HYDROGEOLOGICAL ASSESSMENT FOR CLASS ENVIRONMENTAL ASSESSMENT BOVAIRD DRIVE (HIGHWAY 7) FROM LAKE LOUISE DRIVE TO PEEL / HALTON BOUNDARY BRAMPTON, PEEL REGION, ONTARIO Submitted to: #### **Region of Peel** Transportation Division Public Works 9445 Airport Road 3rd floor Brampton, Ontario M4V 1L5 Submitted by: AMEC Earth & Environmental, a division of AMEC Americas Limited 6 – 405 Maple Grove Road Cambridge, Ontario N3E 1B6 > April, 2010 SW1309037 Distribution: #### **TABLE OF CONTENTS** | | | | | PAGE | |-----|------|----------------|--|------| | 1.0 | INTR | ODUCTIO | N | 1 | | 2.0 | sco | PE OF WO | ORK | 1 | | 3.0 | STUI | OY AREA | DESCRIPTION | 1 | | | 3.1 | Land Us | se | 1 | | | 3.2 | Topogra | aphy and Drainage | 2 | | | 3.3 | | Geology | | | 4.0 | FIEL | D INVEST | IGATION METHODOLOGY | 3 | | | 4.1 | Borehol | e Drilling and Monitoring Well Installation | 3 | | | 4.2 | | Hydraulic Conductivity Testing | | | | 4.3 | | water Monitoring | | | | 4.4 | | water Quality | | | | 4.5 | | Vell Records and Well Survey | | | 5.0 | FIND | | | | | | 5.1 | Geology | / | 4 | | | | 5.1.1 | Fill Materials | 4 | | | | 5.1.2 | Clayey Silt Till | | | | | 5.1.3 | Sandy Silt Till | | | | | 5.1.4 | Bedrock | | | | 5.2 | | eologic Characteristics | | | | | 5.2.1 | Hydraulic Heads | | | | | 5.2.2 | Groundwater Use | | | | | 5.2.3 | Groundwater Quality | | | | | 5.2.4 | Sensitive Areas | | | | | 5.2.5
5.2.6 | Water Budget Analysis Water Budget Calculation | | | 6.0 | CON | | S | | | 0.0 | CON | CLUSION | 5 | 12 | | 7.0 | REC | OMMEND | ATIONS | 13 | | 8.0 | CLO | SURE | | 13 | | 9.0 | REFI | ERENCES | | 14 | #### **LIST OF FIGURES** #### FIGURE NO. | Site and Borehole Locations | |---| | Site and borenole Locations | | Land Use (from CVC) | | Topography and Drainage | | Quaternary Geology | | General Geologic Profile Bovaird Drive | | Geologic Profilee Bovaird Road | | Shallow Groundwater Elevations | | All Overburden Shallow and Deep Bedrock Wells | | Waterwell Locations | | Sensitive Areas (from CVC) | | | #### **LIST OF TABLES** #### TABLE NO. | TABLE 1 | Well Construction Details | |---------|---| | TABLE 2 | Groundwater Elevations | | TABLE 3 | Groundwater Quality | | TABLE 4 | Pre-Development Water Balance | | TABLE 5 | Summary of Annual Infiltration/Recharge | #### **LIST OF APPENDICES** APPENDIX A: Borehole Logs and Monitor details APPENDIX B: Single Well Response Test Analysis APPENDIX C: Grain Size Analyses APPENDIX D: Water Budget Analysis #### 1.0 INTRODUCTION AMEC Earth and Environmental Limited (AMEC) was retained by Peel Region to characterize the hydrogeological conditions along Bovaird Drive West between Lake Louise Drive/Worthington Avenue in Brampton and the Peel regional boundary, Ontario (study area) as part of a Class Environmental Assessment for the study area being conducted by AMEC Philips. This assessment was carried out in support of redevelopment along the existing Bovaird Road alignment, which, along with surrounding property and borehole locations, is shown on Figure 1. #### 2.0 SCOPE OF WORK The scope of work for the hydrogeological work involved an assessment of hydrogeological conditions along the alignment with detailed focus on stream crossing to determine any potential impacts of the road on groundwater resources during and after construction. The hydrogeological assessment component of the study involved the following: - Review of borehole logs and grain size analyses from 3 geotechnical boreholes; - Groundwater elevation monitoring at three monitoring wells located along Bovaird Drive West: - In-situ hydraulic conductivity testing of three monitoring wells along Bovaird Drive West; - Assessment of Ontario Ministry of Environment (MOE) water well records within the study area; - Identification of significant groundwater recharge and discharge areas; - Characterization of the study area hydrogeology based on field data; - An evaluation of the potential impact of the proposed redevelopment on local groundwater resources, private wells and streams; and - Mitigation measures were developed and recommended as needed to protect existing groundwater flow patterns and stream flows. #### 3.0 STUDY AREA DESCRIPTION #### 3.1 Land Use The study area extends southwest from the edge of Brampton to the regional boundary between Peel Region and Halton Region at the edge of Georgetown. At the northeast edge of the study area at the railway crossing are a train station and residential areas. The rest of the study area is mostly undeveloped agricultural land with some residences and farms along major roads. Most of the area has a land use of intensive agriculture, with much smaller percentages of land use being cultural meadows, construction areas, commercial industrial open space and numerous other classifications as shown on Figure 2. Details of the land uses are presented on Figure 2. #### 3.2 Topography and Drainage The study area is located on the South Slope and Peel Plain physiographic regions characterized by gently sloping glacial till plains from the Oak Ridges Moraine approximately 10 km to the northwest to Lake Ontario approximately 25 km to the southeast (Chapman and Putnam 1984; Singer et al. 2003). The topography within the study area slopes gradually down from a high elevation of approximately 250 m above mean sea level (amsl) in the northeast to a lower elevation of approximately 235 m amsl at the top of the Credit River Valley in the southwest. The ground elevation then decreases more steeply down to an approximate elevation of 190 m amsl at the Credit River located just beyond the southwest edge of the study area. The ground slope varies from 0.005 south-easterly in the eastern part of the study area to about 0.01 south-easterly in the central part to about 0.03 southerly near the Credit River in the western part of the study area. A topographic map which presents the surface contours and the drainage patters is presented on Figure 3. Several tributaries to the Credit River cross Bovaird Drive and flow southerly. There are two major tributaries which cross Bovaird Drive, one in the west, about 800 m east of the Credit River crossing of Bovaird and Huttonville Creek in the eastern portion of the study area. The other three minor tributaries which pass under Bovaird Drive appear to be intermittent and. Two of these are located east of Huttonville Creek, namely the Springbrook and Churchville tributaries. A number of other unnamed tributaries also drain the study area. Many of the small tributaries are intermittent streams especially in their upper reaches, south and north of Bovaird Drive. Natural drainage of the area soils ranges from good to imperfect (Soil Survey of Peel County, Ontario Soil Survey, 1953) #### 3.3 General Geology The surficial geology of the study area is shown on Figure 4. The surface deposits in the area consist predominantly red to brown clay and silt of the Halton Till, which overlies the relatively flat-lying shale bedrock of the Queenston Formation. Three small areas of glaciolacustrine sand are identified within the study area: one near the Springbrook tributary and; one north of the Credit River and one south of the Credit River at the western end of the study area. Bedrock or bedrock drift is exposed at two locations in the western end of the study area. Modern alluvium has been mapped in the valleys of the credit river, Huttonville Creek and parts of two small tributaries in the western part of the study area. The overburden in the area ranges from less than 1 m thick at Creditview Road and along the Credit River Valley up to 15 m thick between Mississauga and Heritage Roads as shown on the cross-section profile along Bovaird Drive on Figure 5. The native overburden at most other locations consists of sandy silt or silty sand till (diamict), namely the Halton Till. Sand or silty sand, as shown on figure 5, is identified generally underlying clayey silt till at the overburden bedrock contact in the vicinity of Mississauga road and up to 500 m east of it and at an isolated location in the Credit River Valley. In the vicinity of Mississauga Road, discontinuous glaciolacustrine sand lenses (with gravel on occasion) have been reported to overlie bedrock at a number of drilled locations in the northeast part of the study area, north of Bovaird Drive and east of Mississauga Road (AMEC 2008). There are few users of groundwater for domestic purposes as the yields from overburden and from bedrock are generally very low. #### 4.0 FIELD INVESTIGATION METHODOLOGY #### 4.1 Borehole Drilling and Monitoring Well Installation To determine hydrogeological conditions along the study area, AMEC completed a borehole drilling and well installation program as part of the geotechnical investigation completed between October 13 and 28, 2009. The borehole and monitoring well locations are shown on the study area map of Figure 1. Of the 55 boreholes drilled for the hydrogeological investigation, seven were completed with groundwater monitors. Two ground water monitors were installed at two depths at one of the locations (BC3 and BC3W). One monitor was completed in bedrock near the Credit River (BC35) and three were completed in overburden at B10, B11, BC11 and BC4. The boreholes were drilled and sampled using standard geotechnical investigation techniques and the monitors were installed in general accord with AMEC's monitor installation standard operating procedures. Additional details on the monitor installation can be found in the Geotechnical Investigation Factual Report for Bovaird Drive (AMEC, April, 2010). Well construction details are provided on Table 1 Due to the location of some monitors on the shoulder of Bovaird Drive, two could not be located for further monitoring nor testing. Single well response tests were completed in three of the monitors
(BC3, BC11 and BC35). #### 4.2 In-Situ Hydraulic Conductivity Testing Hydrogeologic characteristics of the shale bedrock and the saturated overburden were evaluated by completing single well response tests at monitors BC3, BC11 and BC35. A slug test analyzed by the Bouwer and Rice method was completed in BC3 (shale bedrock) on January 27, 2010. The test in BC3 was initiated by pumping the monitor nearly dry with a WaTerra inertial pump and monitoring the recovery manually with an electric water level tape. Short term pumping tests and recovery was analyzed in monitors BC11 (overburden clayey silt till) and BC35 (shale bedrock) on March 16, 2010. These tests were initiated by pumping nearly dry with a downhole submersible pump and monitoring the drawdown and recovery with downhole pressure transducers and data loggers. #### 4.3 Groundwater Monitoring Groundwater levels were measured with a manual electric water level tape in all monitors immediately after installation and in all monitors that could be located on January 27 and March 16, 2010. The depth to groundwater in overburden and shallow bedrock monitors ranges between 1.5 and 3 m bgs, except near the Credit River Valley, where it may be 11 m below the top of the river valley. Static groundwater levels were measured in monitors BC3, BC03-W, BC04, BC11, and BC35 and the data are provided in Table 2. #### 4.4 Groundwater Quality Groundwater quality of the overburden and bedrock units was assessed from investigations conducted previously by others. #### 4.5 Water Well Records and Well Survey Water well records available from the Credit Valley Conservation Authority and the City of Brampton databases were reviewed and assessed electronically by Aquaresource Inc. (Aquaresource) to plot well locations and prepare stratigraphic cross- sections. Figures and cross sections were prepared by Aquaresource for review and assessment by AMEC staff. #### 5.0 FINDINGS #### 5.1 Geology The general geology beneath Bovaird Drive was interpreted from MOE well logs and is presented on the cross-section on Figure 5 and discussed in Section 3.3. The distribution of soils in the subsurface in the immediate vicinity of Bovaird Drive was assessed from the geotechnical boreholes drilled in October, 2009. Logs of boreholes drilled along Bovaird Drive West within the study area indicated varying thicknesses of clay (rarely sandy) fill beneath surface, especially adjacent to surface water courses, except under the road where aggregate fill was encountered. These soils were is generally underlain by a silt and sand till (Halton Till), underlain by the Queenston Shale bedrock. Where no fill was identified at surface, the topmost soil was generally sandy silt till or occasionally clayey till continuing down to the interface of the Queenston Shale bedrock. An interpretation of the subsurface soils near Bovaird Drive is provided by the cross-section shown on Figure 6. #### 5.1.1 Fill Materials The fill materials encountered consist of sand and gravel fill and silty clay fill. The sand and gravel fill was thickest (1.2 to 1.4 m) under the paved portions of the street. Where there was no pavement, the sand and gravel fill was generally about 0.6 m thick and underlain by 1 m or more of silty clay fill. Fill materials at BC3 and BC 4 in the Huttonville Creek valley are thicker being up to 5 m thick at BC 3. Near the Credit River Valley at BC35, the fill extends about 11 m down from ground surface to the shale bedrock. The average thickness of fill, consisting of sand and gravel fill at surface and silty clay or rarely silty sand, encountered under and in the vicinity of the road was 4.3 m #### 5.1.2 Clayey Silt Till Beneath the fill, a layer of clayey silt till with an average thickness of 2 m was encountered at 32 of the locations drilled. It is inferred, that in general, the clayey silt till overlies the sandy silt throughout much of the area providing a less permeable cap for infiltration into the more permeable underlying sandy silt till. The clayey silt till was not found to be in direct contact with the bedrock except near Huttonville Creek (BC3 and BC4) #### 5.1.3 Sandy Silt Till Sandy silt till was encountered at 29 of the locations drilled with an average thickness of about 2 m. At 14 of the locations it was overlain by clayey silt till. Clayey silt till was not identified overlying the sandy silt till at 15 locations. In these cases the sandy silt till was directly underlying about 2 m of fill. The sandy silt till commonly was in direct contact with the bedrock except at one location drilled where 0.7 m of gravel and sand was found to underlie the silty sand till. #### 5.1.4 Bedrock Queenston Shale bedrock was encountered at nine of the locations drilled at an average depth of 4.8 m bgs, with the depth below ground surface ranging from 1.4 m bgs at BC31 to 11 m bgs at BC35. #### 5.2 Hydrogeologic Characteristics The hydraulic conductivity of the sandy silt till was evaluated at one monitoring locations and of the shale bedrock at two locations. The hydraulic conductivity of the sandy silt till at BC 11 was calculated from short term pumping recovery data to be about 3 x 10^{-8} m/s. The analysis of recovery from a very short pumping test in the bedrock at BC35 indicated a hydraulic conductivity of about 7 x 10^{-8} m/s. These hydraulic conductivities are considered to be about and indicate that the sandy silt till and bedrock at the locations tested is very low yielding and they not considered to be sufficient for any reasonable water use. The analysis details are presented in Appendix B #### 5.2.1 Hydraulic Heads There are insufficient data available from the recently installed monitors to infer shallow groundwater flow. Groundwater flow directions can be inferred from analysis of the distribution of hydraulic heads as determined from the MOE well log database. The directions of groundwater flow in the saturated overburden and shallow bedrock are inferred to be affected by the presence of Huttonville Creek in the east and the Credit River in the west. The presence of the other tributaries in the study area seems to have little effect on the inferred groundwater flow patterns, supporting the conclusion that these are often intermittent streams in the study area. The impacts of these minor surface water courses on the shallow groundwater would be minimal compared to the impacts of Huttonville Creek and the Credit River. Horizontal groundwater gradients calculated from the interpreted shallow groundwater contours shown on Figure 7. The horizontal groundwater gradient of the shallow groundwater (water table gradient) is about 0.01 ranging from easterly to southerly depending on the effects of surface water distribution, increasing to 0.12 southerly near the Credit River. Depending on the hydraulic conductivity of the saturated overburden and shallow fractured bedrock which may range between 3×10^{-6} and 3×10^{-8} m/s, and using an effective porosity of 0.2, the lateral ground water flow velocity is estimated to range between 0.04 and 4 m/yr. Groundwater elevations were calculated for monitors BW3(bedrock) and BW3C (overburden silty clay fill) near Huttonville Creek on January 17 and March 16, 2010. The vertical gradient across the 0.6 m of clayey silt till and the 1.4 m of upper shale bedrock considered to be isolated between the two monitors was calculated to be about 0.14 downward in January, 2010 and 0.17 upward in March, 2010. It may be that the gradients across these units reverse seasonally, being affected by recharge or stream stage. Assuming that the vertical hydraulic conductivity of the clayey silt till and upper shale is between 3×10^{-8} and 3×10^{-9} m/s, the vertical flow velocity (upward or downward) through the silty clay till and upper bedrock near Huttonville Creek is estimated to range between 0.07 and 0.7 m/yr. #### 5.2.2 Groundwater Use The distribution of groundwater monitors and water wells within the study area as determined from the water well data base, is presented on Figures 8 and 9. All known locations of reported water wells and monitor wells installed for environmental investigations are shown on Figure 8. Only reported water wells and a few investigation wells not used for water supply (identified as IWA, OGS, MNR, MTO and UGAIS) and are presented on Figure 9. The condition and current use of these wells is not known at present. Based on the hydrogeologic conductivities expected for the saturated sol and shale bedrock, they are not considered in general to be viable aquifers. It is noted however that the occurrence of discontinuous sand and gravel lenses in the sandy silt till or located at the till/bedrock interface could possibly produce limited water for domestic use. #### **Bedrock Wells** Approximately thirty seven locations for wells completed in bedrock (shallow and deep) are presented on Figure 9 (excluding the three IWA wells, three OGS wells, two MTO wells, seven UGAIS wells, and one MNR well). It is expected that the fourteen bedrock wells located along and east of Creditview Road in the developed area are no longer required for water supply as this area is serviced with Municipal water. A total of twenty six wells completed in bedrock within the study area may be used for domestic purposes. #### **Overburden Wells** In total twenty-three overburden wells have been identified within the study area which may be sources of water for use by residents. In the area east of Mississauga Road, twelve wells completed in overburden were identified, of which four may be sources for domestic water use. Four overburden wells located on the west side of Mississauga road may also be sources of water use by local residents. All but one of the remaining fifteen overburden wells are located west of Heritage Road #### 5.2.3 Groundwater Quality Groundwater data from twenty monitors in the vicinity of the study area was
