUMMARY

Semi-Volatile Organics

Method: EPA 3510C/8270D | Internal ref.: ME-CA-[ENV]GC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	latrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Bis(2-ethylhexyl)phthalate	GCM0424-AUG20	mg/L	0.002	< 0.002	NSS	30	90	50	140	NSS	50	140
di-n-Butyl Phthalate	GCM0424-AUG20	mg/L	0.002	< 0.002	NSS	30	96	50	140	NSS	50	140

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		Matrix Spike / Ref.			
	Reference			Blank	RPD	AC	Spike	Recove	-	Spike Recovery	Recover	•	
						(%)	Recovery (%)	Low	High	(%)	Low	High	
Total Suspended Solids	EWL0337-AUG20	mg/L	2	< 2	0	10	98	90	110	NA			
Total Suspended Solids	EWL0347-AUG20	mg/L	2	< 2	0	10	96	90	110	NA			

20200831 17 / 22

QC SUMMARY

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Duplicate	LC	S/Spike Blank		Matrix Spike / Ref.			
	Reference	RPD			Spike		ry Limits %)	Spike Recovery		ery Limits %)		
					(%)	(%)	Low	High	(%)	Low	High	
Total Kjeldahl Nitrogen	SKA0221-AUG20	as N mg/L	1.0	<0.5	8 10	107	90	110	94	75	125	
Total Kjeldahl Nitrogen	SKA0237-AUG20	as N mg/L	1.0	<0.5	8 10	104	90	110	102	75	125	
Total Kjeldahl Nitrogen	SKA0248-AUG20	as N mg/L	1.0	<0.5	1 10	103	90	110	116	75	125	

20200831 18 / 22

QC SUMMARY

Volatile Organics

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dupli	icate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery		ery Limits %)
						(76)	(%)	Low	High	(%)	Low	High
1,1,2,2-Tetrachloroethane	GCM0432-AUG20	mg/L	0.0005	<0.0005	ND	30	91	60	130	96	50	140
1,2-Dichlorobenzene	GCM0432-AUG20	mg/L	0.0005	<0.0005	ND	30	94	60	130	99	50	140
1,4-Dichlorobenzene	GCM0432-AUG20	mg/L	0.0005	<0.0005	ND	30	94	60	130	98	50	140
Benzene	GCM0432-AUG20	mg/L	0.0005	<0.0005	ND	30	98	60	130	100	50	140
Chloroform	GCM0432-AUG20	mg/L	0.0005	<0.0005	ND	30	97	60	130	100	50	140
cis-1,2-Dichloroethene	GCM0432-AUG20	mg/L	0.0005	<0.0005	ND	30	99	60	130	102	50	140
Ethylbenzene	GCM0432-AUG20	mg/L	0.0005	<0.0005	ND	30	97	60	130	100	50	140
m-p-xylene	GCM0432-AUG20	mg/L	0.0005	<0.0005	ND	30	96	60	130	100	50	140
Methyl ethyl ketone	GCM0432-AUG20	mg/L	0.02	<0.02	ND	30	93	50	140	93	50	140
Methylene Chloride	GCM0432-AUG20	mg/L	0.0005	<0.0005	ND	30	99	60	130	101	50	140
o-xylene	GCM0432-AUG20	mg/L	0.0005	<0.0005	ND	30	96	60	130	100	50	140
Styrene	GCM0432-AUG20	mg/L	0.0005	<0.0005	ND	30	95	60	130	98	50	140
Tetrachloroethylene	GCM0432-AUG20	mg/L	0.0005	<0.0005	ND	30	97	60	130	100	50	140
(perchloroethylene)												
Toluene	GCM0432-AUG20	mg/L	0.0005	<0.0005	ND	30	98	60	130	101	50	140
trans-1,3-Dichloropropene	GCM0432-AUG20	mg/L	0.0005	<0.0005	ND	30	100	60	130	101	50	140
Trichloroethylene	GCM0432-AUG20	mg/L	0.0005	<0.0005	ND	30	98	60	130	98	50	140

20200831 19 / 22

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. **Matrix Spike Qualifier**: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

20/20831

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

20200831 21 / 22

SGS

Request for Laboratory Services and CHAIN OF CUSTODY

No:016708

Environment, Health & Safety - Lakefield: 185 Concession St., Lakefield, ON K0L 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment

- London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361

Page \ of \

Received By:	Sheard		Received By			2	-	_								"	0								The state of the s
Received Date: 08/24 Received Time: 6:00	(mm/dd/)		Custody Seal		Yes No			Temp	ng Agen erature	Upon I	ent: Ye Receipt	(°C)_	2	12	1 ype:_							LAB	LIMS #:	04/4	682-14ug20
REPORT INFORM	ATION	IN	VOICE INFO	RMATION																					0
Company: THUNBU	n	(same as Report Information)					ation #	6.				1						F	.0.#						
Contact: MLIREZA I	401121	Company:				Project #: 28262 Site Location/ID:																			
Address: 2010 win	ston	Contact:									Т	URNA	ROU	ND TIN	IE (TA)) RE	QUIRE	D							
PARK PRIV	v	Address:	Regular TAT (5-7days)											TAT's are quoted in business days (exclude statutory holidays & weekends). Samples received after 6pm or on weekends: TAT begins next business day											
Phone:						RUSH TAT (Additional Charges May Apply):																			
Fax:		Phone:				PLEASE CONFIRM RUSH FEASIBILITY WITH SGS REPRESENTATIVE PRIOR TO SUBMISSION														Tarin Share State					
Email: AHTJAZIO	THURKED.	Email:				Specify Due Date:*NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE SU WITH SGS DRINKING WATER CHAIN OF CUSTODY														ON MUST BE SUBMITTED					
India. Pagarage		ULATIONS										^	NA	LYS	IS F	REQ	UES	TED	300 1	ZIXIIVIXII	IG WAI	LICUIT	AIIV OF V	3031001	
O.Reg 153/04	O.Reg 406/19	Other Regulation	ns:	Sev	ver By-Law:		M	& I		sv	OC	РСВ		IC.	VC	CA CIDACE	Pest		C	ther	(please s	oecify)		TCLP	
□ Table 1 □ Res/Park □ Table 2 □ Ind/Com □ Table 3 □ Agri/Other □ Table □ Table	Soil Texture: Coarse	Reg 347/558	(3 Day min To	AT) Mun	Sanitary Storm icipality:		ics ;;SAR-soll)) Hg, CrVI	Vo,Ni,			Aroclor					er 🔲				2: 406/19 Leachate	STORM TSW	zation Pkg	Specify TCLP tests M&I	COMMENTS:
RECORD OF SITE O	CONDITION (RSC)	YES	NO			(N/N)	yan ys),Ec	lite	V, Pb, N			3					fy othe				19 Le	ap 18	teri	□РСВ	COMMENTS:
SAMPLE IDENTIFIC	CATION	DATE SAMPLED	TIME SAMPLED	# OF BOTTLES	s MATRIX	Field Filtered (Metals & Inorganics indicivity (Ci. Na-water)	Full Metals Su	ICP Metals only Sb.As.Ba,Be,B,Cd,Cr,Co,Cu	PAHs only	SVOCS all incl PAHS, ABNS, CPS	PCBs Total	F1-F4 + BTEX	F1-F4 only no BTEX	VOCs all incl BTEX	BTEX only	Pesticides Organochlorine or speci				Appendix 2: 406/	Sewer Use:	Water Characterization	□B(a)P	
1 20 -24		AV504/2	0 10:01	12	gw.	N																8			
2 20-20		_n	11:00	17	6w	N																X			
3 20-16		-4-	12:30	1000	Sa	n					t in				1468							X			
4 20-08	Life Committee	-11 -	14:30	17	an	100		(C) th		11	444			57								X			
5					100	A												44,38					- 20		
6								No.																6 1	
7							1000	1415					bayer.												
8							The second secon					-	- distant	market and	State aller		a water o	*							
9				September 1995 State of the	and white the section is a	- property	Apple - Del	-				- 820			1 1			1			Tem Letter		. 100		
10		and the	grand grand and	CHE SELECT		1 100		-		3					b 1		1000	20	Y		+	-	- 3		71 2000 m
11 manual triple	commence of the same of the sa	and the second second	成者。 表示 284 元	e e kelin							1.1		1					W		4	+	2.00	11.12.8	Rec.	A Control
Burks A. St. St. St. St.													125		Sec.			1,590				4, 5		A 0. 3	
12 Observations/Comments/Special Ins	etructions	Seater march						24			3	1 11							A						
Observations/Continents/Special Ins	SILUCTIONS										10,77			May.		V.		4 / 1							
Sampled By (NAME):	10 /	ANPA	con	Signature:	4	7	~		A	Miles and	_					D-4	05	3 12	u	, ,	0	(mm/c	dd/yy)		Pink Copy - Client
Relinquished by (NAME):	11010	PARPA.	LUA	Signature:	5	7			7	215	Sele					10/21	1000	100	20	. 1 6	,	(mm/r	dd/w)		Yen& White Copy - SGS
Oate of Issue: 22 May. 2020 the	ession of samples to SGS contract, or in an alternat				ction on sample co be sent by email to ditions.htm. (Printe											S is co	nsidere	authori	ation f	or compl	etion of w		atures m ts Genera	ay appear o	n this form e retained on file in of Service assible at