reviewed and a summary of the more relevant parameters is presented on Table 3. The monitors had been installed and sampled for several previous studies including the IWA study and studies by private owners for proposed subdivision development. Eight of the monitors are located within the western part of the study area between Mississauga and Creditview Roads. The chemical data indicate fresh groundwater in the overburden and shallow bedrock and saline groundwater in the deeper bedrock. Groundwater in the deeper bedrock is poorer in quality as indicated by the significantly higher concentrations than the concentrations detected in the overburden for hardness, total dissolved solids (TDS), bromide, chloride, sulphate and sodium. Concentrations of hardness, TDS, chloride, sulphate, iron, manganese and sodium in deeper bedrock groundwater exceeded the respective Ontario Drinking Water Standards (ODWS). In the overburden, only hardness exceeded the ODWS operational guideline (OG) at all locations sampled. TDS, chloride, nitrate, iron, manganese and sodium concentrations exceeded the ODWS at only a few locations. Hardness concentrations ranged from 120 mg/l to 645 mg/l in the overburden and 530 mg/l to 4900 mg/l in deep bedrock. TDS concentrations ranged from 260 mg/l to 1500 mg/l in the overburden and 2600 mg/l to 19 000 mg/l in deep bedrock. Sulphate concentrations ranged from 11 mg/l to 317 mg/l in overburden, below the ODWS AO of 500 mg/l, and 310 mg/l to 1700 mg/l in the deep bedrock. There were no significant differences in the concentrations of fluoride, nitrate, nitrite, iron or manganese between the overburden and bedrock groundwater. Nitrate concentrations did not exceed the health related ODWS of 10 mg/l in the overburden or bedrock groundwater, except at one location in the overburden, where a nitrate concentration of 11 mg/l was reported. In summary, the groundwater quality in the overburden and shallow bedrock although hard, is by and large of acceptable quality for drinking. Elevated concentrations of sodium in shallow groundwater, likely resulting from application of road de-icing materials, were reported at a few locations. The quality of groundwater in the deeper bedrock is poorer and much more highly mineralized, with relatively very high concentrations of chloride, sodium, sulphate and TDS. #### 5.2.4 Sensitive Areas The CVC has identified several areas, shown on Figure 10, which are considered sensitive. These include a Life Science Area of Natural and Scientific Interest (ANSI) in the west end of the study area adjacent to the Credit River and two of its tributaries. There are also two Provincial Wetlands located just west of Heritage Road and one further to the west between the two western tributaries to the Credit River all of which are very near Bovaird Drive and appear to be within the project limit area. Several other wetlands identified are of less concern as they are located further from Bovaird Drive although they may be within the project limit area. #### 5.2.5 Water Budget Analysis The impact of the proposed development on the recharge/discharge characteristics of the Site is dependent on the pre-development conditions of the Site and the type of development proposed. The soils along the Bovaird Drive corridor are classified in the *Soil Survey of Peel County* as Chinguacousy and Oneida clay loams. Both soil types are derived from shale and limestone based till. Despite relatively slow infiltration and percolation, these soil types exhibit good drainage due to relatively rapid runoff. For the purposes of this analysis, the native soil on the Site has been classified as clay loam. Recharge to aquifers can occur through several processes including: direct infiltration of precipitation, influent losses from watercourses, irrigation, leakage from water mains and sewers, and flow between aquifers. Of these, direct infiltration is the most important recharge mechanism. In any area, recharge is dependent on a complex interaction of several physical variables including: intensity and duration of rainfall, air temperature, textural properties of soils, soil moisture capacity (SMC), water table depth, ground surface characteristics, vegetation type and topography. In summary, there is no simple way to accurately measure recharge to an aquifer system. Indirect measurement of recharge by the measurement of baseflow in streams and the use of ground water models has been used in comprehensive sub-watershed studies, but this approach is unwarranted due to the relatively small size and linear nature of the Bovaird Drive corridor. Where more sophisticated methods for evaluating the effects of urban development on recharge are impractical, a water balance model based on local precipitation, temperature and soils data is commonly used. #### 5.2.6 Water Budget Calculation The seasonal infiltration/recharge characteristics of the Site were evaluated using a general water balance equation of the form: Potential Infiltration (I) = Precipitation (P) – Actual Evapotranspiration (AET) – Runoff (R) An estimate of AET for the Site was made using the Thornthwaite Model for approximating potential evapotranspiration (PET). The Thornthwaite Model is based on an empirical relationship between PET and mean air temperature (Palmer and Havens, 1958) given by the formula: PET = $16d (10T/I)^a$, where: - PET = monthly evapotranspiration (mm) - T = mean monthly temperature (°C) - I = annual thermal index = sum of the monthly indices (i) - $i = (T/5)^{1.514}$ Note: i = 0 when average T (${}^{\circ}$ C) < 0 - d = correction factor for monthly sunshine duration based on latitude of approximately 44° N. - $a = 0.49 + 0.0179I 0.0000771I^2 + 0.000000675I^3$ The climate station operated by Environment Canada that is closest to the Site is located at Toronto International Airport (43°41′N, 79°38′W). Records for mean monthly temperature and precipitation (rainfall and snowfall) were reviewed for the period 1971 to 2000. (Environment Canada: Canadian Climate Normals, 2004). Estimates of runoff for the Site were made on the basis of the surface soil/sediment types, type of cover and slopes using runoff coefficients based on standard methods for drainage analysis (MTO, 1997). The runoff coefficient (C_r) is the ratio of the depth of runoff to the corresponding depth of rainfall falling on an area. Where there are different land uses and soil types on a Site, a composite runoff coefficient based on the following formula is used: $$C = \frac{A_1C_1 + A_2C_2 +}{A_t}$$ Equation 1 where: C = Composite runoff coefficient $A_{1,2}$ = Area (ha) corresponding to specific land use or soil type $C_{1,2,}$ = Runoff coefficient (C_r) corresponding to $A_{1,2,...}$ A_t = Total drainage area, ha Runoff coefficients, corresponding to a return period of 5 to 10 years, used for the Site are based on empirical values obtained from the MTO Drainage Management Manual (1997) and adjusted for estimated capture of runoff by underdrained swales. The runoff coefficients (MTO, Design Chart, 1.07) are summarized in the worksheet provided in Appendix D of this report. Post-development runoff coefficients were selected to reflect the discharge of runoff from the various land uses in the Bovaird Drive corridor as shown on Figure 2 of the report. Runoff coefficients were also adjusted to account for evaporation losses when air temperatures were less than zero degrees Celsius (0° C). A simple spreadsheet model (Appendix D) was used to calculate PET and water balance on a monthly basis for pre- and post-development conditions on the site. General assumptions made in calculating PET and water balance are as follows: - When the monthly thermal index (i) = 0, the PET is zero - When T < 0°C, infiltration (I) = 50 percent of the difference between precipitation and runoff - When PET exceeds (P R), AET equals (P R) #### 5.2.6.1 Pre-Development Water Balance Table 4 summarizes the results of the water balance model computed for pre-development conditions: **Table 4: Pre-development Water Balance** | Month | Precipitation mm | AET mm | Runoff mm | Infiltration
mm | |-----------|------------------|--------|-----------|--------------------| | January | 52.2 | 0.0 | 8.1 | 22.0 | | February | 42.6 | 0.0 | 6.6 | 18.0 | | March | 57.1 | 0.0 | 8.9 | 24.1 | | April | 68.4 | 31.5 | 17.3 | 19.6 | | May | 72.5 | 54.2 | 18.3 | 0.0 | | June | 74.2 | 55.5 | 18.7 | 0.0 | | July | 74.4 | 55.6 | 18.8 | 0.0 | | August | 79.6 | 59.5 | 20.1 | 0.0 | | September | 77.5 | 57.9 | 19.6 | 0.0 | | October | 64.1 | 37.7 | 16.2 | 10.2 | | November | 69.3 | 10.6 | 17.5 | 41.2 | | December | 60.9 | 0.0 | 9.5 | 25.7 | | Year | 793 | 363 | 180 | 161 | These data indicate that net infiltration contributing to aquifer recharge occurs primarily in the spring and fall of the year with a deficit occurring in the summer months (See Appendix D for details). The estimated annual recharge rate of 161 mm is a reflection of the combination of the local clayey silt soils and the disturbed conditions observed on the Site. #### 5.2.6.2 Post Development Water Balance The widening of Bovaird Drive represents a relatively small decrease in the area available for the recharge of local aquifers. In calculating the post-development water balance, the loss of recharge area was estimated to be approximately nine hectare. Table 5 and Figure 1 (Appendix D) summarize the estimated water balance for pre- and post-development conditions in the vicinity of the Bovaird Drive corridor: Table 5: Summary of Annual Infiltration/Recharge | Stage | Pre-Dev | velopment | Post Dev | elopment | |-----------|--------------|----------------|--------------|----------------| | Month | Infiltration | Recharge | Infiltration | Recharge | | | mm | m ³ | mm | m ³ | | January | 22.0 | 127564 | 21.7 | 125658 | | February | 18.0 | 104104 | 17.7 | 102549 | | March | 24.1 | 139538 | 23.7 | 137454 | | April | 19.6 | 113689 | 18.8 |
109140 | | May | 0.0 | 0.0 | 0.0 | 0.0 | | June | 0.0 | 0.0 | 0.0 | 0.0 | | July | 0.0 | 0.0 | 0.0 | 0.0 | | August | 0.0 | 0.0 | 0.0 | 0.0 | | September | 0.0 | 0.0 | 0.0 | 0.0 | | October | 10.2 | 59216 | 9.5 | 54954 | | November | 41.2 | 238404 | 40.4 | 233796 | | December | 25.7 | 148824 | 25.3 | 146602 | | Totals | 161 | 931339 | 157 | 910153 | Based on the water balance calculation, the estimated post development infiltration of 157 mm represents a estimated net loss of annual recharge capacity in the Bovaird Drive corridor of 21,186 m3 or 2.3 percent of the pre-development capacity. This is considered to be a negligible change and well within the margin of error for a water budget calculation. #### 6.0 CONCLUSIONS The findings of this investigation permit the following conclusions to be presented. - 1 The land use within the study area consists primarily of agricultural (more than 60 %) predominated by intensive agricultural. - 2 Topographic gradients are low, generally to the southwest, (<0.01) except at the Credit River Valley. - 3 Major perennial streams in the Study area are the Credit River, Huttonville Creek and the large westernmost tributary to the Credit River in the study area. Lesser, ephemeral streams in the Study area include the Springbrook and Church tributaries, and the unnamed tributaries between Huttonville creek and the westernmost tributary of the Credit River within the study area. - 4 The overburden in the area, underlain by Queenston Shale bedrock, consists primarily of clayey silt till (upper) to sandy silt till (lower) (both Halton Till) which is less than 1 m thick at Creditview Road and along the Credit River Valley up to 15 m thick in the central portion of the study area. - 5 Discontinuous deposits of sand (occasionally with gravel) have been identified, primarily in the vicinity of Mississauga Road and east of it. - 6 The direction of groundwater flow as inferred from MOE water well data for shallow wells is south-westerly, modified to some extent by discharge into Huttonville Creek and the Credit River within the study area and Fletcher's Creek, east of the study area. The other tributaries, except the most westerly on in the study area, are considered to be ephemeral and do not influence groundwater flow directions throughout most of the year. - 7 Approximately forty-nine wells completed in overburden and bedrock within the study area may be used for domestic purposes. No information on the condition nor current use of these wells is available. - 8 The hydrogeologic characteristics determined for the overburden and bedrock indicate that both are poor aquifers, generally incapable of supplying sufficient water for domestic uses. Wells that intercept the discontinuous sand or sand and gravel lenses, generally at the bedrock interface may produce sufficient water for domestic use. - 9 The quality of the groundwater from wells completed in overburden and shallow bedrock (<5 m below bedrock surface), although very hard, meets the ODWQS. The quality of groundwater in deep bedrock, in addition to being very hard, may be very mineralized and concentrations of a number of parameters (some health related) exceed the ODWQS. - 10 There is minor evidence of impact from road de-icing to the groundwater in overburden and shallow bedrock. - 11 Several small Provincial Wetlands and an ANSI have been identified within the study area by the Credit Valley Conservation Authority. - 12 Water budget analysis indicates that the net effect of widening Bovaird Drive from two to four lanes may decrease recharge by less than 3 per cent, an insignificant amount considering the range of error inherent in the assumptions and calculations. - 13 Impacts to surface water, groundwater or water supply wells from reconstruction of Bovaird Drive and its associated structures (culverts, bridges) is expected to be minimal. #### 7.0 RECOMMENDATIONS Based on the findings of this assessment, the following recommendations are presented for consideration. - 1 Locate all groundwater monitors installed and equip with data logging equipment to measure groundwater levels for six to nine months from late winter until late fall. - 2 Prior to construction, complete a door-to-door water well survey for all water supply wells located within the study area to provide baseline data for comparison with future conditions. - 3 Review of the potential for impacts of discharge to surface water and impacts to wetlands be revisited when reconstruction options especially as related to bridge reconstruction are developed with more certainty. #### 8.0 CLOSURE This report has been prepared for the exclusive use of The Region of Peel for specific application to this portion of this Class Environmental Assessment. Respectfully Submitted, AMEC Earth & Environmental, a division of AMEC Americas Limited Prepared by: Tomas Cihula, M.Sc., P.Geo. Project Hydrogeologist Comas Glant Dirk Gevaert, M.Sc., P.Geo Associate Hydrogeologist SW1309037 Page 13 #### 9.0 REFERENCES - AMEC Earth and Environmental, <u>Initial Assessment of Impacts on Huttonville Creek and a Tributary from Dewatering of a Proposed Rail Underpass at Creditview Road and CNR Line, Brampton</u>, 1 October 2008. - Chapman, L.J. and Putnam, D.F., *The Physiography of Southern Ontario*, *3rd Edition*, Ontario Ministry of Natural Resources, 1984. - Golder Associates Limited (Golder), <u>IWA Landfill Site Search, Peel Region, Step 6</u>, <u>Hydrogeological Report, Site B-21c</u>, December 1993. - Singer, S.N., Cheng, C.K. and Scafe, M.G., *The Hydrogeology of Southern Ontario*, *2nd Edition*, Ontario Ministry of Environment, Toronto, Ontario, 2003. ## TABLE 1 WELL COMPLETION DETAILS HYDROGEOLOGICAL ASSESSMENT BOVAIRD DRIVE WEST (HIGHWAY 7) - LAKE LOUISE DRIVE TO PEEL / HALTON BOUNDARY BRAMPTON, ONTARIO | Monitor
Name | Screened
Unit | Well
Location along | Completion
Date | | (NAD 83) | Well | Top of Pipe
Elevation | Stickup | Ground
Elevation | Boring
Depth | Well
Depth | Screen
Length | | d Interval
BGS) | | ck Interval
BGS) | |-----------------|---------------------------------------|------------------------|--------------------|---------|-----------|------|--------------------------|---------|---------------------|-----------------|---------------|------------------|-----|--------------------|-----|---------------------| | | | Bovaird Drive W. | | Easting | Northing | (cm) | (m AMSL) | (cm) | (m AMSL) | (m BGS) | (m BGS) | (m) | Тор | Bottom | Тор | Bottom | | BC03 | SHALE | Mississauga Rd. | 14-Oct-09 | 594 358 | 4 835 573 | 3.8 | 237.87 | -17 | 238.04 | 10.7 | 10.7 | 3.0 | 7.7 | 10.7 | 7.7 | 10.7 | | BC03-W | silty CLAY fill | Mississauga Rd. | 26-Oct-09 | 594 358 | 4 835 573 | 3.8 | 237.84 | -20 | 238.04 | 4.6 | 4.6 | 1.6 | 3.0 | 4.6 | 3.0 | 4.6 | | BC04 | silty SAND fill and
CLAY/SILT TILL | Mississauga Rd. | 14-Oct-09 | 594 387 | 4 835 579 | 3.8 | 237.79 | -17 | 237.96 | 10.7 | 4.6 | 1.6 | 3.0 | 4.6 | 3.0 | 4.6 | | BC10 | SILT & SAND TILL | Bell Tower | 15-Oct-09 | 593 954 | 4 834 959 | - | - | | 238.14 | 4.6 | 4.6 | 1.6 | 3.0 | 4.6 | 3.0 | 4.6 | | B11 | CLAY & SILT TILL | West of Bell Tower | 15-Oct-09 | 593 927 | 4 834 941 | | - | | 237.95 | 4.6 | 4.6 | 1.5 | 3.0 | 4.5 | 3.0 | 4.5 | | BC11 | SILT & SAND TILL | Culvert West of | 15-Oct-09 | 593 830 | 4 834 784 | 5.1 | 236.56 | -27 | 236.83 | 4.7 | 4.6 | 1.6 | 3.0 | 4.6 | 3.0 | 4.6 | 217.53 76 216.77 12.9 12.9 1.6 11.3 12.9 11.3 #### NOTES: BC35 UTM coordinates and ground elevations are from professional survey. Remaining information is from borehole logs, except stickup and well ID, which were measured. 27-Oct-09 592 899 4 833 605 5.1 Bell Tower Culvert East of 2868 -- not available ID - inside diameter of well m BGS - metres below ground surface SHALE m AMSL - metres above mean sea level m BTOP - metres below top of pipe 12.9 ## TABLE 2 GROUNDWATER ELEVATIONS HYDROGEOLOGICAL ASSESSMENT BOVAIRD DRIVE WEST (HIGHWAY 7) - LAKE LOUISE DRIVE TO PEEL / HALTON BOUNDARY BRAMPTON, ONTARIO | Monitor | Screened | Top of Pipe | Ground | Date | Depth to G | roundwater | Groundwater | |---------|---------------------------------------|--------------------|-------------------|-----------|------------|------------|-----------------------| | Name | Unit | Elevation
(m Al | Elevation
MSL) | Measured | (m BTOP) | (m BGS) | Elevation
(m AMSL) | | BC03 | SHALE | 237.87 | 238.04 | 14-Oct-09 | 1.63 | 1.80 | 236.24 | | | J | | | 27-Jan-10 | 3.32 | 3.49 | 234.55 | | | | | | 16-Mar-10 | 2.20 | 2.37 | 235.67 | | BC03-W | silty CLAY fill | 237.84 | 238.04 | 26-Oct-09 | dry | dry | | | | | | | 27-Jan-10 | 2.88 | 3.08 | 234.96 | | | | | | 16-Mar-10 | 2.68 | 2.88 | 235.16 | | BC04 | silty SAND fill and
CLAY/SILT TILL | 237.79 | 237.96 | 14-Oct-09 | 3.03 | 3.20 | 234.76 | | | 04o.aaa | | | 27-Jan-10 | 3.37 | 3.54 | 234.42 | | | | | | 16-Mar-10 | 2.49 | 2.66 | 235.30 | | BC10 | SILT & SAND TILL | 22 | 238.14 | 15-Oct-09 | | 4.10 | 234.04 | | | | | | 27-Jan-10 | not fo | ound | | | | | | | 16-Mar-10 | not fo | ound | | | B11 | CLAY & SILT TILL | | 237.95 | 15-Oct-09 | - | 2.40 | 235.55 | | | | | | 27-Jan-10 | not fo | ound | | | | | | | 16-Mar-10 | not fo | ound | | | BC11 | SILT & SAND TILL | 236.56 | 236.83 | 15-Oct-09 | 3.23 | 3.50 | 233.33 | | | | | | 27-Jan-10 | not fo | ound | | | | | | | 16-Mar-10 | 1.06 | 1.33 | 235.50 | | BC35 | SHALE | 217.53 | 216.77 | 27-Oct-09 | dry | dry | | | | | | | 27-Jan-10 | 11.60 | 10.84 | 205.93 | | | | | | 16-Mar-10 | 11.16 | 10.40 | 206.37 | #### NOTES Groundwater depths in 2009 were mesaured after borehole completion and may not be representative. ⁻⁻ not available m BGS - metres below ground surface m AMSL - metres above mean sea level m BTOP - metres below top of pipe ### TABLE 3 HISTORICAL GROUNDWATER CHEMISTRY HYDROGEOLOGICAL ASSESSMENT #### BOVAIRD DRIVE WEST (HIGHWAY 7) - LOUISE DRIVE TO PEEL / HALTON BOUNDARY BRAMPTON, ONTARIO | Sample Name /
Location |
Stratigraphic Unit | Date
Collected | Hardness | Total
Dissolved
Solids | Bromide | Chloride | Fluoride | Nitrate
as N | Nitrite
as N | Sulphate | Iron | Manganese | Sodium | |---------------------------|--------------------|-------------------|----------|------------------------------|---------|----------|----------|-----------------|-----------------|----------|--------|-----------|--------| | | | Unit | mg/i | mg/l | | | ODWS 1 | 80 - 100 | 500 | | 250 | 1.5 | 10 (a) | 1 (a) | 500 | 0.3 | 0.05 | 200 | | | | 77.77 | OG | AO | | AO | MAC | MAC | MAC | AO | AO | AO | | | SITE B-22d | | | | | | - | | | | | | | a.v | | B-15b-4C | | 25-Mar-93 | 320 | 300 | < 0.08 | 6 | 0.29 | < 0.2 | < 0.2 | 11 | 0.015 | 0.015 | 14 | | B-22d-1C | Middle and Upper | 25-Mar-93 | 250 | 260 | < 0.08 | 16 | 0.44 | 6.6 | < 0.2 | 40 | 0.7 | 0.096 | 38 | | B-22d-PL7 | TILL | 7-Apr-93 | 320 | 540 | < 0.08 | 2 | 0.28 | < 0.2 | < 0.2 | 60 | 0.14 | 0.5 | 110 | | B-22d-PL9 | | 7-Apr-93 | 280 | 430 | < 0.08 | 33 | 0.19 | 4.8 | < 0.2 | 42 | < 0.01 | 0.17 | 11 | | SITE B-21c | | | | | | | | | | | | | | | B-21c-1C | | 26-Mar-93 | 460 | 610 | < 0.08 | 19 | 0.15 | < 0.2 | < 0.2 | 180 | 0.18 | 0.29 | 8.4 | | B-21c-2C | | 26-Mar-93 | 440 | 620 | < 0.08 | 91 | 0.18 | 10 | 0.5 | 76 | 0.018 | 0.006 | 39 | | B-21c-3C | Overburden and | 26-Mar-93 | 240 | 420 | < 0.08 | 18 | 0.29 | 11 | 0.24 | 47 | 0.013 | 0.11 | 12 | | B-21c-4C | Shallow Bedrock | 26-Mar-93 | 270 | 480 | < 0.08 | 29 | 0.21 | 10 | < 0.2 | 55 | < 0.01 | 0.046 | 9.7 | | B-21c-5C | | 26-Mar-93 | 120 | 470 | < 0.08 | 53 | 0.33 | 4.2 | < 0.2 | 48 | 0.062 | < 0.005 | 22 | | B-21c-6C | | 26-Mar-93 | 430 | 470 | < 0.08 | 33 | 0.21 | 7.4 | < 0.2 | 62 | < 0.01 | < 0.005 | 14 | | BB-BH2 | | 28-May-08 | 645 | 1520 | 5.3 | 605 | 0.2 | < 0.1 | < 0.1 | 317 | 0.79 | 0.049 | 207 | | GW-2 | TILL and Shallow | 6-Jun-07 | 430 | 580 | | 96 | < 0.1 | < 0.01 | < 0.01 | 59 | 0.21 | 0.07 | 26 | | GW-3 | Bedrock | 6-Jun-07 | 410 | 493 | | 42 | < 0.1 | < 0.01 | 0.01 | 30 | < 0.05 | 0.033 | 21 | | GW-4 | | 6-Jun-07 | 370 | 445 | | 29 | 0.2 | 3.2 | 0.01 | 84 | < 0.05 | 0.073 | 19 | | SITE B-21c | | | | | | | | | | | | | | | B-21c-1A | | 26-Mar-93 | 2500 | 7900 | 35 | 2800 | 0.4 | < 0.2 | < 100 | 1700 | < 0.01 | 0.25 | 1400 | | B-21c-2A | | 26-Mar-93 | 4900 | 2600 | 10 | 1100 | 0.52 | 1.3 | < 2 | 310 | < 0.01 | 0.8 | 2600 | | B-21c-4A | | 26-Mar-93 | 1700 | 6300 | 21 | 2100 | 0.4 | 4.4 | < 2 | 1300 | 0.83 | 0.14 | 1500 | | B-21c-4B | Deep Bedrock | 26-Mar-93 | 2100 | 10000 | 46 | 4300 | 0.4 | 10 | < 2 | 990 | < 0.01 | 0.21 | 2000 | | B-21c-5A | | 26-Mar-93 | 1400 | 19000 | 90 | 9200 | 0.37 | < 0.2 | < 2 | 1400 | 1.5 | 0.52 | 3600 | | B-21c-6A | | 26-Mar-93 | 530 | 4300 | 8.1 | 840 | 0.64 | < 0.2 | < 2 | 1700 | 0.31 | 0.047 | 550 | #### NOTES: Site B-21e South of intersection between Bovaird Drive West and Creditview Road (Golder 1993). GW-2, -3, -4 South of intersection between Bovaird Drive West and Creditview Road (Credit Valley Conservation 2007). Site B-22d South of intersection between Wanless Drive and Heritage Road approximately 2 km northwest of Bovaird Drive West (Golder 1993). BB-BH2 Approximately 100 m north of intersection of Bovaird Drive West and Mississauga Road along Huttonville Creek (Blackport 2008). '--' no criterion / not analyzed / not available Ontario Drinking Water Standards (ODWS), Objectives and Guidelines (MOE 2003, revised June 2006). < Less than the Method Detection Limit (MDL) Method detection limit exceeds ODWS Concentration exceeds ODWS OG Operational Guideline AO Aesthetic Objective MAC Maximum Acceptable Concentration IMAC Interim Maximum Acceptable Concentration (a) Total concentration of nitrate and nitrite should not exceed 10 mg/l (as N). **RECORD OF BOREHOLES** ## **APPENDIX A** # BOREHOLE LOGS AND MONITOR DETAILS | RECORD OF BOREHOLE | No. | B 0 | 1 | | | | | | | | | ā | m | ec _o | |--|--|----------------------------------|---------------------|--------------------------|---------------------------------|-------------------------------------|---|---|--|--|----------------|--------|---------------------------------|--------------------------| | Project Number: TT93042 | _ | | | _ | _ | 10.00 | g Location: | 150 m West | | | | Logge | d by: | JF | | Project Client: AMEC infrastructure Group | - | | | | | | g Method: | 150 mm Sc | | Augering | X-2000 | | | SN | | Project Name: Geotechnical investigation to | | | | 71007 | study | | | Truck Moun | The state of | | | | wed by: | training of | | Project Location: Bovaird Drive from Lake Lo
Boundary at Caseley Drive, | Brampto | on, ON. | | | _ | Date: | Started: | Oct 13, 09 | | ompleted: Oct 1 | 3, 09 | Hevisi | on No.: | 0, 2/9/10 | | LITHOLOGY PROFILE | S | OIL SA | AMPLI | NG | - | - | | TESTING | * Rinse pt | | z | co | MMENT | rs | | DESCRIPTION DESCRIPTION | Sample Type | Sample Number | Recovery (%) | r W Value | DEРТН (m) | ELEVATION (m) | O SPT □ MTO Vane* Δ Intact ▲ Remould | PPT • DCPT Nilcon Vane o intact • Remould | Soil Va
parts per
100 2
Lower E
W, | 6 8 10 12 pour Reading million (ppm) 00 300 400 uplosive Limit (LEL) W W | INSTALLATION | GF | &
IAIN SIZ
TRIBUTI
(%) | Œ | | Local Ground Surface Develors 0.0 m
about 170 mm ASPHALT | San | S | ě | SPT | - SE | 1 2 | 20 40 | ear Strength (kPa)
60 80 | Plastic
20 | Liquid
60 80 | SS. | GR 5 | SA S | a CL | | 0 | 2 | | | | t | | | | | | | | | | | Gravelly Sand / Sand and Gravel FILL
trace sat
moist | ss | 1 | 100 | 36 | | | ٥ | | a ^g | | | 34 5 | 54 1 | 2 | | | ss | 2 | 100 | 34 | | -1 - | o | | 5 | | | | | | | | ss | 3 | 83 | 50/15 | | | 5 | ş | 5 9 | | | | | | | grey2 Clayey Silit FILL trace organics, trace rootlets | 1 | | | | - 2 | -2 - | | | | | | | | | | Clayery Silt FILL trace organics, trace rootlets moist Drown SILTY CLAY / CLAYEY SILT TILL some sand to sandy trace organic | SS 7 | 4 | 100 | 21 | | | 0 | | ∆ ^{40,20} | | | | | | | SILTY CLAY / CLAYEY SILT TILL
some sand to sandy, trace gravel
very stiff
moist | - | | _ | | - 3
- | -3 - | | | | | | | | | | | SS | 5 | 100 | 25 | - | | 0 | | -18 | | | 6 2 | 4 4 | 4 26 | | Drown 4 | , | | | | -4 | -4 - | | | | | | | | | | very dense moist | 1 | | | | | | | o | 9 | | | | | | | End of Borehole 4 | 6 5 | • | 100 | 503 | | | | 3 | | | | | | | | 104 Crockford Boulevard
Scarborough, Ontario | estanding | ground | water me | easured | in oper | n boreho | le on completi | on of drilling. | | | | | | | | Connedo MID 2022 | ile as pres
otschnical
d and the s | ented, do
Engineer
coompan | not comer. Also, bo | orehole in
lanation o | horough
nformeti
of Borek | understa
on should
note Logi. | ending of all pote
the read in conju | ential conditions p
unction with the g | recent and rec
solschnical re | puire interpretative as
port for which it was | seletance from | • | | cale: 1:32
ge: 1 of 1 | | R | ECORD (| OF BORE | HOLE N | o. | B 02 | 2 | | | | | | | | a | med | co | |----------------|---|--|---|--------------|--------------|-------------|----------------|-----------|---|--|--|---|---------------------------------|--------------|--------------------------------|-----------------| | | | TT93042 | | 551100 | | | | | Drilling | Location: | 200 m East | of CNR Crossing Bridge | | Logged | | | | Pro | *********** | AMEC infrastruct | | | - | | - | | 0.0000000000000000000000000000000000000 | Method: | 150 mm Sc | olid Stem Augering | | Compile | d by: SN | | | l | | Geotechnical inv | | State of the | All of the | Mark Salar | and the second | study | Drilling | g Machine: | Truck Moun | | | Review | ed by: PB | | | Pro | | Boundary at Case | | | | | on | | Date 5 | Started: | Oct 13, 09 | _ Date Completed: Oct 1 | 3, 09 | Revision | No.: 0, 2 | /9/10 | | | LITHO | LOGY PROFIL | E | SC | IL SA | MPLI | NG | | - | FIELD | TESTING | LAB TESTING ♣ Rinse pH Values. | , | 001 | MENTS | | | Lithology Plot | | DESCRIPTION | | Sample Type | ample Number | scovery (%) | SPT N' Value | DEPTH (m) | ELEVATION (m) | O SPT □ MTO Vane* Δ Intact Δ Remodel * Undramed Sh | fionTesting PPT • DCPT Nilcon Vane* • Intact • Remould ear Strength (vPa) | 2 4 6 0 10 12 Soli Vapour Reading parts per million (gong) 100 290 300 400 ▲ Lower Explorator Limit (LEL) W, W W, Plastic Liquid | INSTRUMENTATION
INSTALLATION | GRA
DISTR | &
IN SIZE
IBUTION
(%) | | | 3 | Local Ground Surfac
abo | a Elevation: 0.0 m
out 170 mm ASPHAL | .T | OS. | - on | Œ | S | - | 1 = | 20 40 | 60 80 | 20 40 60 80 | 22 | GA SA | SI | CL | | | Gravelly : | brown
Sand / Sand and Gra
moist | | SS | 1 | 100 | 40 | | | o | | o | | | | | | | | trace cobbles | 1.4 | SS | 2 | 100 | 32 | - | -1 - | 0 | | _5 | | | | | | | | brown
Silty Sand FILL
trace gravel
moist | 1,4 | ss | 3 | 100 | 23 | | | 0 | | _ 10 | | | | | | - | | trace rooflets | -2.6
2.6 | SS | 4 | 100 | 10 | -2 | -2- | 0 | | <u>.</u> 5 | | | | | | | tra | brown
Clayey Silt FILL
ice sand, trace grave
moist | | | | | | -3 | -3 - | | | | | | | | | 9 | | | | SS | 5 | 100 | 13 | | | 0 | | .5
| | | | | | •
•
• | SILT AN | brown and grey
D SAND / SILTY SAN
ace clay, trace gravel
dense
moist | | | | | | 4 | 4- | | | | | | | | | 0 | | | -5.0 | ss | 6 | 100 | 40 | - 5 | -5 - | o | | 10 | | | | | | | | End of Borehole | 5.0 | | | | | | | | | | | | | | | 104 | EC Earth & Environment
ivision of AMEC A
Crockford Boulevarborough, Ontario | mericas Limited | ¥ No freest | anding | groundv | water me | asured | in oper | n boreho | le on completi | on of drilling. | | | | | | | Tel
Fax | arborough, Ontario
nada M1R 3C3
+1(416) 751-6565
x +1(416) 751-759
w.amec.com | 6 | Borehole details
a qualified Geote
commissioned a | chnical I | Engineer. | . Also, bo | rehole in | nformeti | on should | nding of all pote
the read in conj | ential conditions pr
unction with the g | resent and require interpretative a
sotechnical report for which it was | seistance fro | m | Scale: | :1:32
1 of 1 | | R | ECORD | OF BOREH | IOLE N | o. <u>!</u> | B 03 | 3 | | | | | | | | | | | ame | eco | |----------------|---|--|-------------------------------|------------------|---------------|--------------|---------------|--------------------|---------------|-------------------------------------|----------|----------------|---------------------|--|--|-----------------|-------------------------------|-----------| | 180 | ject Number: | TT93042 | | - | - | | | - | | Location | | 200 m East | | | | | Logged by: | JF | | | oject Client: | AMEC infrastructs | | | | | | | | Methox | | 150 mm So | | | gering | - | | SN | | | ject Name: | Geotechnical Inve | | | 2000 | | N. Santa | tudy | | | | Truck Moun | | | | | Reviewed by: | 1000000 | | Pro | eject Location: | Bovaird Drive from
Boundary at Case | n Lake Louis
ley Drive, Br | e Drive
ampto | n, ON. | el/Halt | on | _ | Date S | Started: | | Oct 13, 09 | _ Date | Com | pleted: Oct | 13, 09 | Revision No.: | 0, 2/9/10 | | | ЦТН | OLOGY PROFILE | E | SC | NL SA | MPLI | NG | | | FIE | LDT | TESTING | | AB TI | ESTING | - 1 | 001111515 | - | | Lithology Plot | Local Ground Surfu | DESCRIPTION | | Sample Type | Sample Number | Recovery (%) | SPT 'N' Value | DEPTH (m) | ELEVATION (m) | O SPT
MTO V:
Δ Intac
▲ Rem | ane* | ionTesting PPT | So
A part
100 | # 6
il Vapo
is per mil
200
ver Explo | 8 10 12
ur Reading
Bon (ppm)
300 400
sive Limit (LEL)
V W,
Liquid
60 80 | INSTRUMENTATION | GRAIN SIZ
DISTRIBUT
(%) | ZE | | | at | out 200 mm ASPHAL | 200 | | | | | - | | - | | | | | | П | | | | | Gravelly | brown
Sand / Sand and Grav
moist | | ss | 1 | 83 | 34 | | | | 0 | | م | | | | | | | | | grey
Sitty Sand FILL
trace to some clay | 12 | ss | 2 | 67 | 9 | | -1 - | o | | | ъ9 | | | | | | | | | moist | | ss | 3 | 56 | 12 | - 2 | -2 - | o | | | ₽8 | | | | | | | | frace gravel | brown
Clayey Silt FILL
pocket of sand, trace i
moist | -2.1
2.1
brick debris | ss | 4 | 56 | 18 | | | 0 | | | ∆5 o¹€ | | | | | | | *** | | brown | <u>2.9</u> | | | | | F | | | | | | | | 1 1 | | | | 0 0 0 | | AND SAND/SILTY Sa
trace clay, trace gravel
very dense
moist | AND | ss | 5 | 92 | 50/15 | - 3
-
-
- | -3 - | | 55
15 | } . | 4 8€ | | | | | | | о
• | | | | | | | | -4 | -4 - | | | | | | | | | | | 111 | | reddish brown WEATHERED SHALE End of Borehole | -4.3
4.3 | SS | 6 | 100 | 50/5 | | | | 55 | } | .gs | | | | | | | | EC Earth & Envi | ronmental | ¥ No freest | apriino | ground | salar ma | age store | in one | n breeke | | | | | | | | | | | 104
Sca | ivision of AMEC a
Crockford Boule
arborough, Ontari
hada M1R 3C3 | | Basebala del III | y | | | | - ope | - worth | | | | | 4 | | | | | | | ECORD | OF BOREL | HOLE No | o. 1 | B 04 | <u>1</u> | | | Drillin | g Locatio | n: 5 | m East | of Asi | nby Fk | eld Driv | re . | | Le | am | ec | S | |----------------|--|--|--|-------------|---------------|--------------|-----------|------------|-------------|--|-----------|---|--------------------|---------------------------------|--------------------------|------------------------------|-----------------|----|--|----------------|-----| | | ject Client: | AMEC Infrastruct | ure Group | | | | | | | g Method | | 50 mm | | | | | | | ompiled by: | SN | | | | ject Name: | Geotechnical Inv | | Bovaii | rd Driv | e Clas | EA S | tudy | - | | _ | ruck Mo | | | | | | | eviewed by | | | | | | Bovaird Drive fro | m Lake Louis | e Drive | to Pe | eVHalt | | | | Started: | | ct 13, 09 | 77 | | mplete | d: Oct 1 | 3, 09 | | evision No.: | | V10 | | _ | LITH | Boundary at Case OLOGY PROFIL | | _ | | MPLI | NG. | | _ | FIE | DTE | STING | _ | LAR | TEST | ING | | - | | _ | _ | | Lithology Plot | | DESCRIPTION | | Sample Type | Sample Number | Recovery (%) | 'N' Value | ОЕРТН (m) | EVATION (m) | Pen
O SPT
MTO Va
∆ Intact
▲ Remo | netration | Testing F • DC Illicon Vani Intact Remould Strength (kP) | PT A | Soil Var
parts per
100 20 | | 10 12
ading
pm)
400 | INSTRUMENTATION | | COMMEI
&
GRAIN S
XSTRIBU
(%) | IZE | | | 3 | Local Ground Surfs
ab | ce Develor: 0.0 m
out 220 mm ASPHAL | Ť | Sa | Sa | P. | SPT | 8 | == | 20 | 40 | | + | 20 4 | 0 60 | 80 | 22 | GR | SA | SI | a | | | | brown
Sand / Sand and Gra
moist | 0.2 | SS | 1 | 100 | 57 | | | | (| > | ٥ | | | | | | | | | | | | trace asphalt debris | <u>-14</u> | ss | 2 | 100 | 65 | 1 | -1 - | | | o | o | | | | | | | | | | | trace sand, | trace gravel, trace org
rootlets
moist | | ss | 3 | 100 | 38 | -2 | -2 - | | 0 | | ٥ | | | | | | | | | | | ti | reddish brown
CLAYEY SILT TILL
race sand, trace grave
hard
moist | | ss | 4 | 100 | 71 | | | | | 0 | 5 | | | | | | | | | | | | trace cobbles | | ss | 5 | 100 | 50/15 | - 3
- 3 | -3 - | | 580
15 | -4 | 4- | | | | | | | | | | | | | | | \ | pieces of shale
End of Borehole | 4.6
4.6 | -99 | • | | 50/1 | | | | 58 | A di
104 | EC Earth & Envi
vision of AMEC a
Crockford Boule
rborough, Ontari | Americas Limited
ward | ¥ No freest | anding | groundw | vater me | asured | in ope | n boreho | ole on com | pletion | of drilling. | | | | | | | 11111, 6400 | 2222 | | | Tel -
Fax | ada M1R 3C3
+1(416) 751-656
+1(416) 751-75
v.amec.com | 5 | Borehole details a qualified Geote commissioned an | chnical B | ingineer. | Also, bo | rehole in | formati | ion should | t be reed in | potentia | condition
on with the | present
geoteci | and req | uire inter
port for w | pretative a
hich it was | selstance fro | - | P | Scale: 'age: 1 | | | | ECORD (| OF BOREHOLE | No. | Ē | 3 05 | <u> </u> | | | Drillin | g Location: | 250 m West | of Ashby | Field Drive | | an Logged by: | ec _® | |----------------|---|--|-------------|-------------|---------------|--------------|---------------|-------------------|---------------|---------------------------------------|---|--------------------------------|---|-----------------|---|-----------------| | Pro | ject Cllent: | AMEC Infrastructure Grou | ф | | | | | | Drillin | g Method: | 150 mm Sc | olid Stem | Augering | | Compiled by: | SN | | Pro | ject Name: | Geotechnical investigation | n for Bo | ovain | d Driv | e Clas | B EAS | Study | Drillin | g Machine: | Truck Moun | nted Drilli | | | Reviewed by: | РВ | | Pro | ject Location: | Bovaird Drive from Lake L
Boundary at Caseley Drive | ouise I | Orive | to Pe | el/Halt | ton | | Date | Started: | Oct 14, 09 | _ Date C | ompleted: Oct 1 | 4, 09 | Revision No.: | 0, 2/9/10 | | | | LOGY PROFILE | | | | MPLI | NG | | | FIELD | TESTING | | TESTING | | | | | Lithology Plot | 1 | DESCRIPTION | | Sample Type | Sample Number | Recovery (%) | SPT 'N' Value | DЕРТН (m) | ELEVATION (m) | O SPT □ MfTO Vane* Δ Intact ▲ Remould | ppT • DCPT Nilcon Varie* o Intact Remould | Soil Va
A parts pe
100 2 | H Values 6 8 10 12 apour Reading r million (ppm) 200 300 400 apoisse Limit (LEL) W U Liquid | INSTRUMENTATION | COMMEN
&
GRAIN SI
DISTRIBUT
(%) | ZE
ION | | 5 | Local Ground Surfac
abo | e Elevation: Q.0 m
out 220 mm ASPHALT | - | Sa | S | 8 | S | - | <u> </u> | 20 40 | | | 40 60 80 | 22 | GR SA | SI CL | | | Gravelly S | brown
land / Sand and Gravel FILL
moist | 0.2 | ss | 1 | 100 | 37 | | | | | . 3 | | | | | | | | - brown | -1.4 | ss | 2 | 89 | 38 | | -1 - | | | 3 | | | | | | | trace clay | Sitty Send FILL,
trace gravel, trace organics
moist | | ss | 3 | 100 | 28 | - 2 | -2 - | | | Δ7922 | | | | | | | | reddish brown
CLAYEY SILT TILL
ce sand, frace gravel
hard | -2.6
2.6 | SS | 4 | 100 | 35 | | | 0 | | ∆1Q14 | | | | | | | tr | moist
ace shale fragments | s | 3S | 5 | 100 | 85/23 | -
-3
-
- | -3 - | | 85,
23 | 0 ₀ 10 | | | | | | | | | -4.6 | | 6 | 100 | 508 | -4 | 4- | | 8 | 0,10 | | | | | | | | End of Borehole | 4.6 | 55 | 6 | 100 | 50/8 | | | | 8 | | |
| | | | A di
104 | EC Earth & Environ
vision of AMEC Ar
Crockford Boulev
rborough, Ontario
ada M1R 3C3 | mericas Limited = NOT | freestand | ting g | roundw | vater me | easured | in ope | n boreh | ole on completi | on of drilling. | | | | | | Borshole details as presented, do not constitute a thorough understanding of all potential conditions present and require interpretative as a qualified Geotechnical Engineer. Also, borshole information should be read in conjunction with the geotechnical report for which it was commissioned and the accompanying Explanation of Borshole Logi. Scale: 1:32 | | ECORD OF I | BOREHOLE N | lo. | B 0 | <u>6</u> | | | Drillin | g Location: | 450 m East | of Mississ | auga Road | | Logged | | <u>د</u> ي | |----------------|---|--|--------------------------------------|----------------------------------|-------------------------------------|---|-----------------|----------------------------------|---|---|---|--|---------------------------------|---------|--|----------------| | Pr | oject Client: AMEC | infrastructure Group | -50000 | | | | | Drillin | g Method: | 150 mm Sc | oild Stem A | ugering | | Compile | ed by: SN | | | Pr | oject Name: Geote | chnical investigation for | r Bova | ird Driv | ve Clas | s EAS | tudy | Drillin | g Machine: | Truck Moun | ted Drill | | | Review | ed by: PB | | | Pr | oject Location: Bovair | rd Drive from Lake Lou
lary at Caseley Drive, E | se Driv | n ON | wel/Hatt | ton | | Date | Started: | Oct 14, 09 | _ Date Co | empleted: Oct 1 | 4, 09 | Revisio | n No.: 0, 2 | 9/10 | | | LITHOLOG | | _ | OIL SA | | NG | | | FIELD | TESTING | | TESTING | | | | - 8 | | Lithology Plot | | RIPTION | Sample Type | Sample Number | Recovery (%) | SPT 'N' Value | DEPTH (m) | ELEVATION (m) | O SPT □ MTO Vane* Δ Intact ▲ Remould | tionTesting PPT | Soil Va A perta per 100 2 A Lower E W, Pastic | Values
6 8 10 12
pour Reading
million (ppm)
20 300 400
plosive Limit (LEL)
W W.
Liquid
0 60 80 | INSTRUMENTATION
INSTALLATION | GRA | MMENTS
&
AIN SIZE
RIBUTION
(%) | α | | | Local Ground Surface Elevative about 235 | mm ASPHALT | 1 | 1 | _ | 0, | - | | | | | | | | | | | | Gravelly Sand / 5
tra
r | rown -0.2
0.3
Sand and Gravel FILL
coe sift | ss | 1 | 100 | 46 | | | | 0 | م | | | | | | | | Sandy
trace clay, trace of | n to grey 0.1
y SIH FILL
gravel, trace organics
noist | ss | 2 | 83 | 29 | - | -1 - | 0 | | a ⁰ o ¹⁴ | | | | | | | | SILTY CLAY / 6
trace sand | rown 1. CLAYEY SILT TILL d, trace gravel hard | | 3 | 89 | 38 | -2 | -2 - | | | ∆ ³⁰ 2 | | | | | | | | | | ss | 4 | 100 | 40 | | | | | ∆ ³⁵ ,19 | | | | | | | 0 | SILT AND SAND
trace clay
ven | -2
7/ SILTY SAND TILL
, trace gravel
y dense
st to wet | ss | 5 | 100 | 68 | - 3
- | -3 - | | 0 | ∆ ²⁵ 5 ¹⁸ | | | | | | | 9 9 9 | | | | | | | -4 | 4- | | | | | | | | | | 9 | | Borehole 4. | | 6 | 100 | 50/13 | | 7 | 5 | 3 | 0 620 | | | | | | | | EC Earth & Environment | | water de | pth on c | ompletic | on of drill | ling on | 10/14/2 | 009 at a depth | of: 49m. | | | | | | | | 104
Sci | Crockford Boulevard
arborough, Ontario | | | | | | | | | | | | | | | | | Tel
Fax | nada MŤR 3C3
+1(416) 751-6565
x+1(416) 751-7592
w.amec.com | Borehole detai
a qualified Geo
commissioned | is as pres
technical
and the a | ented, do
Engineer
ccompan | not cons
. Also, bo
ying Expl | titute a tr
prehole in
lanation o | formation Borel | underst
on shoul
ole Log'. | anding of all pote
d be read in conj | ential conditions p
unction with the g | resent and rug
sotschnical re | uire interpretative as
port for which it was | saletance fro | om | Scale:
Page: | 1:32
1 of 1 | | | | OF BORE | HOLE No | o. <u>!</u> | B 07 | <u> </u> | | | Delline | | ation | • | Fast s | 4 11 | -1 | 0 | 4 | | | ć | 900 | ec | 0 | |----------------|---|--|--|------------------------------------|-----------------------------------|-----------------------------------|---------------------------------------|----------------------------------|------------------------------------|----------|--------------------|----------------------|-------------------------|---------------------|-----------------------------|--|---|------------------|------|--------|-------------------------------------|--------------|------| | | ject Number:
ject Client: | AMEC infrastruct | hum Group | | | | | | Drilling | | | | m Easto
0 mm S | | | | | | | Logge | | SN | | | | ject Client:
ject Name: | Geotechnical inv | | Rounis | nd Delu | a Clas | . EAS | tucke | | | | | ck Mour | | | ugen | ng | | | | iled by:
wed by: | | | | | ject I varrie. | Boyaird Drive fro | | | | | | nuuy | Date S | | | | 14, 09 | | | mnlat | ad: Oct | 14, 09 | | | ion No.: | | 2/10 | | - 10 | | Boundary at Case | eley Drive, Bra | amptor | n, ON. | | | _ | T | | | | | _ | | | | T | _ | 110413 | | <u>0, 2,</u> | | | Lithology Plot | LIN. | DESCRIPTION | E | Sample Type | Sample Number | Recovery (%) | N. Value | (m) | ELEVATION (m) | O SP | Penetro PT Vane' | ationTo | DCP1 con Vane* | * A | Soil Va
arts per
00 2 | Values
6 8
pour R
million (
0 30
plostive I | 10 12
eading
ppm)
0 400
Limit (LEL) | INSTRUMENTATION | | GI | MMEI
&
RAIN S
TRIBU
(%) | IZE | | | tholog | | | | атре | ample | 9000 | SPT % | DEPTH | LEVA | * Undr | | hear Str | Remould
ength (kPa) | | lastic . | - | Liquid | STAL | GF | | (/ 0)
SA | Si | CL | | | Local Ground Surfa | ce Elevation: 0.0 m
bout 80 mm ASPHAL | T | o) | (i) | Œ | Ø. | - | <u> </u> | - | 20 40 | 0 60 | 80 | + | 20 4 | 0 60 | 80 | 122 | Gr | - | 30 | 31 | | | | Gravelly | brown
Sand / Sand and Gra
some sitt
moist | brown | | SS | 1 | 83 | 18 | Ė | - | | | | | 1 | | | | | | | | | | | | some sand to | CLAYEY SILT TILL
sandy, trace gravel, tr
stiff
moist | race oxidation | ss | 2 | 89 | 15 | -, | -1- | 0 | | | | 5. | - | | | | , | | 21 | 49 | 29 | | | | brown ID SAND / SILTY SAN race clay, trace gravel very dense moist | | | | | | | | | | | | ļ | | | | | | | | | | | | | mosa | | SS | 3 | 100 | 69 | - 2 | -2- | | | | 0 | A ¹⁰ | | | | | | | | | | | | | ace cobbles / boulder | 80 | | | | | | 0 | 0 | | | | | | | | | | | | | | | 0 | | | | | | | | -
-
-
3 | -3- | | | | | ļ | | | | | | | | | | | | | | | ss | 5 | 100 | 54/15 | | | | | 54
15 | | 5 | | | | | | | | | | | 0 | | | | | | | | - | | | | | | ļ | | | | | | | | | | | | | | | | | | | -4 | 4- | | | | | ļ | | | | | | | | | | | SS 6 100 50/15 | | | | | | | | | | | | 50. | | 0 | | | | | | | | | | | Φ1. | | End of Borehole | -4.7
4.7 | 55 | 6 | 100 | 50/15 | - | | - | H | 50
15 | - | 1 | | | | + | 1 | A di
104 | Crockford Boule | Americas Limited
vard | ¥ No freesta | anding (| groundw | rater me | easured | in open | boreho | ele on o | comple | tion of | drilling. | _ | | | | | _ | | | | | | Tel
Fax | rborough, Ontari
hada M1R 3C3
+1(416) 751-656
: +1(416) 751-75
w.amec.com | 5 | Borehole details
a qualified Geote
commissioned ar | as press
chrical E
nd the ac | nted, do
Englineer.
company | not cons
Also, bo
/ing/Expl | titute a ti
rehole in
anation o | horough
Mormatio
of Boreix | understa
on should
ole Log'. | inding o | of all po | tential o
junctio | onditions on with the o | present
protects | and req
nical re | uire inte
port for | erpretative
which it w | assistance
no | from | | P | Scale: | | | l | ECORD OF E | BOREHOLE N | о. | B 09 | 9 | | | Drilling | Location: | 25 m East of | f Driveway | y #2055 (Pro Go | ıŋ | am
Logged by: | ec® | |--------------------|--|---|-------------|---------------|--------------|---------------|-----------|---------------|--|---|--|---|-----------------|---|-----------| | | | infrastructure Group | | | | | | | Method: | 150 mm So | | | | Compiled by: | SN | | Pro | ject Name: Geotec | hnical investigation for | Bovai | rd Driv | re Clas | s EAS | tudy | Drilling | Machine: | Truck Moun | ted Drill | | | _ Reviewed by: | РВ | | Pro | ject Location: Bovalre | d Drive from Lake Louis | e Driv | e to Pe | el/Halt | on | | Date S | Started: | Oct 15, 09 | _ Date C | ompleted: Oct 1 | 5, 09 | Revision No.: | 0, 2/9/10 | | \vdash | LITHOLOGY | ary at Caseley Drive, Br
PROFILE | | | MPLI | NG | Г | Т | FIELD | TESTING | LAB | TESTING | | | | | Lithology Plot | | RIPTION | Sample Type | Sample Number | Recovery (%) | SPT 'N' Value | ОЕРТН (m) | ELEVATION (m) | O SPT □ MTO Varie* Δ Intact Δ Remould * Undrained Sh |
tionTesting PPT DCPT Nilcon Vane* O Intact Remould per Strength (kPs) | Soil Va A parts per 100 2 A Lower E W, Plastic | H Values 6 8 10 12 apour Reading rimition (ppm) 200 300 400 applicative Limit (LEL) W W, Liquid | INSTRUMENTATION | COMMEN
&
GRAIN SI
DISTRIBUT
(%) | ZE | | | | n: 0.0 m
rown
Gravel FILL | 05 | 55 | - | - os | - | <u> </u> | 20 40 | 80 80 | 20 | 40 60 80 | == | | | | | m | -0.8 | ss | 1 | 78 | 22 | | | 0 | | 0 | | | 35 46 | 19 | | | trace sand, t | rey 0.8
Itay FILL
trace organics
noist | ss | 2 | 100 | 18 | - 1 | -1- | o | | Δ ²⁵ | | | | | | | trace | rootiets | ss | 3 | 100 | 21 | | -2 - | o | | Δ ³⁵ | | | | | | | CLAYEY
trace sand,
h | rown 2.1 SILT TILL , trace gravel sard soist | ss | 4 | 100 | 31 | | | 0 | | L ¹⁰ | | | | | | | | | ss | 5 | 100 | 32 | -3 | -3 - | o | | o | | | | | | | SILT AND SAND
trace
very | -4.1 / SILTY SAND TILL dense wet | | | | | 4 | 4 | | | | | | | | | • | End of | -5.0
Borehole 5.0 | ss | 6 | 100 | 58 | - 5 | -5 | | 0 | o | A di
104
Sca | EC Earth & Environmenta
vision of AMEC Americas I
Crockford Boulevard
rborough, Ontario
lada M1R 3C3 | Limited = Groundw | | | | | | | 009 at a depth | | | quine interpretative ex | | | | | R | ECORD | OF BOREH | OLE N | o. <u> </u> | B 10 | 2 | | | | | | | | | | | | | | ar | ne | ഹ | |--------------------|---|--|---------------------------------|------------------|---------------|--------------|-------------|---------------|-----------|---|----------|--------------------------------|--------|---------------------------|-----------------|---------------------------|---------|--------------|----|-------------------------|----------------|--------| | Pro | ject Number: | TT93042 | | | | | | | Drilling | Location: | 32 | 0 m Wes | t of D | rivew | ay #20 | 055 | | | | ogged by | : <u>JF</u> | | | Pro | ject Client: | AMEC infrastructu | ire Group | | | | | | Drilling | Method: | 15 | 0 mm S | oild S | item . | Auger | ing | | | 0 | ompiled | by: SN | | | | ject Name: | Geotechnical Inve | | | | | | tudy | Drilling | Machine: | Tr | ick Mou | | | | | | | R | eviewed | by: PE | | | Pro | ject Location: | Boundary at Case | n Lake Louis
ley Drive, Br | e Drive
ampto | to Pe | el/Halt | on | | Date S | started: | <u>0</u> | t 15, 09 | D | ate C | omple | ted: Oct | 15, 09 | 9 | R | evision N | lo.: <u>0,</u> | 2/9/10 | | _ | шн | OLOGY PROFILE | | so | | MPLI | NG | | (iii) | | | esting | 3 | Rinse p | f Values
6 β | 10 12
leading
(ppm) | ATION | z | | COMM | k | | | Lithology Plot | | DESCRIPTION | | Sample Type | Sample Number | Recovery (%) | T 'N' Value | DEPTH (m) | ELEVATION | MTO Vane Δ Intact ▲ Remould * Undrained S | ÷ | con Vane'
Intact
Remould | - | Lower E
W _p | 100 ax | Umit (LEL) | TRUMENT | INSTALLATION | - | GRAIN
DISTRIE
(°) | BUTTO | ١ | | \$ | Local Ground Surfa | ce Elevation: 0.0 m
brown | | Sa | Sar | B. | SPT | DE | 3 | | | 0 80 | | Plastic
20 | 40 6 | Liquid
0 80 | - S | S. | GR | SA | SI | CL. | | | | Sand and Gravel FILL
trace to some silt
moist | | ss | 1 | 83 | 34 | | | 0 | | | 08 | | | | | | | | | | | • | | brown BAND / SILT AND SANI race clay, trace gravel very dense | — — <u>0.8</u>
0.8
D TILL | ss | 2 | 100 | 70 | - | -1- | | | 0 | 08 | | | | | | 9 | 36 | 49 | 6 | • | | | | SS | 3 | 100 | 50/15 | | | | 50
15 | | 08 | | | | | | | | | | | 0 | | reddish brown | | ss | 4 | 100 | 50/15 | - 2 | -2 - | | 59
15 | | 08 | | | | | | | | | | | , | brown | | SS | 5 | 100 | 50/13 | - 3 | -3 - | | 50
13 | | 07 | | | | | | | | | | | 9 | -4 | 4- | | | | | | | | | | | | | | | 9 | tr | ace cobbles / boulders
wet | -4.6 | SS | Б | 100 | 50/5 | - \frac{1}{2} | ? - | | 58 | | | | | | | | | | | | | | | End of Borehole | 4.6 | | | | | | | | 5 | | | | | | | | | | | | | A di
104
Sca | EC Earth & Environment
Vision of AMEC /
Crockford Boule
intorough, Ontari
ada M1R 3C3 | Americas Limited
ward | ⊈ Groundwa | ater dep | th on co | ompletio | n of drill | ing on : | 10/15/20 | 09 at a dept | th of: | 4.4 m. | | : | | - 1 | | | | | | | | | | OF BORE | HOLE N | o. ! | B 11 | <u>1</u> | | | | | | | | | | | | | ar | ne | 5C_ | 9 | |--------------------|--|--|--|------------------------------------|----------------------------------|-----------------------------------|---------------------------------------|-------------------------------|------------------------------------|--------------------------------|--------------------|--|-----------------------------------|----------------------------|--|---------|-----------------|---------|------------------|--------------------|-----------|----| | Pro | ject Number: | TT93042 | | | | - | | _ | | g Location | · <u>54</u> | 00 m East | of Driv | eway #2 | 2472 | _ | | — ı | ogged by | r: : | JF | _ | | Pro | ject Client: | AMEC Infrastruc | | | _ | | | | | g Method: | _ | 50 mm Sc | lid Ste | m Auge | ering | | | — (| Compiled | by: | SN | _ | | Pro | ject Name: | Geotechnical Inv | restigation for | Boval | rd Driv | e Clas | 8 EAS | tudy | Drilling | g Machine | : <u>T</u> | ruck Moun | ted Dr | 111 | | | 3:554 | — F | Reviewed | by: | PB | _ | | Pro | ject Location: | Boundary at Cas | m Lake Louis | e Drive | n, ON. | eVHalt | on | | Date : | Started: | 0 | ct 15, 09 | _ Dat | e Compi | leted: Oc | t 15, | 09 | _ F | Revision N | lo.: | 0, 2/9/10 | _ | | | ЦТН | OLOGY PROFIL | | | | MPLI | NG | | | FIEL | D TE | STING | | AB TE | | T | | | | | | | | Lithology Plot | | DESCRIPTION | | Sample Type | Sample Number | Recovery (%) | SPT 'N' Value | DЕРТН (m) | ELEVATION (m) | O SPT MTO Van Δ Intact ▲ Remou | e" N old • | Testing T DCPT Blicon Vane* Intact Remould Strength (kPa) 60 80 | Sc
A par
100
A Lov
W, | er Explosit
W | Reading (Spm) (Spm | 3 | INSTRUMENTATION | GR | GRAIN
DISTRIE | K
N SIZ
BUTH | E
ON | α | | | | grey
Sand and Gravel FILI
ome silt, trace organic
moist | L
25 | ss | 1 | 100 | 12 | | | 0 | | | ao [®] | | | 9.6.6 | | | | | | | | | | trace clay
some cobbles | | SS | 2 | 100 | 18 | -, | -1 - | 0 | | | ΔÄ ^{RH} | | | | | | | | | | | | trace sar | grey
Sitty Clay FILL
ad, trace gravel, trace
moist | | SS | 3 | 100 | 9 | | | 0 | | | ۵ ¹⁵ ۵ | 5 | | | | | | | | | | | | brown | | | | | | - 2
-
- | -2 - | | | | | | | | | Bentoni | te: 0.3 m - | 3.0 m | | | | | | | | ss | 4 | 100 | 7 | | Z : | 0 | | | 5 | o ²⁹ | | | | | | | | | | | | reddish brown
CLAY / CLAYEY SIL
race gravel, trace sha
hard
damp | | ss | 5 | 100 | 71 | - 3
- | -3 - | | | o | 181م | | | | | | | | | | | | | | | | | | | - 4 | 4- | | | | | | | | | Slotted | pipe and sa | and: 3. | 0 m - 4.5 | im | | | | End of Borehole | -4.6
4.6 | SS | 6 | 100 | 50/8 | | | | 50 | | .9 | A di
104 | EC Earth & Envi
vision of AMEC /
Crockford Boule
rborough, Ontari | Americas Limited
vard | ⊈ Groundwa | ater dep | oth on co | ompletio | n of drill | ng on | 10/15/20 | 009 at a dep | oth of: | 2.4 m | | | | | | | | | | | | Can
Tel-
Fax | ada M1R 3C3
+1(416) 751-656
+1(416) 751-75
v.amec.com | 5 | Borshole details
a qualified
Geote
commissioned ar | ns press
chrical E
nd the ac | nted, do
Ingineer.
company | not cone
Also, bo
ying Expl | titute a th
rehole in
anation o | orough
formetik
f Boreh | understa
on should
ole Log'. | nding of all p | otentia
onjunct | conditions pation with the gr | resent an
rotechnic | d require i
al report i | nterpretativ
or which it s | o senie | tance | from | | | ale: 1 :: | | | RECORD OF BO | REHOLE N | о. | B 12 | 2 | | | | | | | | amec® | |--|--|-------------|---------------|--------------|-------------|-----------|---------------|---|----------------------------|---|---------------------------------|--| | Project Number: TT93042 | | | | | | | Drilling | Location: | 250 m East of | of Driveway #2472 | | Logged by: JF | | Project Client: AMEC Infra | structure Group | | | | | | Drilling | Method: | 150 mm So | ild Stem Augering | | Compiled by: SN | | Project Name: Geotechnic | al Investigation for | Bovai | rd Driv | e Clas | s EAS | tudy | Drilling | Machine: | Truck Moun | ted Drill | | Reviewed by: PB | | Project Location: Boundary | ve from Lake Louis
t Caseley Drive, Br | e Driv | e to Pe | el/Halt | on | | Date S | Started: | Oct 15, 09 | Date Completed: Oct 1 | 5, 09 | Revision No.: 0, 2/9/10 | | LITHOLOGY PR | | | IL SA | | NG | | | FIELD | TESTING | LAB TESTING | | | | DESCRIPT | | Sample Type | Sample Number | Recovery (%) | SPT N Value | DEPTH (m) | ELEVATION (m) | O SPT □ MTO Vane* Δ Intact Δ Remould * Undrained St | Intact | # Rinee pri Values 2 4 6 8 10 12 Soil Vapour Reading A parts per milition (ppm) 100 200 300 400 ▲ Lower Explosive Limit (LEL) W, W W, B= | INSTRUMENTATION
INSTALLATION | COMMENTS & GRAIN SIZE DISTRIBUTION (%) GR SA SI CL | | brown
Sand and Grav
trace sit
moist | | ss | 1 | 100 | 19 | | | 0 | | ,Q9 | | | | grey
Silty Ctay F
trace sand, trace
moist | | ss | 2 | 100 | 16 | | -1- | o | | 40 ol5 | | | | | | | | | | , | | | | | | | | SILT AND SANO/ SILT face clay, trace dense to very moist | gravel | SS | 3 | 100 | 19 | - 2 | Z . | o | | A ¹⁰ o ¹⁸ | | | | | | ss | 4 | 100 | 48 | | | | 0 | ∆&2 | | | | trace yellow : | tains | ss | 5 | 100 | 64 | -3 | -3 - | | o | _Δ ϑ1 | | | | | | | | | | -4 | 4- | | | | | | | grey | -4.9
hole 4.9 | ss | 6 | 100 | 50/15 | | | | 59.
15 | ۵853 | | | | Ena of Sore | and 4.9 | | | | | | | | | | | | | AMEC Earth & Environmental A division of AMEC Americas Limit 104 Crockford Boulevard Scarborough, Ontario Canada M1R 3C3 | " <u> </u> | | | | | | | | n of: <u>1.7 m</u> . | resent and require interpretative a | ulatere t | T | a qualified Geotechnical Engineer. Also, borehole information should be read in conjunction with the geotechnical report for which it was commissioned and the accompanying Explanation of Borehole Log. Scale: 1:32 | | | OF BORE | HOLE N | o. <u> </u> | B 15 | 5 | | | D. W. | | 400 W | | | | am | eco | |---------------------|--|--|--|-------------|---------------|--------------|---------------|------------------|---------------|--|---|---|---|------------------------------|---|----------------------------| | | ject Number:
ject Client: | TT93042 AMEC Infrastruct | tura Group | - | | | | | | Location:
Method: | 150 mm So | | | | Logged by: | SN | | | | Geotechnical Inv | | Bouel | ed Deba | n Class | e EA S | turk. | | | Truck Mount | | genng | | Compiled by:
Reviewed by: | | | | ject Name:
ject Location: | | | | | | | tuuy | | tarted: | Oct 28, 09 | | mpleted: Oct 2 | 9.00 | Revision No.: | | | PIO | | Boundary at Cas | eley Drive, Br | ampto | n, ON. | | | | Dates | | | | | 0,09 | nevision No.: | 0, 2/9/10 | | Lithology Plot | шн | DESCRIPTION | E | Sample Type | Sample Number | Hecovery (%) | SPT 'N' Value | DEPTH (m) | ELEVATION (m) | Penetra O SPT □ MTO Vane* Δ Intact ▲ Remould | ♦ Intact • Remould | A Rinse pH1 2 4 6 Soil Vap 4 parts per r 100 200 A Lower Exp W, | 9 8 10 12
our Reading
nation (ppm)
0 390 490
losive Limit (LEL)
W W, | INSTRUMENTATION INSTALLATION | COMMEN
&
GRAIN S
DISTRIBU
(%) | IZE | | Ś | Local Ground Surts | ce Elevation: 0.0 m
brown | | Sar | Sar | æ | SP | - SE |]] | 20 40 | ear Strength (kPa)
60 80 | Plastic
20 40 | Liquid
60 80 | SS G | SA. | SI CL | | | , | Sand and Gravel FILL
trace to some sit
moist | • | ss | 1 | 71 | 31 | | | 0 | | s ³⁰ | | | | | | | b | reddish brown
Clayey Silt FILL
race sand, trace grave
moist | — — —- <u>0.9</u>
N | ss | 2 | 100 | 16 | - 1 | -1- | o | | ∆5-10 | | | | | | | trace | to some asphaltic con | ncrete | ss | 3 | 83 | 25 | -2 | -2 - | o | | ∆ ⁵ o ¹⁶ | | | | | | | | | | ss | 4 | 33 | 30 | | | 0 | | o ^a | | | | | | | | brown
Sand and Gravel FILL
trace sit, trace clay
moist | | ss | 5 | 100 | 16 | 3 | -3 | o | | ∆ 1811 | | | | | | | | grey
Silty Clay FILL
trace to some sand
moist | | | | | | 4 | 4- | | | | | | | | | 917 |
SILTY | reddish brown CLAY / CLAYEY SIL trace sand hard | | SS | 6 | 100 | 70 | - | -5 - | | 0 | ∆ ⁵ o ¹⁶ | | | | | | | | moist
End of Borehole | | | | | | | | | | | | | | | | A di
104 | EC Earth & Envi
vision of AMEC a
Crockford Boule
rborough, Ontari | Americas Limited
ward | ¥ No freest | anding (| groundw | vater me | asured | in oper | n boreho | ie on completi | on of drilling. | | | | | | | Can
Tel -
Fax | ada M1R 3C3
+1(416) 751-656
+1(416) 751-75
v.amec.com | 5 | Borehole details
a qualified Geote
commissioned as | chnical B | ngineer. | Aleo, bo | rehole in | formatic | on should | nding of all pote
be read in confi | ential conditions pr
unction with the ge | resent and requi
totachnical repo | ire interpretative as
ort for which it was | elatance from | | Scale: 1:32
age: 1 of 1 | | Pro
Pro | ject Number:
ject Client:
ject Name: | AMEC Infrastruct
Geotechnical Inve | ture Group
estigation for | Boval | rd Driv | e Clas | | tudy | Drilling | | | m West o | lid Stem
ted Drili | Augerin | 9 | 7.00 | _ c | ogged by:
compiled by:
eviewed by: | JF
SN
PB | | |--------------------|--|---|---|------------------------------------|------------------------------------|-----------------------|--------------------------------------|----------------------------|------------------------------------|---|-----------|---|--|---|---|-----------------|-----|---|--------------------|-----| | Pro | ject Location: | Bovaird Drive fro
Boundary at Case | eley Drive, Bra | ampto | n, ON. | | | | Date | Started: | | t 27, 09 | | | ed: Oct 2 | 7,09 | ·H | evision No.: | 0, 2/9 | V10 | | Lithology Plot | Local Ground Surfi | DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION | | Sample Type | Sample Number | Recovery (%) | SPT W Value | DEPTH (m) | ELEVATION (m) | Penet O SPT (MTO Vario Δ Intact ▲ Remoult * Undrained: | PPT O | Festing DCPT Icon Vane* Infact Remould trength (I/Ps) 0 80 | A Rines p 2 4 Soil V. A parts p 100 Lower B W, Plastic | H Values
6 8
apour Re
ir million (p
200 300
Explosive L
W | 10 12
rading
pm)
400
imit (LEL)
W, | INSTRUMENTATION | GR. | COMMEN
&
GRAIN S
DISTRIBU
(%) | ZE | a | | | , | brown
Sand and Gravel FILL
trace to some silt
moist | -0.1 | ss | 1 | 100 | 25 | | | o | | | o ⁶ | | | | 33 | 51 | 16 | | | | | some gravel to gravelly | , | ss | 2 | 78 | 22 | -1 | -1 - | 0 | | | o ⁷ | | | | | | | | | | | | -2.1 | SS | 3 | 100 | 50/15 | - 2 | -2 - | | 500
15 | | o ⁴ | | | | | | | | | | | brown
ND SAND / SILTY SAN
trace clay, trace cobbl
very dense
moist | | ss | 4 | 100 | 52/15 | | | | 530
15 | | .o ⁶ | | | | | | | | | | | | | SS | 5 | 100 | 50/15 | -
-
3
-
-
- | -3 - | | 590
15 | | o ¹⁰ | | | | | | | | | | | | | SS | 6 | 100 | 50/8 | 4 | 4- | | 50° | | ₆ 20 | | | | | | | | | A I | Auger refusal | End of Borehole
on possible boulder a | -4.8
4.8
t 4.8 m depth. | | | | | | | | 8 | | | | | | | | | | | A di
104
Sca | EC Earth & Envi
vision of AMEC :
Crockford Boule
rborough, Ontari
hada M1R 3C3 | Americas Limited
ward | ¥ No freesta | | | | | | | | | | | | | | | | | | | Tel
Fax | +1(416) 751-656
+1(416) 751-75
warnec.com | | Borehole details a qualified Geoter commissioned ar | on prese
chrical E
nd the ac | nted, do i
Ingineer.
compeny | Also, bo
ring/Expl | utute a th
rehole in
anation o |
formetic
f Boreh | understa
on should
ole Log'. | ending of all p
the read in co | otential | conditions pr
on with the ge | recent and re
rotechnical r | eport for t | rpretative a
which it was | seistance from | | - 1 | Scale: 1
age: 1 | | | R | ECORD | OF BOREHOLE N | o. | B 19 | 9 | | | | | | | | ame | c ⊗ | |----------------|---|---|-------------|---------------|--------------|--------------|-----------|---------------|---|----------------------------|--|--------------|-----------------------------|------------| | Pro | oject Number: | TT93042 | | | | | | Drilling | Location: | 20 m East o | f Caseley Drive | | Logged by: JF | | | Pro | oject Cllent: | AMEC Infrastructure Group | | | | | | Drilling | Method: | 150 mm Sc | olid Stem Augering | | Complied by: SN | | | Pro | oject Name: | Geotechnical investigation for | Bovai | rd Driv | e Clas | 8 EAS | tudy | Drilling | Machine: | Truck Moun | ited Drilli | | Reviewed by: PE | | | Pre | oject Location: | Boundary at Caseley Drive, Br | e Driv | e to Pe | el/Halt | on | | Date S | started: | Oct 27, 09 | Date Completed: Oct 2 | 7, 09 | Revision No.: 0, | 2/9/10 | | | LITH | OLOGY PROFILE | | NL SA | | | | | FIELD | TESTING | LAB TESTING | | | | | Lithology Plot | Local Ground Surfs | DESCRIPTION co Elevation: 0.0 m | Sample Type | Sample Number | Recovery (%) | SPT N' Value | DEPTH (m) | ELEVATION (m) | O SPT □ MTO Vane' Δ Intact Δ Remould ' Undrained St | Intact | ★ Pirree pH Values 2 4 6 8 10 12 Soil Vapour Reading Δ parts per mileon (ppm) 100 200 300 400 ▲ Lower Explosive Limit (LEL) W _r W W _r Plustic 20 40 60 80 | INSTALLATION | GRAIN SIZE DISTRIBUTION (%) | N | | | , | brown
sand and Gravel FILL
some sitt
moist | ss | 1 | 100 | 25 | | | o | | o ⁴ | | | | | • | .] s | reddish brown 0.6 D SAND / SILTY SAND TILL ome grawel, trace clay ompact to very dense moist | ss | 2 | 100 | 14 | | 1 - 1 | o | | o ¹⁴ | | | | | 0 | tr | ace cobbles / boulders | ss | 3 | 100 | 50/15 | - 2 | | | 50
15 | o ¹¹ | | | | | 0 | | -23 | SS | 4 | 100 | 50/5 | - 1 | | | 58 | | | | | | | | End of Borehole 2.3 | | | | | | | | 5 | | | | | | | Auger refusal | on possible boulder at 2.3 m depth. | | | | | | | | | | | | | | 104 | IEC Earth & Envir
fivision of AMEC A
4 Crockford Boule
arborough, Ontari | vard = 140 meest | anding | groundw | rater me | asured | in open | boreho | e on complet | tion of drilling. | | | | | AMIC Earth & Environmental Advision of AMEC Americas Limited 104 Crockford Boulevard Scarborough, Ontario Canada M1R 3C3 Tel +1(416) 751-6565 Fax +1(416) 751-7592 www.amec.com | | ECORD
ect Number: | OF BOREH | OLE N | o. | BC (| <u>01</u> | | | Drilling | Location: | 15 m l | East of | CNR Cross | ing Bridge | | Logged by: | ne(| 3 | |----------------------------------|---|---|--|-------------|---------------|--------------|---------------|-----------|---------------|---|---------------------|----------------------------------|---|--|-----------------|---------------------------------------|---------|------| | Pro | ect Client: | AMEC Infrastructu | ire Group | 0 | <u></u> | | | | Drilling | Method: | 150 m | nm Sol | ld Stem Aug | ering | | Complied b | : SN | | | Pro | ect Name: | Geotechnical Inve | stigation for | Bovai | rd Driv | e Clas | s EAS | tudy | Drilling | Machine: | Truck | Mount | ed Drill | | | Reviewed b | y: PB | | | Pro | ect Location: | Bovaird Drive from | n Lake Louis | e Drive | to Pe | el/Halt | on | | Date S | Started: | Oct 13 | 3, 09 | Date Comp | oleted: Oct 1 | 3, 09 | Revision No | .: 0, 2 | 9/10 | | _ | ЦТН | Boundary at Case
OLOGY PROFILE | ley Drive, Bri | | NL SA | | NG | | T | FIELD | TESTI | NG T | LAB TE | STING | Т | | | | | Lithology Plot | Local Ground Surfi | DESCRIPTION | | Sample Type | Sample Number | Recovery (%) | SPT 'N' Value | ОЕРТН (m) | ELEVATION (m) | Penet O SPT [MTO Vane Δ Intact Δ Remouk ' Undrained: | PPT • Nilcon o into | ng DCPT Vane* act mould th (kPa) | # Rines pri Val
2 5 6
Soil Vapou
4 parts per mili
100 200 | B 10 12
or Reading
on (ppm)
300 400 | INSTRUMENTATION | COMME
&
GRAIN
DISTRIB
(%) | SIZE | a | | | at | out 210 mm ASPHAL | 53393 | | | | | - | | | | | | | | | | | | | | brown
Sand and Gravel FILL
moist | <u>-0.2</u> | ss | 1 | 100 | 50/15 | | : | | 50
15 | | 0 | | | | | | | | | | | ss | 2 | 100 | 50/15 | - 1 | -1 - | | 5%
15 | | 0 | | | | | | | | | | | SS | | 100 | 10 | | | 0 | | | .5 | | | | | | | | | trace to some sitt | | 55 | 3 | 100 | 12 | - 2 | -2 - | 0 | | | | | | | | | | | , | Sandy Silt FILL.
race clay , trace gravel
moist | | ss | 4 | 100 | 23 | | : | 0 | | | 1 5 | | | | | | | | | | | | | | | -
- 3 | -3 - | | | | | | | | | | | | | | | SS | 5 | 89 | 42 | | | | 0 | | . 5 | | | | | | | | | | | | | | | -4 | 4- | ss | 6 | 100 | 59 | - 5 | -5 - | | o | | .0 | [| | | | | | | | | | | | A di
104
Sca
Can
Tel | C Earth & Envi
vision of AMEC
Crockford Bould
borough, Ontar
ada M1R 3C3
+1(416) 751-656
+1(416) 751-75 | Americas Limited
evard | No freest Borehole details a qualified Geote | AM DERMA | nted, do | not cone | stitute a t | horough | understr | nding of all o | ntential cond | Stions or | seent and require | interpretative as | selstance from | • | Scale: | 1:32 | RECORD OF BOREHOLE No. BC 01 Project Number: TT93042 Drilling Location: 15 m East of CNR Crossing Bridge Logged by: SOIL SAMPLING LITHOLOGY PROFILE FIELD TESTING LAB TESTING Rinse pH Values 4 6 8 10 12 COMMENTS INSTRUMENTATION PenetrationTesting Soil Vapour Reading parts per million (ppm) 100 200 300 400 Lower Explosive Limit (LEL) W, W, O SPT | PPT | DCPT GRAIN SIZE sample Number DESCRIPTION Recovery (%) MTO Vane* Nilcon Vane* Δ Infact ♦ Infact A Remould ♦ Remould Sample Type DISTRIBUTION (%) ithology DEPTH (* Undrained Shear Strength (kPa) 20 40 60 80 SA SI CL. brown Sandy Silt FILL trace clay , trace gravel moist SS 7 100 43 0 SS 100 42 -8 SS 9 83 21 ò CLAYEY SILT TILL trace sand, trace gravel very stiff to hard moist 10 -10 trace cobbles / boulders -11 End of Borehole 11 reddish brown • 11.0 SS 10 100 50/15 Borehole details as presented, do not constitute a thorough understanding of all potential conditions present and require interpretative essistance from a qualified Geotechnical Engineer. Also, borehole information should be read in conjunction with the geotechnical report for which it was commissioned and the accompanying Explanation of Borehole Log'. 0 Scale: 1:32 Page: 2 of 2 | Pro | ECORD OF BOREHOLE | | ВС | 02 | | | | g Location: | | | ssing Bridge | | Logged by: | ec [®] | |-----------------------------|---|--|---------------|--------------|-------------|-----------------|---------------|---|---|--
---|-----------------|------------------------------|----------------------------| | | ect Client: AMEC Infrastructure Ground
ject Name: Geotechnical Investigation | No. | ded Del | m Clas | - EAG | turk. | | g Method: | 150 mm Sc
Truck Moun | Samuel Sa | gering | | Compiled by: | Aggreen Commercial | | | ect Location: Bovaird Drive from Lake L | 707 1992 | | | Ş | study | | Started: | Oct 13, 09 | | npleted: Oct 1 | 3. 09 | Revision No.: | | | - | Boundary at Caseley Drive | , Brampt | on, ON | AMPLI | | | T | | TESTING | | ESTING | | | - | | Lithology Plot | DESCRIPTION | Sample Type | Sample Number | Recovery (%) | SPT W Value | DEРТН (m) | ELEVATION (m) | Penetra O SPT MTO Vane* A intact A Remould Undrained Sh | ntionTesting PPT | Fires pH 1 Soil Vap parts per n 100 200 Lower Exp Plastic | Values) 8 10 12 our Reading million (ppm)) 300 400 loske Limit (LEL) W W. | INSTRUMENTATION | GRAIN SI
DISTRIBUT
(%) | ZE | | | about 180 mm ASPHALT | | 1 % | - | 8 | - " | 1 | 20 40 | 60 80 | 20 40 | 60 80 | | u1 u1 | | | | brown
Sand and Gravel FILL
trace silt | 0.2
0.2
SS | 1 | 83 | 42 | | | c | | eg ^a | | | | | | | | ss | 2 | 83 | 33 | -, | -1 - | o | | م | | | | | | | trace cobbles | ss | 3 | 78 | 20 | - 2 | -2 - | o | | J 5 | | | | | | | brown Clayey Silt FILL trace sand, trace gravel moist | 21
21
SS | 4 | 917 | 15 | | | 0 | | 728 | | | | | | | | ss | 5 | 100 | 14 | -3 | 3- | o | | a 0 o ²⁰ | | | | | | | brown
Silty Sand Fit.L
trace gravel, trace asphalt debris
moist | -4.1
4.1 | | | | -4 | 4- | | | | | | | | | | | ss | 6 | 100 | 33 | - 5 | -5 - | 0 | | 729 | | | | | | | Drown Clayey Slit FILL trace sand, trace gravel moist | | | | | | | | | | | | | | | A di | vision of AMEC Americas Limited = | reestanding | ground | twater me | easured | in ope | n boreho | le on complet | on of drilling. | | | | | | | Scar
Can
Tel -
Fax | * qualified | etalis as pres
Geotechnica
ned and the | i Enginee | r. Also, bo | oreinole in | riformet | ion should | anding of all pot
to be read in con | ential conditions p
unction with the g | resent and requi
sotschnicsi repo | ire interpretative a
ort for which it was | selstance from | | Scale: 1:32
age: 1 of 2 | ## RECORD OF BOREHOLE No. BC 02 Project Number: TT93042 Drilling Location: 20 m West of CNR Crossing Bridge Logged by: JF | | LITHOLOGY PROFILE | SC | NL SA | MPLI | NG | | | FIELD TESTING | LAB TESTING | | | |----------------|--|-------------|---------------|--------------|---------------|-----------------------|---------------|--|--|-----------------|--| | Lithology Plot | DESCRIPTION | Sample Type | Sample Number | Recovery (%) | SPT 'N' Value | ОЕРТН (m) | ELEVATION (m) | PenetrationTesting ○ SPT □ PPT ● DCPT MTO Vane* Nicon Vane* △ Intact ← Intact △ Remould ◆ Remould * Undrained Sheer Strength (kPa) | pars per macin (ppm) 100 200 300 400 ▲ Lower Explosive Limit (LEL) W, W W, P O Plastic Liquid | INSTRUMENTATION | COMMENTS & GRAIN SIZE DISTRIBUTION (%) | | 3 | brown Clayey Sift FILL trace sand, trace gravel moist | ss | 7 | 100 | 31 | - | | 20 40 60 80 | 20 40 e0 e0
∆5 ₀ 12 | 22 | GR SA SI CL | | | | | | | | -
-
-
-
- | -7- | | | | | | | | ss | 8 | 100 | 23 | - 8 | -8 - | ο | o ¹³ | | | | | | | | | | | | | | | | | | | ss | 9 | 89 | 15 | -9 | .9
 | o | o ¹⁹ | | | | | brown 10.2 Sand and Slit / Sandy Slit Fil.L trace clay, trace gravel moist | | | | | - 10
- | -10 - | | | | | | | -11.1
End of Borehole 11.1 | ss | 10 | 100 | 83 | -" | -11 - | o | o ⁸ | | | | | | | | | | | | | | | | | 1000 | ECORD | OF BORE | HOLE N | o. | ВС | 03 | | | Dellin | Lasation | 20 m East o | d Masias | ausa Basad | | | ec _o | |---------------------------|--|---|-------------------------------------|-------------|---------------|--------------|---------------|-------------------------|-----------------|--|---------------------|---------------------------------------|---|-----------------|---|----------------------------| | 1 | ject Number:
ject Client: | AMEC Infrastruct | ture Group | | | | | | | Location:
Method: | 150 mm S | | Account to the | | Logged by:
Compiled by: | SN | | | ject Name: | Geotechnical inv | | Boval | rd Driv | e Clas | s EA SI | udv | | | Truck Mour | | Augunng | | Reviewed by: | | | | | Boyaird Drive fro | m Lake Louis | e Drive | e to Pe | el/Halt | | | | Started: | Oct 14, 09 | 7,000 | Completed: Oct 1 | 4, 09 | Revision No.: | | | | LITH | Boundary at Cas
DLOGY PROFIL | | | | MPLI | NG T | _ | Т | FIELD | TESTING | - | BTESTING | | | | | Lithology Plot | Local Grovest Surfe | DESCRIPTION | | Sample Type | Sample Number | Recovery (%) | SPT 'N' Value | DEPTH (m) | ELEVATION (m) | Penetra O SPT MTO Vane* Δ Intact A Removal | AtionTesting PPT | # Rinee
3 4
Soil V
A parts p | pH Values 6 9 10 12 /apour Reading ar million (ppm) 200 300 400 Explosive Limit (LEL) W W | INSTRUMENTATION | COMMEN
&
GRAIN SI
DISTRIBUT
(%) | IZE | | | ab | out 320 mm ASPHA | LT | | | | | | | | | 1 | | 8 8 | | | | | s | brown
land and Gravel FILL
trace silt
moist | | ss | 1 | 78 | 29 | | | o | | • | | 56 56 | | | | | | Sitty Sand FILL
trace gravel
moist | | ss | 2 | 83 | 19 | - 1
- 1
 | -1 - | 0 | | Ű | | | | | | | tra | ice clay, trace organic | :s | ss | 3 | 100 | 51 | - 5
- Ž | Z - | | 0 | ļ. | | ll | | | | | | grey
Sitty Clay FILL
ace sand, trace grave | | ss | 4 | 78 | 11 | | | 0 | | <u></u> 5 | | | | | | | 46 | moist | | ss | 5 | 100 | 12 | -
- 3
-
-
- | -3 - | 0 | | 4 5 | | | | | | gr. | | | | | | | | -4 | -4- | | | | | | | | | | | | | ss | 6 | 100 | 20 | | -5 | o | | ∆ ¹⁰ | | II | | | | |
tr | reddish brown
CLAYEY SILT TILL
ace sand, trace grave
very stiff
moist | | | | | | | | | | | | Beni | tonite: 0.3 m - 7.7 r | m | | A di
104
Sca
Can | Crockford Bouler
rborough, Ontario
ada M1R 3C3 | Americas Limited
vard | Groundw | as press | nted, do | not cons | titute a the | orough | understa | nding of all pot | ential conditions p | present and n | ve in depth after ren | seletance from | | Seeder 4 - 22 | | Fax | +1(416) 751-656:
+1(416) 751-759
v.amec.com | | a qualified Geote
commissioned a | chnical E | inglineer. | Also, bo | rehole inf | ormetk | on should | be read in con | unction with the o | ectachnical | report for which it was | | | Scale: 1:32
age: 1 of 2 | #### RECORD OF BOREHOLE No. BC 03 Project Number: TT93042 Drilling Location: 20 m East of Mississauga Road Logged by: JF | | LITHOLOGY PROFILE | sc | AL SA | MPLI | NG | | | FIEL | D TE | STING | T | LAE | TES | STING | G | | | | | | - | |----------------|--|-------------|---------------|--------------|---------------|-----------------|-----------|----------------------------|----------|--------------------------|---------|--------------------------------------|-------------------|-----------------|--|---------------------------------|-----------|------------|------------|---------|-------| | | | | | | | | | | | Testing | | Rinse p | H Value | 8 10 | 12 | NO. | | COM | | 8 | | | _ | DECODIFICAL | | ž | _ | | | Ē | O SPT | □ PPT | DCPT | 4 | Soil V
parts pe
100
Lower E | apour
e millor | Readir
(ppm) | ng | EN | | GRA | &
N SIZ | E | | | 9 | DESCRIPTION | 1, pe | N N | 36 | Valu | Ê | No. | MTO Van Δ Intact ▲ Remou | e. V | Icon Vane* | - | Lower E | 200
Diplosiv | e Limit (| (00
LEL) | NEW YEAR | ı | STR | BUTT | ON | | | Lithology Plot | | Sample Type | Sample Number | Recovery (%) | SPT 'N' Value | ОЕРТН (m) | ELEVATION | V C 1 / 2 / C 2 / C | | Remould
trength (kPa) | 1 | Plastic | W | | • | INSTRUMENTATION
INSTALLATION | | (| %) | | 200 | | 3 | | Sar | Sas | æ | g. | 8 | 1 4 | 20 | 40 | 0 80 | \perp | 20 | 40 | 60 | 80 | <u> </u> | GR | SA | s | | CL | | 唨 | (minerom- | | | | | - | - | | E0. | | 1: | (Various | 2 | · | | | | | | | | | nr | CLAYEY SILT TILL (continued) -6.2 reddish brown 6.2 | SS | 7 | 100 | 50/13 | | | | 50
13 | | ₽2 | | | | | | | | | | | | | WEATHERED SHALE
trace limestone fragments | | | 7.770 | | - | - | | ä | | 1 | 4 | | | ***** | | | | | | | | | damp | | | | | - | - 6 | | | | 1 | ļ | ļ | | | | | | | | | | | | | | | | | | - | - | | | | | 1 | 1 | - | -7 - | | - | | 1 | | | | 11111 | | | | | | | | | | | | | | - | - | | 8 7 | | | | | | | | | | | | | | | 9 | | | | | | | | | | | | | | 11111 | | | | | | | | | 8 | | | | | Ε. | - 1 | | | | | | ş | | | | | | | | | | | | -55 | | 100 | 50/3 | | - | | 58 | | | à | | | | | | | | | | | | | | | | | | _ | | 3 | | 1 | 4 | | | | | | | | | | | | | | | | | | - 2 | | | | ļ | | i | | | | | | | | | | | | | | | | - 8 | -8 — | - 1 | - 2 | | | | 1 | | | | | | | | | | | | | 3 | | | | | - | - | 1 | Ř. | | 1 | | 1 | | | | | | | | | | | | | | | | | - 0 | | ļ | · | + | · | ļ | ļ | | | | | | | | | | | | | | | | _ |
1 8 | | | | | | | | | | | | | | | | 3 | | | | | - | - 2 | | i | | | i | i | | | | | | | | | | | | | | | | - 9 | .e. | | | | | | | | | H | | | | | | | | | -00 | | | | - | · . | | 58 | | I | Š | į | | | H_{i} | | | | | | | | | ~ | ď | 700 | | | - 5 | | Y | | | | | | | | Slotted p | pe and | sand: 7 | 7 m - 1 | 0.7 m | | | | | | | | | - 2 | 1 | | | | | | | | Ħ | | | | | | | | ¥ | | | | | - | - | 1 | 1 | | 1 | - | 3 | | | H | | | | | | | | | | | | | | Ì | 1 3 | | | П | 1 | \$
\$
\$ | | | Ħ | | | | | | | | Š | | | | | 0 | 1 | | | | + | ÷ | į | ···· | | Ħ | | | | | | | | | | | | | - | - | | | | | | - | | | F | | | | | | | | | | | | | - 10 | -10 — | | ġ | | | i | į | ļ | | | | | | | | | | | | | | | - | - | | | | | | 1 | | | | | | | | | | | 6 | | | | | | - | | | | 1 | i | 1 | | | | | | | | | | | | | -10.7
End of Borehole 10.7 | -66 | 10 | (S) 1-10 | 50/0 | - | | | 50 | | | | 1 | | | | | | | | | | | Borehole BC-3W was advanced next to this
borehole by augering and a monitoring well was
installed in it. | | | | | | | | | 0.000 | | | | | 化物物 化丁烷酸 医皮肤 医皮肤 医皮肤 化苯酚 医皮肤 | 1000 | | OF MONIT | ORING | WE | LL N | No. | BC | 03 | 10000 | i.
Garage | | | | am | ec® | |----------------------|--|--------------------------------------|-------------------|-------------|---------------|--------------|--------------|-----------|---------------|--|---|--|-----------------|------------------------------|-------------| | | | TT93042 | | | | | | | | Location: | | Mississauga Road | | Logged by: | JF | | | ect Client: | AMEC Infrastruct | | | | | | | | Method: | 2000 | olld Stem Augering | | | | | DAY! | ect Name: | Geotechnical Inv | | | | | | tudy | | And the second | Truck Moun | | | Reviewed by: | | | Pro | | Boundary at Cas | eley Drive, Br | ampto | n, ON. | | | _ | Date S | started: | Oct 26, 09 | _ Date Completed: Oct 2 | 6, 09 | Revision No.: | 0, 2/9/10 | | | штн | OLOGY PROFIL | E | SC | HL SA | MPLI | NG | | - | FIELD | TESTING | LAB TESTING ★ Rinse pH Values | - | COMMEN | rre | | Lithology Plot | | DESCRIPTION | 2 | Sample Type | Sample Number | Recovery (%) | SPT N' Value | DEPTH (m) | ELEVATION (m) | O SPT □ MTO Vane* Δ Intact Δ Remoded * Undrained Shi | tionTesting PPT DCPT Nitcon Vane* O Intact Remould ser Strength (kPa) 60 80 | 2 4 6 8 10 12 Soil Vapour Reading Δ parts per mellion (ppm) 100 200 300 400 Δ Lower Explosive Limit (LEL) W, W W, Plastic Liquid 20 40 60 80 | INSTALLATION 6 | GRAIN SI
DISTRIBUT
(%) | ZE | | | This borehole | was advanced next to | Borehole BC | | | | | - | | | | | | | | | | See B | 3 by augering, orehole BC 3 for soil | -4.6
-4.6 | | | | | 3 | -1 | | | | Bent | onite: 0.3 m - 3.0 r | | | AME | C Earth & Envir | onmental | 7 | | | | | _ | | | | | | | | | A din
104
Scar | rision of AMEC A
Crockford Boule
borough, Ontari | mericas Limited
vard | ¥ No freest | anding | groundw | vater me | asured | in oper | n boreho | le on completi | on of drilling. | | | | | | Can
Tel - | ada M1R 3C3
-1(416) 751-656 | 5 | a qualified Geote | chnical 6 | Engineer. | Also, bo | rehole in | dormatic | on should | nding of all pote
be read in cons | ential conditions pr
unction with the or | resent and require interpretative a
sotechnical report for which it was | selstance from | | Scale: 1:32 | | | +1(416) 751-759
.amec.com | 2 | commissioned ar | nd the ac | company | ying Expl | anation o | d Boreh | ole Log'. | | | | | 1 | age: 1 of 1 | | Proj | ect Number: | | | o. <u>!</u> | BC (| <u>04</u> | | | | Location: | | f Mississauga Road | | Am
Logged by: | ec® | |-----------------------------|--|---|---|-----------------------------------|------------------------------------|------------------------------------|--------------------------------------|----------------------------------|-------------------------------------|---|--|--|---------------|---|---------------------------| | | ect Client:
ect Name: | AMEC Infrastruct
Geotechnical Inv | | Douale | d Ddu | - Class | EAG | | | Method: | 150 mm So | olid Stem Augering | | Compiled by:
Reviewed by: | SN | | | | Boyaird Drive fro | | THE CO | | | 7 | tudy | | started: | Oct 14, 09 | _ Date Completed: Oct 14, 0 | 19 | Revision No.: | | | | | Boundary at Case OLOGY PROFIL | eley Drive, Bra | mptor | , ON. | MPLI | | | T | | TESTING | LAB TESTING | | TTO VISION TYOU | 5,24.0 | | Lithology Plot | | DESCRIPTION | - | Sample Type | Sample Number | Recovery (%) | SPT 'N' Value | DЕРТН (m) | ELEVATION (m) | Penetro O SPT D MTO Vane* intect Remould ' Undramed SP | ationTesting PPT • DCPT | | INSTALLATION | COMMEN
&
GRAIN SI
DISTRIBUT
(%) | ZE | | ▩ | | brown
land and Gravel FILL
moist | | | | | 100000 | - | | | | 3 | 25.00 | | | | | | brown
Silty Sand FILL
trace to some gravel
moist | -0.6
0.6 | ss
ss | 1 2 | 83 | 13 | -1 | -1- | 0 | | 0 | | | | | | | | | SS | 3 | 89 | 38 | -2 | -2- | o | | . 5 | | | | | | | grey
Clayey Sift FILL
trace sand
moist | -2.1
2.1
-2.9
2.9 | SS | 4 | 83 | 12 | | | 0 | | ∆38. | Bento | nite: 0.3 m - 3.0 m | | | | | grey Sitty Sand FILL trace clay moist to wet | 29 | ss | 5 | 94 | 10 | -3 | 3- | 0 | | Δ ⁴⁰ | | | | | | | reddish brown
CLAY/ CLAYEY SIL'
ace gravel, trace shal
hard
moist | | | | | | 4 | 4- | | | | Slotter | t pipe and sand: | 3.0 m - 4.6 m | | | | | | ss | 6 | 100 | 74 | - 5 | -5- | | o | ∆10 | | | | | A div | | Americas Limited | ¥ Groundwa | iter dep | th on co | vmpletio | n of dril | ling on | 10/14/2 | 009 at a depth | not: 32m | Cave in depth after removal | al of augers: | 32m | | | Scar
Can
Tel -
Fax | Crockford Boule
torough, Ontari
ada M1R 3C3
+1(416) 751-656
+1(416) 751-759
camec.com | vard
o | Borehole details a qualified Geotec commissioned an | es prese
chnical E
d the so | nted, do i
ingineer.
company | not const
Also, bo
ing Expli | itute a ti
rehole in
snation o | horough
formation
of Boreh | understa
on should
tole Log'. | nding of all pot
be read in con | ential conditions pr
junction with the gr | recent and require interpretative assistant
sotscheidal report for which it was | ance from | | Scale: 1:32
ge: 1 of 2 | #### RECORD OF BOREHOLE No. BC 04 Project Number: TT93042 Drilling Location: 30 m East of Mississauga Road Logged by: LITHOLOGY PROFILE SOIL SAMPLING LAB TESTING FIELD TESTING Rinse pH Values 4 6 8 10 12 COMMENTS INSTRUMENTATION INSTALLATION PenetrationTesting O SPT PPT • DCPT GRAIN SIZE Sample Numbe DESCRIPTION Recovery (%) SPT 1/ Value MTO Vane* Nilcon Vane* Δ Intact Φ Intact ▲ Remould ◆ Remould Sample Type DISTRIBUTION DEPTH (m) uthology (%) Undrained Shear Strength (kPa) 20 40 60 80 SA SI CL reddish brown SILTY CLAY / CLAYEY SILT TILL trace sand, trace gravel, trace shale fragments hard SS 91 50/13 moist reddish brown WEATHERED SHALE 10 50/13 SS 8 100 9 100 50/5 -10 End of Borehole | Pro | ject Number: | OF BOREH | | o. <u>!</u> | ВС | <u>05</u> | | | | | cation | - 15 | Entrano | | | | | | | | _ Logged by | у: | ec ⁶ | 9 | |----------------|--|---|---------------------------------------|-------------|---------------|--------------|-------------|-----------|---------------|----------|---|----------|---|---------------|-------------------------------------|-------------|---|---|-----------------|----------|--------------------------|--------------------------|-----------------|-----| | | ject Client: | AMEC Infrastructu | | Daniel I | | - Cl | - 540 | | Drillin | _ | | | 150 mr | | | | ugerir | ng | 2100 | 10000 | _ Compiled | | SN | | | | ject Name:
ject Location: | Geotechnical inve
Bovaird Drive from | | | | | | tudy | Date | | | | Truck M
Oct 15, | | | | molete | ed: Oct | 15.00 | | _ Reviewed
Revision I | | | | | FIG | | Boundary at Case | ley Drive, Br | ampto | n, ON. | | | _ | Date | | | | | | _ | | | | 15,09 | _ | Nevision | 10 | 0, 231 | _ | | Lithology Plot | | DLOGY PROFILE | | Sample Type | Sample Number | Recovery (%) | SPT W Value | DEРТН (m) | ELEVATION (m) | O: | Penel
SPT I
O Vani
Intact
Remouli | tratic | on Testing PT Nilcon V Intact Rem r Strength | DCPT
'ane' | SK Par
Sk par
10
A Lo
W | oil Vap | 6 6
bour Re
million ig
0 300
blosive L
W | 10 12
nading
port) 400
and (LEL)
W, | INSTRUMENTATION | | GRAII | &
N SIZ
BUTI
%) | ZE
ION | CL. | | 2 | abo | out 110 mm ASPHAL | -0.1 | S | S | - | S | - | - w | + | 20 | 40 | 60 8 | 10 | 26 | 3 40 | 0 60 | 80 | 22 | + | J | | | - | | | s | grey
and and Gravel FILL
moist | 0.1 | | | | | ŀ | | 1 | | l | | | | | | | | | | | | | | | | moss | | | | | | F | | - | - | i i | | | | | | | | | | | | | | | | | | SS | 1 | 89 | 29 | ţ | | 1. | 0 | i., | .i | | 5 | |
| i | 1 | | | | | | | | | | | | | | | Ł | | 1 | | į. | | | | | 3 | | | | | | | | | | | | 7.00 | | | | | F | | } | | ļ., | | | | | | | | | | | | | | | | reddish brown | | ss | 2 | 100 | 32 | F' | -1 - | 7 | | | | | 0 | | - 8 | | | | | | | | | | San | dy Silt / Silty Sand Fil
moist | | 33 | - | 100 | JE. | Ė | | 1 | | ŧ. | | | | | | | | | | | | | | | | | n i | | 00000 | | | - | | 1 | 1 | Ĭ. | F | | - | - | - | | | | **** | | | | | | | | | | | | | | ss | 3 | 100 | 33 | ţ | | 1 | 0 | | | | 5 | | | | | | | | | | | ₩ | | | | | | | | -2 | -2 - | 1 | | | | | | | | | | | | | | | | | | | 2.1 | | | | Talent et | Fʻ | -2 | 7 | | š., | | | | | | | | | | | | | | *** | tr | brown
Clayey Silt FILL
ace sand, trace gravel | 2 | _ | | | | ţ | | 1 | 1 | | | | | | - | | | | | | | | | ₩ | | | | | | | | Ŀ | | <u> </u> | . <u>į</u> | | | | 5 | | | | | | | | | | | ₩ | | | | SS | 4 | 100 | 42 | F | | 7 | | 0 | | 1 | 1 | | 1 | | 1 | | | | | | | | | | | | | | | ţ | | 1 | ġ | 1 | | ļ | | | | | | | | | | | | 7 | | brown | 2.9 | | | | | Ł., | - 2- | 1 | | | | | | | | | 1 | 1 | | | | | | W | | CLAYEY SILT TILL
ace sand, trace gravel
hard | i | | | | | - 3 Z | ₹ -3 - | 7 | ÷ | ÷ | | | | | | ···· | 1 | | | | | | | Ш | | moist | | SS | 5 | 100 | 36 | ţ | | 1 | | 5 | | | 10 | | - 3 | | 1 | | | | | | | 떖 | | | | | | | | ŀ. | 8 | 1 | | 1 | Γ. | • | 7 | 1 | | | | | | 3 | | | | | | | | | M | | | | | | | | Ė | | 1 | | | | | | | | | | 1 | | | | | | 88 | | | | | | | | Ł. | | · | ļ | į., | | | | | | | | | | | | | | 14 | | reddish brown | 4.1 | | | | | - | - | 1 | 1 | | | 1 | | | 1 | | 1 | | | | | | | P | | D SAND / SILTY SAN
ace clay, trace gravel | DTILL | | | | | ţ. | | 1 | i. | į., | | | | | | | | | | | | | | 9 | | very dense
moist to wet | | | | | | Ł | | 1 | | | | | | | 1 | | 1 | | | | | | | HU | | | | - | - | - | - | F | | } | · • | - | | | | | •••• | | 1 | 1 | | | | | | Ш | | | 40 | SS | 6 | 100 | 50/15 | Ė | | 1 | 1 | 50
15 |) | 1 | ⁵ | | - 1 | | 1 | | | | | | | 911 | | End of Borehole | 4.9 | | | | | | | T | 1 | 1 | | | | | | | 1 | 1 | | | | | | | | | | | | | | | | | | 3 | | | | | | | | 1 | | | | | | | | | | | | | | | | | | | - | | | | | - | - | | | | | | - | 1 | | | | | 1 | | | | | | | | | L | | | | | | | | | | | 1 | | | | | | | | | | | | | | | A d
104 | EC Earth & Envir
ivision of AMEC A
Crockford Boule
urborough, Ontario | mericas Limited
vard | ⊋ Groundw | ater dep | oth on c | ompletic | on of dri | ling on | 10/15/2 | 2009 | at a dep | pth o | t: 3.0 | m. | 8 | Cave | in dep | oth after n | emoval o | of auger | rs: <u>3.5 m</u> . | | | | | Car | nada M1R 3C3
+1(416) 751-656 | 93 | Borehole details
a qualified Goots | as press | ented, do | not cons | stitute a t | horough | underst | tandin | g of all p | octent | tial condit | tions pr | ceent a | nd required | utre inte | rpretative
which it wa | nseistano | e from | | S | icale: 1 : | 32 | | Fax | (+1(416) 751-759
w.amec.com | | commissioned a | nd the ac | compan | ying Exp | lanation | of Boreh | noie Log | | | | | | | | | | | | | | ge: 1 o | | | R | ECORD | OF BORE | IOLE N | o. j | вс | <u>06</u> | | | | | | | | am | ec® |) | |--------------------|-------------------------------------|---|--------------------------|-------------|---------------|--------------|---------------|-----------|---------------|---|----------------------------|---|---------------------------------|---|-----------|---| | Pro | ject Number: | TT93042 | | | | | | | Drilling | Location: | 30 m West o | of Petro Canada Gas | | Logged by: | JF | _ | | Pro | ject Client: | AMEC Infrastruct | | | | | | | | Method: | 150 mm Sc | olid Stem Augering | | Compiled by: | SN | - | | | ject Name: | Geotechnical inve | | | | | | itudy | | | Truck Moun | | | Reviewed by: | | _ | | Pro | | Bovaird Drive from
Boundary at Case | eley Drive, Bra | ampto | n, ON. | | | _ | Date S | tarted: | Oct 14, 09 | | 4, 09 | Revision No.: | 0, 2/9/10 | _ | | Lithology Plot | | DESCRIPTION | E | Sample Type | Sample Number | Recovery (%) | SPT 'N' Value | ОЕРТН (m) | ELEVATION (m) | Penet O SPT (MTO Vane Δ Intact ▲ Remould * Undrained S | Intact | LAB TESTING ★ Rane pH Values 2 4 6 8 10 12 Soil Vapour Reading Δ parts per million (ppm) 100 290 300 400 ★ Lower Epicistre Limit (LEL) W, W W, B | INSTRUMENTATION
INSTALLATION | COMMEN
&
GRAIN SI
DISTRIBUT
(%) | ZE | | | | | brown
Sand / Sand and Grav | vel FILL | - GS | - 05 | - u | 0) | - " | | - 20 - | 60 80 | 2 40 60 80 | | | | - | | | | moist | | ss | 1 | 79 | 13 | | | 0 | | 5 | | | | | | ø | | brown
ND SAND / SILTY SAN
to some clay, trace gr | | ss | 2 | 56 | 7 | - 1 | -1- | 0 | | <u>.</u> 5 | | | | | | | | loose to dense
moist | | ss | 3 | 100 | 32 | | | 0 | | <u>.</u> 5 | | 8 38 | 44 10 | | | , | | | | | | | | - 2 | -2 | | | △35 | | | | | | | | | | ss | 4 | 100 | 26 | - 3 | 3-3- | 0 | | <u> </u> | | | | | | , | | | | SS | 5 | 100 | 10 | | | 0 | | ∆35 | | | | | | • | | | 42 | | | | | -4 | 4- | | | | | | | | | 0 0 0 | | brown
GRAVELLY SAND
trace silt
very dense
wet | - — — <u>-4.3</u>
4.3 | | | | | | | | | | | | | | | 0 1 | | | | SS | 6 | 100 | 73 | - | - | | ٥ | △30 | | | | | | | | End of Borehole | -5.0
5.0 | | | | | 5_ | ·5 — | | | | | | | | | A di
104
Sca | Crockford Boule
rborough, Ontari | Americas Limited
ward | | | | | | | | | th of: <u>2.9 m</u> . | Cave in depth after ren | | | | _ | | can | ada M1R 3C3 | | Borehole details | ns orene | nted, do | not cons | ettude a ti | horough | understa | eding of all or | dential conditions o | resent and require interpretative as | salatance from | | | | | | ECORD O | | IOLE N | 0. | ВС | <u>07</u> | | | _ Drillin | g Location: | Driveway #2 | 2055 (Pro G | olf) | | _ Logged by: | ec® | |--------------------------|---|---|--|------------------|---------------|--------------|-------------|-----------------|---------------|---|--|---|--|---------------------------------|---|------------------------------| | Pro | oject Client: Al | MEC Infrastructe | ure Group | | | | | | Drillin | g Method: | 150 mm Sc | olld Stem Au | gering | | Compiled by: | SN | | | | otechnical Inve | order or a second second | | COMPLETE S | | | tudy | | | Truck Moun | | | | Reviewed by: | РВ | | Pro | oject Location: Bo | ovaird Drive from
oundary at Case | n Lake Louis
ley Drive, Br | e Drive
ampto | n, ON. | eVHalt | on | | Date | Started: | Oct 15, 09 | _ Date Cor | npleted: Oct 1 | 5, 09 | Revision No.: | 0, 2/9/10 | | Lithology Piot | | OGY PROFILE | | Sample Type | Sample Number | Recovery (%) | 'N' Value | DЕРТН (m) | ELEVATION (m) | Penetra O SPT MTO Vane* A intact A Remould | TESTING ationTesting PPT | Rinse pH 1
2 4 5
Soil Vap
A parts per n
100 200 | Values 5 8 10 12 Our Reading milion (ppm) 5 300 400 losse Limit (LEL) W W, 0 Upuid | INSTRUMENTATION
INSTALLATION | COMMEN
&
GRAIN SI
DISTRIBUT
(%) | ZE | | 3 | Local Ground Surface E
about | 100 mm ASPHAL | T -01 | Sa | Sa | 8 | SPT | 8 | ᆸ | 20 40 | | 20 40 | | 22 | GR SA | SI CL | | | Sand | brown
d and Gravel FILL
moist | <u>-0.1</u>
0.1 | | | | | | | | | | | | | | | | | brown | | ss | 1 | 100 | 17 | | | | | ٩ | | | | | | | | clayey Silt FILL
ome sand, trace gr
moist | | ss | 2 | 100 | 18 | -, | -1 - | | | ∆5 o ¹⁹ | | | | | | | | brown
AYEY SILT TILL
sand, trace gravel | | | | | | | |] | | | | | | | | | | hard
moist | | ss | 3 | 100 | 34 | - 2 | -2 - | 0 | | Δ ² δ ¹⁵ | | | | | | | | | | | | | | - 1 | • | | | | | | | | | | | | | ss | 4 | 100 | 32 | | | 0 | | △1813 | | | | | | | | | | | | | | -
- 3 | -3 - | | | | | | | | | | | | | ss | 5 | 100 | 30 | | | | | ∆ ⁵ o ¹⁴ | | | | | | | | | | | | | | Ē. | | | | | | | | | | 0 | | brown
SAND / SILTY SAN
e clay, trace gravel
very dense
moist to wet | | | | | | - •
-
- • | -4 -
Z | | | | | | | | | 90 | | | | ss | 6 | 100 | 61 | | | | o | Δ ¹⁵ | | | | | | | E | nd of Borehole | -5.0
5.0 | | | | | - 5 | -5 - | Ad | EC Earth & Environs
ivision of AMEC Ame
Crockford Boulevan | ricas Limited | ⊈ Groundwa | ater dep | oth on o | ompletio | n of drilli | ing on | 10/15/2 | 009 at a depth | of: <u>4.4 m</u> . | | | | | | | Sca
Car
Tel
Fax | rcfocklord Bodievan
arborough, Ontario
nada M1R 3C3
+1(416) 751-6565
x +1(416) 751-7592
w.amec.com | | Borehole details
a qualified Geote
commissioned ar | chnical E | ngineer | Also, bo | rehole int | formati | ion should | d be reed in con- | ential conditions p
junction with the g | resent and requ
sotschnical repo | ire interpretative a
ort for which it was | ssistance from | 1 | Scale: 1 : 32
age: 1 of 1 | | R | ECORD | OF BOREH | IOLE N | o. | вс | <u>08</u> | | | | | | | | | | | ć | me | ec | 9 | |----------------|-----------------
---|----------------|-------------|---------------|--------------|---------------|----------------------|---------------|--|----------|---|--|--|-----------|-----------------|--------|--|-----------|-----| | Pro | ject Number: | TT93042 | | | | | | | Drilling | Location: | 75 n | n West o | f Drivewa | y #2055 | (Pro Go | olf) | Logge | ed by: | <u>JF</u> | _ | | Pro | ject Cllent: | AMEC Infrastruct | ure Group | | | | | | Drilling | Method: | 150 | mm So | IId Stem A | Augering | 9 | | Comp | iled by: | SN | | | Pro | ject Name: | Geotechnical Inve | estigation for | Boval | rd Driv | re Clas | s EAS | tudy | Drilling | Machine: | True | ck Moun | ted Drill | | | | Revie | wed by: | PB | _ | | Pro | ject Location: | Bovaird Drive from
Boundary at Case | m Lake Louis | e Drive | e to Pe | el/Halt | ton | | Date S | Started: | Oct | 15, 09 | _ Date Co | omplete | d: Oct 1 | 5, 09 | Revisi | ion No.: | 0, 2/9/10 | | | | штн | OLOGY PROFIL | | | AL SA | | NG | | | FIELD | TES | ΠNG | | TESTI | NG | | | | | | | Lithology Plot | | DESCRIPTION | | Sample Type | Sample Number | Recovery (%) | SPT 'N' Value | DEPTH (m) | ELEVATION (m) | O SPT D MTO Varie Δ Intact Δ Remould ' Undrained S | Nilci | DCPT on Varie* Intact Remould ingth (kPa) | △ parts per
100 2
▲ Lower E
W _r
Plastic | pour Rear
rmillion (pp
90 300
xplosive Lin
W | m)
400 | INSTRUMENTATION | GF | MMENT
&
RAIN SIZ
TRIBUTI
(%) | ZE
ION | CL. | | ▩ | | brown
Sand and Gravel FILL | | | | | | - | | | | Ī | | | | | | | | | | | | trace to some silt moist | | ss | 1 | 83 | 34 | | | 0 | | | gs | | | | | | | | | | | Silty Sand FILL
trace gravel
moist | | ss | 2 | 78 | 21 | | -1 - | 0 | | | <u>4</u> 510 | | | | | | | | | | tr | ace cobbles / boulders | | ss | 3 | 100 | 50/13 | | | | 50
13 | | 3 0 | | | | | | | | | | | | | | | | | -2 | -2 - | | | | | | | | | | | | | m | | brown | | ss | 4 | 100 | 5 | | | 0 | | | △4818 | | | | | | | | | | | CLAY / CLAYEY SILT
race sand, trace gravel
very stiff
moist | | ss | 5 | 67 | 21 | - 3
- \frac{7}{2} | -3 - | ٥ | | | ∆ ^{3§17} | | | | | | | | | | | | | | | | | -4 | -4- | | | | | 0.000 | | | | | | | | • | | reddish brown
by SILT / SILTY SAND
race clay, trace gravel
very dense
moist | þ | tr | ace cobbles / boulders | | SS | 6 | 100 | 50/15 | | | | 50
15 | | | | | | | | | | | | | End of Borehole | 4.7 | EC Earth & Envi | | ⊈ Groundwa | ater deg | oth on o | ompletic | on of drill | ling on ; | 10/15/20 | 009 at a dept | th of: | 3.3 m. | | | : | | | | | _ | AMEC Earth & Environmental A division of AMEC Americas Limited 104 Crockford Boulevard Scarborough, Ontario Canada M1R 3C3 Tel +1(416) 751-6565 Fax +1(416) 751-7592 www.amec.com | | | OF BOREHO | DLE N | o. ! | вс | <u>09</u> | | | | | | | | | | | | an | 76 | SC _C | • | |----------------|-----------------|--|----------------------------|------------------|-------------------|--------------|---------------|-----------|---------------|--|----------|--|----------|---------|------------------|------------------|---------------------------------|---------------------------------------|--------------|-----------------|---| | | oject Number: | TT93042 | | | | | | | | g Location: | _ | 50 m West | | | | | | Logged by: | 2 |)F | _ | | | oject Client: | AMEC Infrastructure | | | | | | | | g Method: | _ | 50 mm Sc | | | Auger | ing | | Compiled b | _ | SN | | | | oject Name: | Geotechnical Invest | | | | | | tudy | | | | ruck Mour | | | | | | Reviewed b | | | - | | Pro | ject Location: | Boundary at Caseler | Lake Louis
y Drive, Bra | e Drive
ampto | e to Pe
n, ON. | el/Hait | on | | Date S | Started: | 0 | ct 15, 09 | _ D | ate C | omple | ted: Oct 1 | 5,09 | Revision No |).: <u>0</u> | , 2/9/10 | _ | | | штн | OLOGY PROFILE | | | | MPLI | NG | | | FIELD | TE | STING | | | | TING | | | | _ | | | Lithology Plot | | DESCRIPTION | | Sample Type | Sample Number | Recovery (%) | SPT 'N' Value | DEPTH (m) | ELEVATION (m) | O SPT C
MTO Vane
∆ Intact
▲ Remould | PP 0 | Testing T DCPT Bloom Vane* Intact Remould Brength (kPa) | A 1 | Soil Va | million
00 30 | 10 12
Reading | INSTRUMENTATION
INSTALLATION | COMME
&
GRAIN
DISTRIB
(%) | SIZI
UTIC | E
ON | | | æ | | brown | | Š | - võ | č | 35 | ă | ŭ | 20 4 | 0 | 60 80 | \vdash | 20 - | 0 6 | 0 80 | 22 | GR SA | SI | 0 | _ | | | , | Sand and Gravel FILL
some sit
moist | -0.6 | SS | 1 | 94 | 27 | | | 0 | | | 5 | | | | | | | | | | | trace sar | brown CLAYEY SILT TILL Id, trace gravel, trace oxid very stiff to hard moist | | ss | 2 | 89 | 24 | -1 | -1 - | 0 | | | 5 | | | | | | | | | | | | | | ss | 3 | 100 | 67 | - 2 | -2 - | | | 0 | 5 | | | | | | | | | | • | | brown ND SILT / SANDY SILT avel, some cobbles / bould very dense moist | | ss | 4 | 100 | 50/15 | | | | 50
15 | | 5 | | | | | | | | | | • | | | | ss | 5 | 100 | 50/13 | 3 | -3 - | | 50
13 | | 5 | | | | | | | | | | 0 | | grey | | | | | | 4 | 4- | | | | | | | | | | | | | | l þ | 1 | | -4.7 | SS | 6 | 100 | 50/10 | - | | | 58 | | | | | | | | | | | | - | | End of Borehole | 4.7 | | | | | | | | 10 | EC Earth & Envi | ironmental
Americas Limited | 목 Groundwa | ater dep | oth on co | ompletic | n of dril | ing on ; | 10/15/2 | 009 at a dept | h of: | 3.5 m. | | - | | | | | | | | AMEC Earth & Environmental A division of AMEC Americas Limited 104 Crockford Boulevard Scarborough, Ontario Canada M1R 3C3 Tel +1(416) 751-6565 Fax +1(416) 751-7592 www.amec.com | | ECORD | OF BOREHOLE N | lo. | BC | 10 | | | Drillin | g Location: | 470 m West | of Driveway #2055 | | amec ⁹ | |-------------------|---|---|-------------|---------------|--------------|--------------|---------------|---------------|--------------------------------------|--|-------------------------|-------|--| | Pro | oject Client: | AMEC Infrastructure Group | | | | | | Drillin | g Method: | 150 mm So | ild Stem Augering | | Compiled by: SN | | Pro | oject Name: | Geotechnical Investigation fo | r Bova | ird Driv | re Clas | s EAS | Study | Drillin | g Machine: | Truck Moun | ted Drill | | Reviewed by: PB | | Pro | oject Location: | Bovaird Drive from Lake Loui
Boundary at Caseley Drive, B | se Driv | e to Pe | eVHalt | ton | | Date : | Started: | Oct 15, 09 | _ Date Completed: Oct 1 | 5, 09 | Revision No.: 0, 2/9/10 | | | ЦТН | OLOGY PROFILE | | OIL SA | | NG | | T | FIELD | TESTING | LAB TESTING | | AND | | Lithology Plot | Local Ground Surh | DESCRIPTION Kee Elevation: 9.0 m | Sample Type | Sample Number | Recovery (%) | SPT N' Value | DЕРТН (m) | ELEVATION (m) | O SPT □ MTO Vane' Δ Intact ▲ Remould | ♦ Intact
♦ Remould
hear Strength (kPa) | the Finne pH Values | | GRAIN SIZE DISTRIBUTION (%) GR SA SI CL | | | | brown Sand and Gravel FILL trace sift moist -0.6 | ss | 1 | 78 | 22 | | | 0 | | △30 | | | | | trace sar | brown 0.6 Clayey Silt FILL nd, trace gravel, trace organics moist | ss | 2 | 78 | 21 | | -1 - | o | | Δ25 | | | | | E | dentonite: 0.3 m - 3.0 m | ss | 3 | 56 | 16 | - 2 | -2 - | o | | Δ25 | Ве | intonite: 0.3 m - 3.0 m | | | | | ss | 4 | 67 | 12 | | | 0 | | △35 | | | | 9 | | brown 2.9 AND SILT / SANDY SILT TILL trace clay, trace gravel dense to very dense moist | ss | 5 | 100 | 46 | - 3 | -3 - | | 0 | Δ ⁵⁰ | | | | 0 | Sar
Peri | nd: 3.0 m - 4.6 m
orated Pipe: 3.0 m - 4.6 m | | | | | -
-
- Ş | -4 -
Z | | | | Sk | otted pipe and sand: 3.0 m - 4.6 m | | 9 | s | orne cobbles / boulders End of Borehole | - 88 | | 100 | 50-1 | - | | | 58 | | | | | A d
10-
Sci | IEC Earth & Envi
fivision of AMEC
4 Crockford Boule
arborough, Ontan
nada MTR 3C3 | Americas Limited avard | nesero se | | | | | | | not: 4.1m. | | | | a qualified Geotechnical Engineer. Also, borehole information should be read in conjunction with the geotechnical report for which it was commissioned and the accompanying Explanation of Borehole Log². Scale: 1:32 | | | OF BOREHOLE NO | o. | ВС | <u>11</u> | | | Deillio | g Location: | 250 m Fost | of Driveway #2472 | | amec | |---------------|--|---|-------------|---------------|--------------|--------------|-----------|---------------|--------------------------------------|--|---------------------------------------|------------------------------|--| | | ject Client: | AMEC Infrastructure Group | | | | | | | g Method: | | olld Stem Augering | | Logged by: JF Compiled by: SN | | | ject Olleni. | Geotechnical Investigation for | Rovai | ed Delv | e Clas | o FA S | turk | | | Truck Moun | | | Reviewed by: PB | | | *********** | Boyaird Drive from Lake Louis | | | | | lucy | • | Started: | | Date Completed: Oct 1 | 5.00 | Revision No.: 0, 2/9/10 | | FIC | | Boundary at Caseley Drive, Bro | ampto | n, ON. | | | _ | Date | | | | 5,09 | nevision No 0, 2910 |
 _ | штн | OLOGY PROFILE | SC | IL SA | MPLI | NG | _ | - | | TESTING | LAB TESTING ★ Ringe pH Values | z | COMMENTS | | Uthology Plot | Local Ground Surfi | DESCRIPTION | Sample Type | Sample Number | Recovery (%) | SPT N' Value | DEРТН (m) | ELEVATION (m) | O SPT □ MTO Vane* Δ intact Δ Remould | ◆ Intact
◆ Remould
hear Strength (kPa) | 2 4 6 6 10 12 | INSTRUMENTATION INSTALLATION | &
GRAIN SIZE
DISTRIBUTION
(%) | | | | brown
Sand and Gravel FILL
moist | ss | 1 | 83 | 27 | | | 0 | | JF. | | | | | | Drown 0.6 Silty Sand FILL wet | ss | 2 | 0 | 31 | - 1 | -1 - | 0 | | 7 88 | | | | | trace sand, | brown 1.4 CLAYEY SILT TILL trace gravet, trace rootlets, trace oxidation very stiff moist | ss | 3 | 100 | 23 | -2 | -2 - | 0 | | 4 ⁰ o ¹⁴ | Bent | onite: 0.3 m - 3.0 m | | • | | -2.1 2.1 ND SILT / SANDY SILT TILL ice gravel, trace cobbles / boulders very dense moist to wet | ss | 4 | 100 | 66 | | | | 0 | 4 ⁰ 011 | | | | ,
,
, | | | ss | 5 | 100 | 50/15 | - 3 | -3 - | | 50
15 | ₽ ₽9 | | | | | | End of Borehole 4.7 | SS | 6 | 100 | 50/15 | -4 | Z | | 30 | 4 ⁰ 011 | Slotts | ed pipe and sand: 3.0 m - 4.6 m | | A di
104 | EC Earth & Envi
vision of AMEC
Crockford Boule
rborough, Ontari | Americas Limited = Groundwin | ater deg | oth on c | ompletic | on of drill | ing on | 10/15/2 | 009 at a depth | not: <u>3.5 m</u> . | 1 | | | Canada M1R 3C3 Tel +1(416) 751-6565 Fax +1(416) 751-7592 www.amec.com Borehole details as presented, do not constitute a thorough understanding of all potential conditions present and require interpretative assis a qualified Geotechnical Engineer. Also, borehole information should be read in conjunction with the geotechnical report for which it was commissioned and the accompanying Explanation of Borehole Log'. Scale: 1:32 | | | OF BOREH | OLE N | o. , | BC | 12 | | | - | | | | | am | ec® | |--|--------------------|---|--------------|-------------|---------------|--------------|---------------|-------------------|---------------|---|----------------------------|--|--------------|--|-----------| | | ject Number: | TT93042 | | | | | | | | Location: | | of Driveway #2472 | | Logged by: | JF | | | ject Cllent: | AMEC Infrastructu | | | | | | | | Method: | | olld Stem Augering | | Compiled by: | | | | ject Name: | Geotechnical Inves | | | | | | tudy | | | Truck Moun | | | Reviewed by: | | | Pro | ject Location: | Boundary at Casek | ey Drive, Br | ampto | n, QN. | | | _ | Date S | Started: | | Date Completed: Oct 1 | 5, 09 | Revision No.: | 0, 2/9/10 | | _ | штн | OLOGY PROFILE | | SC | NL SA | MPLI | NG | | ـ | FIELD | TESTING | LAB TESTING * Rinse pH Values | _ | COMMEN | TO | | Lithology Plot | Local Ground Surfa | DESCRIPTION | | Sample Type | Sample Number | Recovery (%) | SPT 'N' Value | DEPTH (m) | ELEVATION (m) | O SPT ☐ MTO Vane* Δ Intact Δ Remould * Undrained Sh | Intact | 2 4 6 8 10 12 Soil Vapour Reading Δ parts per million (ppm) 100 200 300 400 Δ Lower Explosive Limit (LEL) W, W W, Plastic Liquid 20 40 60 80 | INSTALLATION | COMMEN
&
GRAIN SIZ
DISTRIBUT
(%) | ZE | | | | brown
Silty Sand FILL
trace to some gravel
moist | | ss | 1 | 89 | 12 | | | 0 | | o | | | | | | tr | ace day, trace organics | | ss | 2 | 56 | 12 | - | -1- | 0 | | .0 | | | | | • | | brown ND SILT / SANDY SILT race clay, trace gravel dense to very dense moist to wet | | ss | 3 | 89 | 37 | | | o | | 0 | | | | | 0 | | | | ss | 4 | 100 | 62 | - 2 | -2 | | o | . 5 | | | | | | | | | ss | 5 | 100 | 75 | -3 | -3 - | | o | <u>.</u> 5 | | | | | | | | | | | | | - 4
- <u>5</u> | 4
2 | | | | | | | | 0 | | End of Borehole | -5.0
5.0 | ss | 6 | 100 | 65 | - | .5 – | | 0 | <u>,</u> 5 | | | | | | | ronmental | | ater dep | oth on c | ompletic | on of drill | ling on | 10/15/20 | XO9 at a depth | of: 43m. | | | | | | AMEC Earth & Environmental A division of AMEC Americas Limited 104 Crockford Boulevard Groundwater depth on completion of drilling on 10/15/2009 at | | | | | | | | | | | | | | | | AMEC Earth & Environmental AMEC Farth & Environmental AMEC Americas Limited 104 Crockford Boulevard Scarborough, Onlario Canada M1R 3C3 Tel +1(416) 751-6565 Fax +1(416) 751-7592 www.amec.com | | ECORD | OF BOREHOLE N | ło. | вс | <u>13</u> | | | Drillin | ng Location: | 150 m East | of Drive | way #2475 | | am
Logged by: | ec _® | |--------------------------------------|---|---|-------------|---------------|--------------|-------------|-----------|---------------|---|---|--|--|---------------------------------|---------------------------------|-----------------| | | ject Cllent: | AMEC Infrastructure Group | | | | | | | ng Method: | 150 mm Sc | | | | Compiled by: | SN | | | ject Name: | Geotechnical Investigation for | or Bovai | rd Driv | ve Clas | s EAS | Study | | - | Truck Moun | | | | Reviewed by: | | | Pro | ject Location: | Bovaird Drive from Lake Lou | | | | ton | | Date | Started: | Oct 15, 09 | _ Date | Completed: Oct | 15, 09 | Revision No.: | 0, 2/9/10 | | - | LITH | Boundary at Caseley Drive, I
OLOGY PROFILE | _ | | AMPLI | NG | | _ | FIELD | TESTING | LA | B TESTING | П | | | | Lithology Plot | | DESCRIPTION | Sample Type | Sample Number | Recovery (%) | SPT W Value | ОЕРТН (m) | ELEVATION (m) | Penetra O SPT MTO Vane* intact Remould | PPT • DCPT Nilcon Vane* o intact Remould ear Strength (kPa) | ★ Rinse
2 4
Soil
A parts
100 | PH Values 6 8 10 12 Vapour Reading per million (ppm) 200 300 400 or Explosive Limit (LEL) W W, | INSTRUMENTATION
INSTALLATION | COMMEN & GRAIN SE DISTRIBUT (%) | ZE | | | | Silty Sand FILL
trace to some gravel
moist | ss | 1 | 83 | 22 | | | | | 0 | | | | | | 0 | tr | ace clay, trace organics | ss | 2 | 78 | 17 | | -1 - | 0 | | Δ ³⁵ | | | | | | | trace sar | brown 1. Sithy Clay FILL d, trace gravel, trace organics moist | ss ss | 3 | 94 | 19 | | | | | Δ ²⁵ | | | | | | φ

 -
 -
 -
 -
 - | | brown 2 ND SILT / SANDY SILT TILL trace clay, trace gravel dense to very dense moist to wet | SS | 4 | 100 | 47 | -2 | -2 - | | 0 | Δ ²⁵ | | | | | | 0 | s | ome cobbles / boulders | ee | | 100 | ENIE | -3
-3 | -3 - |]
]
] 6 | 9. | Δ ¹⁵ | | | | | | | | End of Borehole 4. | | 6 | 100 | 50/15 | | -4 -
 | | 2 | | | | | | | A d
104 | EC Earth & Envi
ivision of AMEC
Crockford Boule
intorough, Ontar | Americas Limited = Glound | twater de | pth on c | ompleti | on of dri | ling on | 10/15/2 | 2009 at a depth | of: <u>4.7 m</u> . | | | | | | AMEC Earth & Environmental A division of AMEC Americas Limited 104 Crockford Boulevard Scarborough, Ontario Canada M1R 3C3 Tel +1(416) 751-5565 Fax +1(416) 751-7592 www.amec.com Borehole details as presented, do not constitute a thorough understanding of all potential conditions present and require interpretative assistance from a qualified Geotechnical Engineer. Also, borehole information should be read in conjunction with the geotechnical report for which it was commissioned and the accompanying Explanation of Borehole Logi. Scale: 1:32 | R | ECORD | OF BOREH | IOLE N |) . ! | BC | 14 | | | | | | | | | | | amec | |----------------|---------------------|--|--------------------------------------|--------------|---------------|--------------|---------------|-----------|---------------|---------------------------------------|-------------|---|---------------------------|-----------|--|-----------------|--| | Pro | ject Number: | TT93042 | | | | | | | Drilling | Locatio | n: <u>7</u> | 0 m East o | f Drive | way #2 | 2475 | | Logged by: JF | | Pro | ject Client: | AMEC Infrastructu | ure Group | | | | | | Drilling | Method | k _1 | 150 mm S | olid Ste | m Aug | gering | | Compiled by: SN | | Pro | ject Name: | Geotechnical Inve | etigation for | Boval | rd Driv | e Clas | s EAS | tudy | Drilling | Machin | e: <u>T</u> | ruck Mour | ted Dr | 111 | | | Reviewed by: PB | | Pro | ject Location: | Bovaird Drive from
Boundary at Case | n Lake Louis | e Drive | e to Pe | el/Halt | on | | Date S | Started: | 0 | ct 15, 09 | _ Dat | e Com | pleted: Oc | 15, 09 | Revision No.: 0, 2/9/10 | | | ЦТН | OLOGY PROFILE | | SC | AL SA | MPLI | NG | | | FIE | LDΤΕ | STING | | | ESTING | Τ_ | | | Lithology Plot | Local Ground Surfix | DESCRIPTION | | Sample Type | Sample Number | Recovery (%) | SPT 'N' Value | DEPTH (m) | ELEVATION (m) | O SPT
MTO Va
∆ Intact
▲ Remo | ne* Nowad 4 | Testing T • DCP1 Allcon Vane* Intact Remould Strength (kPa) 60 80 | Sc
A par
10
A Lo | eer Explo | β 10 12 ur Reading Son (spm) 300 400 sive Limit (LEL V W, Liquid 60 80 | INSTRUMENTATION | COMMENTS & GRAIN SIZE DISTRIBUTION (%) GR SA SI CL | | ▓ | | brown
Sand and Gravel FILL | | | | | | - | - | | | | | | | T | | | | | grey Clayey Silt FILL d, trace gravel, trace o | - — — <u>- 0.6</u>
0.6
rganics
 SS | 2 | 100 | 10 | | -1 - | 0 | | | ∆ ¹⁵ | | | | | | | | | | SS | 3 | 100 | 15 | - 2 | -2 - | 0 | | | Δ ⁴⁵ | | | | | | • | | brown ND SAND / SILTY SANI race clay, trace gravel hard moist | - — — - <u>-2.4</u>
D TILL | ss | 4 | 100 | 43 | | | | 0 | | Δ ³⁵ | | | | | | | | | | ss | 5 | 100 | 50/15 | -3
- | -3 | | 59
15 | | Δ ¹⁵ | | | | | | | | | -4.7 | SS | 6 | 100 | 50/15 | 4 | -4- | | 59, | | | | | | | | -110 | | End of Borehole | 4.7 | | | | | | | | 15 | | | | | | | | AMI | EC Earth & Envi | | ☑ No freest | anding (| groundv | vater me | asured | in open | boreho | le on com | pletion | of drilling. | | | | | | AMEC Earth & Environmental A division of AMEC Americas Limited 104 Crociford Boulevard Scarborough, Ontario Canada M1R 3C3 Tel +1(416) 751-6565 Fax +1(416) 751-7592 www.amec.com | | ECORD OF BOR | EHOLE N | o. | ВС | <u>15</u> | | | | | | | | amed | 0 | |-------------------|---|--|--------------------------------------|----------------------------------|-------------------------------------|---------------------------------------|--------------------|--------------------------------------|--|---|--|----------------|--|-----| | | eject Number: TT93042 | | _ | - | | | | | g Location: | Driveway #2 | | | gged by: JF | _ | | | | tructure Group Investigation for | Royal | rd Delv | n Class | FAS | turk | | g Method: | Truck Moun | ted Ddil | | ompiled by: SN
eviewed by: PB | | | | ject Location: Bovalrd Drive | | | | | | tuay | | Started: | Oct 15, 09 | | | evision No.: 0, 2/9 | 710 | | - | Boundary at
LITHOLOGY PRO | Caseley Drive, Br | ampto | n, ON. | MPLI | | _ | T | | TESTING | LAB TESTING | | | | | Lithology Plot | DESCRIPTION | | Sample Type | Sample Number | Recovery (%) | SPT W Value | DЕРТН (m) | ELEVATION (m) | Penetra O SPT MTO Vane* Δ Intact A Remould | tionTesting PPT • DCPT Nilcon Vane* • Intact • Remould ser Strength (kPa) | # Rinse pH Values 2 4 6 8 10 12 Soil Vapour Reading parts per million (ppm) 100 200 300 400 A Lower Explosive Limit (LEL) W, W W, Pustic Liquid | STALLATION | COMMENTS
&
GRAIN SIZE
DISTRIBUTION
(%) | | | 5 | Local Ground Surface Elevation: 6.0 m
about 100 mm ASI | PHALT -0.1 | Sa | Sa | å | S | - | i ii | 20 40 | | 20 40 60 80 | ŽŽ GA | SA SI | a | | | brown
Sand and Gravel
some silt
moist | 0.1 | ss | 1 | 94 | 33 | | | 0 | | <u>√</u> 5 | | | | | | brown
Clayey Silt Fli
trace sand, trace of
moist | | ss | 2 | 100 | 14 | - 1 | -1 - | 0 | | 5 10 | | | | | | brown CLAYEV SILT 1 trace sand, trace (hard moist | | ss | 3 | 100 | 32 | | | 0 | | 4 5 | | | | | | | | SS | 4 | 100 | 36 | -2 | -2 - | 0 | | 1 15 | | | | | | | | 33 | | 100 | | -
-
- 3 | -3 - | | | | | | | | | | | ss | 5 | 100 | 51 | | | | 0 | Δ ³⁶ | | | | | 0 | SILT AND SAND / SILT
trace clay, trace yery dense | gravel | | | | | -4 | -4 - | | | | | | | | 9 | moist End of Boreho | -4.9 | ss | 6 | 100 | 50/15 | | | 5 | ş | △15 | A d
104
Sca | EC Earth & Environmental
ivision of AMEC Americas Limited
Crockford Boulevard
arborough, Ontario | ¥ No frees | tanding | ground | water me | asured | in ope | n boreh | ole on completi | on of drilling. | | | | | | Tel
Fax | nada MTR 3C3
+1(416) 751-6565
x+1(416) 751-7592
w.amec.com | Borehole details
a qualified Geot
commissioned a | as prese
schnical I
and the ac | ented, do
Engineer
ocompan | not cons
. Also, bo
ying Expl | titute a tr
rehole in
anation o | formeti
f Borel | h underst
ion shouk
hole Log'. | anding of all pote
d be read in conj | ential conditions p
unction with the g | resent and require interpretative a
sotschnical report for which it was | salatance from | Scale: 1
Page: 1 | | | | | | | | | | | | | | | | - | |---|--|-------------|---------------|--------------|-----------|----------|-----------|--|---|---|-----------------|------------------|-----------| | RECORD | OF BOREHOLE N | o. | BC | 16 | | | | | | | | am | ec | | Project Number: | TT93042 | | | | | | Drilling | Location: | Driveway #2 | 472 | | Logged by: | JF | | Project Client: | AMEC Infrastructure Group | | | | | | Drilling | Method: | 150 mm So | olld Stem Augering | | Compiled by: | SN | | Project Name: | Geotechnical Investigation for | Boval | rd Driv | e Class | s EAS | tudy | Drilling | Machine: | Truck Moun | ted Drill | | Reviewed by: | PB | | Project Location | Bovaird Drive from Lake Louis | e Driv | e to Pe | el/Halt | on | | Date S | Started: | Oct 15, 09 | Date Completed: Oct 1 | 5, 09 | Revision No.: | 0, 2/9/10 | | LITT | Boundary at Caseley Drive, Br
HOLOGY PROFILE | | | MPLI | NG | _ | | FIELD. | TESTING | LAB TESTING | Т | | | | | | | | | | | | | ionTesting | ★ Rinse pH Values
2 4 6 8 10 12 | 8 | COMMEN | TS | | _ | DECODIDITION | | ž | _ | | | E | O SPT | PPT • DCPT | Soil Vapour Reading A parts per million (ppm) 100 200 300 400 | E S | &
GRAIN SI | ZE | | P P | DESCRIPTION | Ę, | 2 | 80 | 'N' Value | Ê | ĕ | MTO Vane* Δ Intact | Nilcon Vane* | ▲ Lower Explosive Limit (LEL) | F F | DISTRIBUT
(%) | ION | | Difference Prof | | Sample Type | Sample Number | Recovery (%) | SPT 'N' | DEPTH | ELEVATION | Remould Undrained She | Remould
er Strength (kPa) | W, W W, | INSTRUMENTATION | | | | Local Ground Su | tage Elevation: 0.0 m
about 40 mm TOPSOIL 8,8 | - S | 33 | - E | Š | - | _ = | 20 40 | | 20 40 60 80 | ZZ | GR SA | SI CL | | ₩` | Silty Sand FILL | ss | , | 89 | 16 | ļ. | | | | , 15 | 1 1 | | | | ₩ | trace to some gravel
moist | 33 | ١. | 69 | 16 | ŀ | | | | f | | | | | ** | | - | | - | _ | ļ. | | | | | 1 1 | | | | ₩ | | | | | | ŀ | | | | | 1 1 | | | | ₩ | | - | - | | _ | - | | 1 1 1 | | | | | | | ** | | ss | 2 | 56 | 15 | ŀ. | | | | 10 | | | | | ₩. | | 33 | * | " | 15 | Γ' | -1 - |] ~ | | | 1 1 | | | | ₩ | | - | - | | _ | Ł | | | | | | | | | | | | | | | - | | | | | | | | | | CLAYEY SILT TILL
trace sand, trace gravel | - | - | | | t | | | | | | | | | | hard
moist | ss | 3 | 100 | 35 | F | | | | 10 | | | | | | | 33 | ľ | | 33 | t | | 1 | | f | 1 1 | | | | 阳 | | \vdash | | | - | - 2 | -2 - | 1 | | | 1 1 | | | | | | | | | | t | | | | | | | | | | | <u> </u> | - | | - | - | | 1 1 1 | | | 1 1 | | | | | | ss | 4 | 100 | 61 | t | | | 0 | A ²⁰ | | | | | | | " | ` | | ٠. | ŀ | | 1 1 1 | Ĭ | | | | | | 1 | | - | - | - | _ | Ė | | | | | | | | | | | | | | | - | | 1 1 1 | | | 1 1 | | | | | | _ | - | | - | - 3 | -3 - | | | | | | | | 捌 | | ss | 5 | 100 | 37 | ŀ | | | | 5 | | | | | | | " | 1 | | ٠. | - | | | | F | | | | | | | ├─ | _ | | | t | | | | | | | | | | | | | | | F | | | | | | | | | 14 | | | l | | | t | | | | | | | | | | | | | | | - 4 | -4 - | | | | | | | | | | l | | | | t | | | | | 1 1 | | | | | | | | | | - | | | | | | | | | 14 | | | | | | t | | 1 1 1 | | | | | | | | | _ | | | | - | | | | | 1 1 | | | | | | ss | 6 | 100 | 36 | į. | | | | 5 | | | | | 3 49 | grey | | | | | - | | | | | | | | | и. | -5.0
End of Borehole 5.0 | _ | _ | | | -5 | -5 - | | | | 1 | AUEO E- et a E | IEC Earth & Environmental Select of AMEC American Limited No freestanding groundwater measured in open borehole on completion of drilling. | | | | | | | | | | | | | | A division of AMEC
104 Crockford Bou | Americas Limited | tanding | ground | vater me | asured | in open | boreho | ole on completi | on of drilling. | | | | | AMEC Earth & Environmental A division of AMEC Americas Limited 104 Crockford Boulevard Scarborough, Ontario Canada M1R 3C3 Tel +1(416) 751-6565 Fax +1(416) 751-7592 www.amec.com | | | | | | | | | | | | | | | | - 60 | |----------------|--------------------|---|--------------------|-------------|--------|--------------|-----------|--------|-----------|--------------------------|---|---|-------------------|------------------------|-----------| | RI | ECORD | OF BOREH | OLE N | o. ! | BC | <u>17</u> | | | | | | | | ame | ec~ | | Pro | ject Number: | TT93042 | | | | | | | Drilling | Location: | 25 m East H | eritage Road | | Logged by: | JF | | Pro | ject Client: | AMEC Infrastructur | | | | | | | | Method: | 150 mm So | lid Stem Augering | | Compiled by: | <u>SN</u> | | Pro | ect Name: | Geotechnical Inves | | | | | | tudy | Drllling | Machine: | Truck Mount | ted Drill | | Reviewed by: | <u>PB</u> | | Pro | ject Location: | Bovaird Drive from
Boundary at Casele | Lake Louis | e Drive | n, ON. | el/Halt | on | | Date S | Started: | Oct 15, 09 | _ Date Completed: O | ct 15, 09 | Revision No.: | 0, 2/9/10 | | | LITH | OLOGY PROFILE | | | | MPLI | VG | | | FIELD | TESTING | LAB TESTING | \Box | | | | | | | | | | | | | - | | tionTesting | # Rinse pH Values 2 4 6 8 10 1 | 2 6 | COMMEN & | 18 | | JO. | | DESCRIPTION | | 8 | Number | 8 | 901 | _ | E
z | MTO Vane* | PPT •
DCPT Nilcon Vane* | Soil Vapour Reading A parts per million (ppm) 100 200 300 400 | INSTRUMENTATION | GRAIN SIZ
DISTRIBUT | ZE | | Lithology Plot | | | | Sample Type | ole Ne | Recovery (%) | N' Value | E
E | ELEVATION | Δ Intact
▲ Remould | Intact Remould | Lower Explosive Limit (LE
W, W W | , MAA | (%) | | | 5 | Local Ground Surfa | ce Elevation: 0.0 m | | Same | Sample | Reco | SPT | рертн | EE | * Undrained Shi
20 40 | ear Strength (kPa)
60 80 | Plastic Liquid
20 40 60 80 | INST | GR SA | SI CL | | | | brown
Sand and Gravel FILL | | | | | | - | _ | | | | | | | | ▓ | | moist | | SS | 1 | 83 | 18 | t | | 0 | | 5 | | | | | ▓ | | | | | | | | ŀ | | 1 | | | | | | | ▓ | | | 0.6 | | | | | ļ. | | | | | | | | | ▓ | | Silty Clay FILL
race sand, trace gravel | 0.6 | | | | | ŀ | | | | | 1 1 | | | | ▓ | | moist | | | | | | - | | | | 25 | | | | | ▓ | | | | SS | 2 | 0 | 22 | -1 | -1 - | 0 | | Δ ²⁵ | | | | | ▓ | | | | | | | | ŀ | | | | | | | | | ▩ | | | | | | | | ļ. | | | | | | | | | ▓ | | | | - | | | | ł | | | | | | | | | ▓ | | trace organics | | ss | 3 | 100 | 23 | - | | 0 | | 10 | | | | | ▓ | | | | 33 | , | | 23 | t | | l | | | | | | | ▓ | | | | | _ | | | - 2 | -2 - | | | | | | | | œ, | | brown | <u>-2.1</u>
2.1 | | | | | ļ. | | | | | | | | | Ш | tr | CLAYEY SILT TILL
race sand, trace gravel
hard | | | - | | | ŀ | | 1 1 1 | | | | | | | 21 | | moist | | ss | 4 | 100 | 33 | Ė | | 0 | | Δ ²⁵ | | | | | H | | | | | | | | Ł | | | | | | | | | H | | | | | | | | - | | | | | | | | | Ш | | | | | | | | -3 | -3 - | | | | | | | | M | | trace oxidation | | | | | | - | | | | | | | | | 1 | | | | SS | 5 | 100 | 46 | F | | | o | Δ ³⁰ | | | | | H | | | | | | | | ŀ | | | | | | | | | И | | | | | | | | ŀ | | | | | | | | | W | | | | | | | | ļ | | | | | | | | | 倂 | | | | | | | | Ŀ. | | | | | | | | | 11 | | | 4.1 | | | | | - 1 | ٠. | | | | | | | | 1 | SILT AN | grey
ND SAND / SILTY SAND
race clay, trace gravel | TILL | | | | | Ė | | <u> </u> - | | ļ <u>.</u> | | | | | 9 | | very dense
moist | | | | | | ŀ | | | | | | | | | Ш | | | | _ | _ | _ | | - | | | | | | | | | | | | | ss | 6 | 100 | 61 | t | | | 0 | Δ ⁴⁵ | 1 1 | | | | 9 | | | | 33 | " | 100 | 0, | - | | | | | | | | | 111 | | End of Borehole | -5.0
5.0 | | _ | _ | | 5 | -5 | | | | \dashv \vdash | АМ | EC Earth & Envi | roomental | ∇ No tracet | | | | | | | | | | | | | AMEC Earth & Environmental A division of AMEC Americas Limited 104 Crockford Boulevard Scarborough, Ontario Canada M1R 3C3 Tal +1(416) 751-6565 Fax +1(416) 751-7592 www.amec.com $\frac{\nabla}{2}$ No freestanding groundwater measured in open borehole on completion of drilling. | | ECORD OF BORE | IOLE No. | B | <u>C 18</u> | | | Drillin | g Location: | Intersection | at Heritage Road | | Logged by: _JF | 0 | |----------------|---|--------------------------|----------|-------------------------------|---------------|-----------|---------------|--|---|--|---------------------------------|--|------| | | pject Client: AMEC Infrastruct | | | | | | | g Method: | | Ild Stem Augering | | Compiled by: SN | _ | | | oject Name: Geotechnical Investigat Legation: Revenied Dates for | Const. District Addition | | | | tudy | | | Truck Moun | | 7.00 | Reviewed by: PB | | | Pro | oject Location: Bovalrd Drive fro
Boundary at Case | eley Drive, Bramp | oton, C | ON. | | _ | Date : | Started: | Oct 27, 09 | | 7,09 | Revision No.: 0, 2/9 | 10 | | Lithology Plot | DESCRIPTION Local Ground Surface Elevation: 00 m | Sample Tune | T | Sample Number
Recovery (%) | SPT 'N' Value | DEРТН (m) | ELEVATION (m) | Penetra O SPT □ MTO Vane* Δ intect Δ Remould | ◆ Intact
◆ Remould
ear Strength (kPa) | LAB TESTING ★ Rinee pH Values 2 4 6 8 10 12 Soil Vapour Reading A parts per million (ppm) 100 200 300 400 ▲ Lower Explosive Limit (LEL) W, W, Plastic Digid 20 40 60 80 | INSTRUMENTATION
INSTALLATION | COMMENTS & GRAIN SIZE DISTRIBUTION (%) | α | | 988 | about 110 mm ASPHAL | | | | | ŀ | | 1 | | | | | | | | Sand and Gravel FILL moist brown Silty Sand FILL trace gravel moist | | s | 1 94 | 27 | | | 0 | | | | | | | | grey
Clayey Silt FILL
trace sand, trace grave
moist | - | s : | 2 22 | 23 | -1 | -1 - | 0 | | | | | | | | brown to grey SILTY CLAY / CLAYEY SILT hard damp | TTILL S: | s | 3 83 | 49/15 | | | , | 8 | | | | | | | reddish brown
trace gravel, trace shale frag | ments S | s | 4 100 | 50/15 | -2 | -2 - | | 80
15 | | | | | | | | | | | | -3 | -3 - | | | | | | | | | | S | S | 5 100 | 52/15 | | | | 58
15 | | | | | | | | | | | | -4 | -4 - | | | | | | | | | End of Borehole | 4.7 S | S | 6 100 | 50/13 | | | | 3 | | | | | | Ad | EC Earth & Environmental Invision of AMEC Americas Limited | ¥ No freestandi | ing grou | undwater m | neasured | in ope | n boreh | ole on complet | ion of drilling. | | | | | | Sca | 4 Crockford Boulevard
arborough, Ontario
nada M1R 3C3
+1(416) 751-6565 | Borehole details as p | resented | d, do not con | etitute a t | horougi | h underst | anding of all pot | ential conditions pr | recent and require interpretative a
sotechnical recort for which it was | selstance fro | m Scale: | 1:32 | Fax +1(416) 751-7592 www.amec.com | Project Number: | OF BOREHOLE I | No. | BC | <u>19</u> | | | | g Location: | | of Heritage Road | | Logged by: JF Compiled by: SN | Ö | |---|--|--|----------------------------------|------------------------------------|---------------------------------------|------------------------------|--------------------------------------|--|--|---|----------------|--|-----| | | Geotechnical Investigation f | or Bova | Ird Driv | ve Clas | s EAS | Study | M | | Truck Moun | | | Reviewed by: PB | | | Project Location: | Bovaird Drive from Lake Lo | | | | ton | | Date | Started: | Oct 15, 09 | | 5, 09 | Revision No.: 0, 2/9 | V10 | | | Boundary at Caseley Drive. DLOGY PROFILE | | | MPLI | NG | | Т | FIELD | TESTING | LAB TESTING | | | | | | DESCRIPTION | Sample Type | Sample Number | Recovery (%) | SPT W Value | DEPTH (m) | ELEVATION (m) | O SPT MTO Vane* A Intact A Remould | ntionTesting PPT | # Rinse pH Values 2 4 6 8 10 12 Soil Vapour Reading A parts per million (sport) 100 200 300 400 Lover Explosive Limit (LEL) W, W W, Plastic Liquel 20 40 60 80 | INSTALLATION | COMMENTS & GRAIN SIZE DISTRIBUTION (%) | CL. | | | xrt 200 mm ASPHALT | | | | | F | | - | | | | | | | s | grey — — — — — 0 | 2 | _ | _ | | ţ | - 3 | 1 | | L | | | | | | brown 0 | SS
.8 | 1 | 78 | 26 | | | ٥ | | 3 30 | | | | | | Silty Sand FILL
moist | ss | 2 | 94 | 20 | -1 | -1 - | 0 | | ar . | | | | | | | ss | 3 | 28 | 17 | | | 0 | | 6 65 | | | | | trace sand | grey 2 Clayey Silt FILL trace rootlets, trace organics | 1 | | | | -2 | -2 - | | | | | | | | | moist | ss | 4 | 56 | 12 | | | 0 | | 295 | | | | | | | .0 | | | | -3 | -3 - | 1 | | | | | | | | grey 3
Silty Sand FILL
organics, trace rootiets
moist | ss | 5 | 100 | 11 | | | 0 | | A\$*** | | | | | | | | | | | -4 | 4- | | | | | | | | trace sand, tra | reddish brown 4 CLAYEY SILT TILL be gravel, trace cobbles / boulders hard moist | 11 | | | | | | | | | | | | | | | SS | 6 | 100 | 50/10 | - | -5 - | | 8 | 2 ³⁰ | | | | | trace sand, trai | | | | | | - | -3- | | | | | | | | | | | | | | Ē | |] | | | | | | | AMEC Earth & Environ A division of AMEC A 104 Crockford Bouley | mericas Limited | estanding | ground | water m | easured | in ope | n boreh | ole on complet | ion of drilling. | | | | | | Scarborough, Ontario
Canada M1R 3C3
Tel +1(416) 751-6565
Fax +1(416) 751-759
www.amec.com | Borehole deta | ails as pres
totechnical
d and the a | ented, do
Engineer
ccompen | not com
r. Also, b
lying Exp | stitute a t
orehole li
lanation | horoug
nformat
of Bore | h underst
ion shouk
hole Log'. | anding of all pot
d be read in con | ential conditions pr
junction with the gr | resent and require interpretative a
sotechnical report for which it was | ssistance from | Scale:
Page: 1 | | ### RECORD OF BOREHOLE No. BC 19 Project Number: TT93042 Drilling Location: 20 m West of Heritage Road Logged by: JF | DESCRIPTION Part P | | LITHOLOGY PROFILE | SC | IL SA | MPLI | VG. | | | FIELD TESTING | LAB TESTING | | |
--|-----|---------------------|------|-------|------|------|----|-----|------------------------|--|------|--------------| | 6.1 55 7 100 500 - 58 4 | | | | | | | | _ | PenetrationTesting | 2 4 6 8 10 12 | NO. | | | 6.1 55 7 100 500 - 58 4 | _ | DESCRIPTION | _ | ě | _ | | | | O SPT □ PPT ● DCPT | Soil Vapour Reading A parts per million (ppm) | E S | | | 6.1 55 7 100 500 - 58 4 | 8 | DESCRIPTION | Type | 5 | 30 | Valu | ε | ĕ | MTO Vane* Nilcon Vane* | ▲ Lower Explosive Limit (LEL) | AE. | DISTRIBUTION | | 6.1 55 7 100 500 - 58 4 | 8 | | ejd | pje | over | ż | Ĕ | V. | ▲ Remould ◆ Remould | • | TE I | (%) | | God of Bownholm 6.1 5 7 800 807 5 5 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | £ | | San | San | Bec | S | DE | ELE | | | SS | GR SA SI CL | | | щ | -6.1 | - 55 | 7 | 100 | 50/3 | | | | ρ | | | | | - 1 | End of Borenoie 6.1 | | | | | | | 3 | - 1 | | | | | | | | | | | | | | İ | - 1 | - | ı | | | | | | | | | | - 1 | | | | | | | | | | | | | | | | | | - 1 | | | | | | | | | | | | | | - 1 | - 1 | | | | | | | | | | - 1 | | | | - 1 | - 1 | - 1 | | | | | | | | | | - 1 | | | | - 1 | - 1 | | | | - 1 | | | | | | | | | | - 1 | ı | OF BORE | HOLE N | o. | BC : | <u>20</u> | | | | | | | | | | | | | | | | m | ec | 0 | |----------------|--|---|-----------------------|-------------|---------|--------------|---------------|---------------|-----------------|--------|---------|------------|------------------------|---------|--|--|----------------------------------|----|-----------------|----|--------|------------------------------|--------|-----| | | ect Number: | TT93042 | C | | | | | | Drilling | | | - | veway # | | | • | | | | | Logge | | JF. | | | | ect Client: | AMEC Infrastruct | | | 404 | - 01 | | | Drilling | | | | 0 mm S | | | Auger | ing | | | | Compi | | SN | | | | ect Name: | Geotechnical Inv | | | | | | tudy | | | | | ck Mou | | | | | | | | | ed by: | | | | Proj | ect Location: | Bovaird Drive fro
Boundary at Cas | eley Drive, Bra | ampto | n, ŌN. | | | | Date S | | | | 26, 09 | _ ` | | omple | | | 5, 09 | _ | Hevisk | n No.: | 0, 2/9 | 710 | | Plot | шн | OLOGY PROFIL DESCRIPTION | .E | | NL SA | MPLI
(%) | | (m) | (m) NOI | O SP | Penetro | PPT
Nik | esting DCP con Vane* | Γ | Rinse p
2 4
Soil V
parts p
100 | H Values
6 6
apour F
er million
200 3
Explosive | 10
Reading
(ppm)
(pp 40 | 12 | INSTRUMENTATION | | GR | MMEN
&
AIN SI
RIBUT | ΖE | | | Lithology Plot | | | | Sample Type | Sample | Recovery (%) | SPT 'N' Value | DEPTH | ELEVATION | ▲ R | emould | ٠ | Remould
ength (kPa) | | W,
Plastic | w | v | , | TALL | | | (%) | | | | 5 | Local Ground Surf | oe Elevation: 0.0 m
bout 50 mm TOPSOI | | Sar | Sar | ě | Sp | B | 3 | | 30 40 | | | + | | 40 6 | D 80 | | N N | GA | s s | Α | SI | α | | | · | brown
Sand and Gravel FILL
trace to some sit
moist | | ss | 1 | 58 | 15 | | | 0 | | | | 5 | | | | | | | | | | | | | | brown
Silty Clay FILL
race sand, trace grave | | ss | 2 | 56 | 8 | -1 | -1- | 0 | | | | Δ | 35 | | | | | | | | | | | | | very stiff
moist | | ss | 3 | 100 | 22 | | | | 0 | | | Δ2 | 5 | | | | | | | | | | | | | Sandy Silt FILL
trace clay, trace grave
moist | 2.1
2.1 | | | | | - 2 | -2 - | | | | | | | | | | | | | | | | | | | reddish brown | <u>-29</u> | SS | 4 | 100 | 26 | | | | 0 | | | Δ | 35. | | | | | | | | | | | о
)
Д | | ND SAND / SILTY SAI
trace clay, trace grave
very dense
moist | NDTILL | ss | 5 | 67 | 81 | - 3
-
- | -3 - | | | | 0 | Δ. | 40 | | | | | | | | | | | • | | | | | | | | -4 | 4- | | | | | | | | | | | | | | | | | 111 | | reddish brown | | | | | | | | | | - | | | 0 | | | | | | | | | | | | | WEATHERED SHALE | -4.7 | SS | 6 | 100 | 50/10 | - | | | | 8 | | - | . i | | 0.03 | | | | | | | | | | | End of Borehole | 4.7 | C Earth & Envi | | ☑ No freesta | anding | groundw | vater me | asured | in oper | n boreho | e on c | complet | ion of | drilling. | | | _ | _ | | | | | | | | | 104 | Crockford Boule | | = | Tel 4 | 4 Crockford Boulevard arrborough, Ontario nada MTR 3C3 l+1(416) 751-6565 x +1(416) 751-7592 commissioned and the accompanying Explanation of Borehole Log. | | | | | | | | | | | | | cale: 1 | 1:32
of 1 | | | | | | | | | | | | | OF BOREH | IOLE N |) . | BC : | <u>21</u> | | | Dellin | -1 | elaa. | Datuman (| NJ | #05 | 20 | | | | an | 16 | c | 9 | |----------------|--|---|---------------------|-------------|---------------|--------------|---------------|------------------|---------------|-------------------------|---|--|-----------------|---|--------------------------------------|--|---------------------------------|-------|---|-------|-----|---| | | oject Number:
oject Client: | TT93042 AMEC Infrastruct | ure Group | | | | | | Drilling | g Loca | | 150 mm | | | | | | _ | ogged by:
ompiled by | r: Si | N | | | | oject Client:
oject Name: | Geotechnical Inve | | Royal | rd Driv | e Clas | e FAS | turty | | - | | Truck Mou | | | ogern | ·9 | | | eviewed b | _ | | | | | eject Location: | | | | | | | tooj | Date 9 | - | | Oct 26, 09 | | | molete | ed: Oct | 26.09 | | evision No | _ | | 0 | | - | | Boundary at Case | eley Drive, Bra | ampto | n, ON. | | | _ | T | | | | | | | | 1 | | 01131011110 | | 23. | _ | | Lithology Plot | | DESCRIPTION see Develops: 9.0 m | E | Sample Type | Sample Number | Recovery (%) | SPT 'N' Value | DEPTH (m) | ELEVATION (m) | O SP1 MTO Δ Int A Re | Penetra
T D
Vane*
sact
emould | ○ Intact
◆ Remould
ear Strength (kP) | PT | Rinee pH
Soil Var
parts per
100 20
Lower Ex
W, | 6 8
pour Re
mi≣on (p
po 300 | 10 12
lading
pm) 400
imit (LEL)
W, | INSTRUMENTATION
INSTALLATION | GR GR | COMME
&
GRAINS
DISTRIBI
(%) | SIZE | | a | | | a | brown brown brown Send and Gravel FILL some sit moist | 02 | ss | 1 | 63 | 4 | | | 0 | | | 0 | | | | | | | | | | | | trace sar | grey
Silty Clay FILL
nd, trace gravel, trace of
moist
 0.7 | ss | 2 | o | 7 | -1 | -1- | 0 | | | <u>_</u> 10 | | | | | | | | | | | | t | brown CLAYEY SILT TILL race sand, trace gravel very stiff moist | 1.4 | ss | 3 | 67 | 26 | - 2 | -2 - | | o | | △15 | | | | | | | | | | | 0 | | reddish brown
ND SAND / SILTY SAN
trace clay, trace gravel
very dense
moist | | ss | 4 | 100 | 50/13 | | | | | 8 9 . | 10 | | | | | | | | | | | 0 | | some shale fragments | | SS | 5 | 91 | 50/13 | 3 | -3 - | | | 50
13 | Δ ²⁰ | | | | | | | | | | | | | reddish brown
WEATHERED SHALE | -4.0 | | | | | -4 | -4 - | | | | | | | | | | | | | | | | | | - | | 1 | | 50 | | | | | | | | | | | | | | | | | | Auş | End of Borehole
ger refusal at 4.7 m deg | -4.6
4.6
bth. | 22 | 6 | 100 | 50/5 | | | | | 5 | 5 | -5 | | | | | | | | | | A d | IEC Earth & Envi
fivision of AMEC
4 Crockford Boule
arborough, Ontari
nada M1R 3C3 | Americas Limited
evard | No freesta | | | | | | | | | | | | ules let- | manush. | anistano f | | | | | | Tel +1(416) 751-6565 Fax +1(416) 751-7592 www.amec.com | | ECORD OF BOREHOLE N | о. | BC: | 22 | | | | | | | | am | ec® | |----------------|--|-------------|---------------|--------------|---------------|------------------|---------------|--------------------------------------|---|--|---------------------------------|-----------------------------------|-----------| | | ect Number: TT93042 | | | - | | | | Location: | | f Driveway #2578 | | Logged by: | JF | | | ject Client: AMEC Infrastructure Group | | | | | | | Method: | | Ild Stem Augering | | Compiled by: | SN | | | ect Name: Geotechnical Investigation for | | | | | tudy | | | Truck Mount | | | Reviewed by: | | | Pro | ect Location: Bovaird Drive from Lake Louis
Boundary at Caseley Drive, Bo | rampto | n, ON. | | | _ | Date S | Started: | Oct 26, 09 | _ Date Completed: Oct 2 | 6, 09 | Revision No.: | 0, 2/9/10 | | | LITHOLOGY PROFILE | sc | AL SA | MPLI | NG | | ├— | FIELD | TESTING | LAB TESTING * Rinse pH Values | , | COMMEN | Te | | Lithology Plot | DESCRIPTION Local Ground Surface Elevation: 0.0 m | Sample Type | Sample Number | Recovery (%) | SPT 'N' Value | DEPTH (m) | ELEVATION (m) | O SPT □ MTO Vane* Δ intact Δ Remould | ♦ Intact ♦ Remould near Strength (kPa) | 2 4 6 8 10 12 Soll Vapour Reading A parts per million (pm) 100 200 300 400 A Lover Explosive Limit (LEL) W, W W Plastic Liquid 20 40 60 80 | INSTRUMENTATION
INSTALLATION | &
GRAIN SI
DISTRIBUT
(%) | ZE | | | brown Silty Sand FILL trace to some gravel moist -0.7 | ss | 1 | 71 | 18 | - | | 0 | | ,0 | | | | | | brown 0.7 Clayey Silt FILL trace sand, trace rootlets moist | ss | 2 | 56 | 12 | -1 | -1- | 0 | | △15 | | | | | | brown SILT AND SAND / SILTY SAND TILL trace clay, trace gravel compact to very dense moist | ss | 3 | 89 | 28 | - 2 | -2- | o | | Δ ²⁵ | | | | | | | ss | 4 | 78 | 36 | | | ٥ | | ∆ ¹⁵ | | | | | | | ss | 5 | 100 | 50/15 | 3 | -3 - | | 80
15 | ∠10 | | | | | 0.00 | | | | | | 4 | 4- | | | | | | | | 9 | trace shale fragments | ss | 6 | 83 | 50/15 | ŀ | - | | 58
15 | ∆ ¹⁰ | | | | | ld l | End of Borehole 4.9 | - | - | | - | - | A di
104 | C Earth & Environmental vision of AMEC Americas Limited Crockford Boulevard torough, Ontario | tanding | groundw | vater me | asured | in open | boreho | le on complet | ion of drilling. | | | | | AMEC Earth & Environmental A division of AMEC Americas Limited 104 Crockford Boulevard Scarborough, Ontario Canada M1R 3C3 Tel +1(416) 751-6565 Fax +1(416) 751-7592 www.amec.com Borehole details as presented, do not constitute a thorough understanding of all potential conditions present and require interpretative assistance from a qualified Geotechnical Engineer. Also, borehole information should be read in conjunction with the geotechnical report for which it was commissioned and the accompanying Explanation of Borehole Lucy. Scale: 1:32 | ı | ECORD OF BOREHOLE No
ject Number: TT93042 | о. | вс | <u>23</u> | | | Drilling | g Location: | Driveway #2 | 578 | | and | ec® | |----------------|---|-------------|-----------------|--------------|-----------|-----------|-----------|-----------------------|----------------------------|---|---------------------------------|---------------|-------| | | ject Client: AMEC Infrastructure Group | | | | | | | g Method: | | ilid Stern Augering | | | SN | | | ject Name: Geotechnical Investigation for | Boval | rd Driv | re Clas | s EAS | tudy | | | Truck Moun | | | Reviewed by: | | | | ect Location: Boyaird Orive from Lake Louis | e Driv | e to Pe | e/Halt | | | | Started: | Oct 26, 09 | Date Completed: Oct 2 | 6, 09 | Revision No.: | | | - | Boundary at Caseley Drive, Br | ampto | n, ON.
NL SA | | | _ | 1 | | TESTING | LAB TESTING | | | | | | DINOLOGY PHOPILE | 30 | | MPLI | NG. | | Ê | Penetra | tionTesting | ★ Rinee pH Values
2 4 6 8 10 12
Soil Vapour Reading | INSTRUMENTATION
INSTALLATION | COMMEN & | | | Piot | DESCRIPTION | 98 | Sample Number | 3 | 'N' Value | Ê | | MTO Vane*
Δ Intact | Nilcon Vane* | A parts per million (ppm)
100 200 300 400
▲ Lower Explosive Limit (LEL) | ATIO | GRAIN SI | | | Lithology Plot | | Sample Type | a eldu | Recovery (%) | ź | ОЕРТН (m) | ELEVATION | ▲ Remould | Remould ear Strength (kPa) | W, W W | TALL | (%) | | | £ | Local Ground Surface Elevation: 0.0 m
brown | ß | Sa | ě | SPT | B | 3 | 20 40 | | Plastic Liquid
20 40 60 80 | SS. | GR SA | SI CL | | | Sand and Gravel FILL
moist | ss | 1 | 75 | 30 | | | | | <u>.</u> 5 | | | | | | -0.9 | | | | | | | | | | | | | | 9 9 9 | brown 0.9 SILT AND SAND/ SILTY SAND TILL trace clay, trace gravel compact to very dense moist | ss | 2 | 100 | 19 | -1 | -1 - | 0 | | A ¹⁰ | | | | | • | | ss | 3 | 100 | 51 | | | | 0 | Δ ³⁵ . | | | | | | | | | | | - 2 | -2 - | | | | | | | | | | ss | 4 | 100 | 47 | | | | 0 | Δ ²⁵ | | | | | 0 | some cobbles / boulders | ss | 5 | 100 | 50/15 | - 3 | -3 - | | g
B | Z ¹⁰ | | | | | • | | | | | | | | | | | | | | | 0 0 0 | | | | | | -4 | -4 - | | | | н | ard augering | | | 0 | | | | | | | |] | | | | | | | Ш | -4.6
End of Borehole 4.6 | ss | 6 | 100 | 50/3 | - | | | <u>8</u> | 0 | Adi | EC Earth & Environmental vision of AMEC Americas Limited Crockford Boulevard | tanding | ground | water me | easured | in ope | n boreho | ole on complete | on of drilling. | | | | | A division of AMEC Americas Limited 104 Crockford Boulevard Scarborough, Ontario Canada M1R 3C3 Tel+1(416) 751-6565 Fax+1(416) 751-7592 www.amec.com | | | OF BORE | HOLE N | o. | BC : | 24 | | | Deller | | | 00 W | | | ****** | | | | am | ec | 0 | |---------------------|--|---|--|------------------------------------|----------------------------------|-----------------------------------|---------------------------------------|-------------------------------|-------------------------------------|--|------------------|--|----------------------|--|---|---------------------------|---------------------------------|-----|---|--------------------|----| | | ject Number: | TT93042 | hum Croum | | | | | | | Location | | 20 m West | | | | | | | ogged by: | JF
CN | | | | ject Client: | AMEC Infrastruct | | D | | - 01 | - 54.0 | | | Method | | 150 mm S | | | ugering | 1 | | | ompiled by: | SN | | | | ject Name: | Geotechnical Inv | | | | | | tuay | |) Macnir
Started: | 10: | Truck Mour | | | | | | | eviewed by: | | | | PIO | ject Location: | Boundary at Cas | eley Drive, Bra | ampto | n, ON. | | | | Dates | | _ | Oct 26, 09 | | | | i: Oct 2 | 5, 09 | . " | evision No.: | 0, 2/9 | 10 | | Lithology Plot | шн | OLOGY PROFIL DESCRIPTION | E | Sample Type | Samble Number | Recovery (%) | SPT 'N' Value | DEPTH (m) | ELEVATION (m) | Per
OSPT
MTOV
Δ Intact
▲ Rem | netrat | onTesting PPT | S A pi | oil Vap
oil Vap
ors per r
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | cour Rea
million (ppr
0 300
skostve Lim
W | 10 12
ding
m) | INSTRUMENTATION
INSTALLATION | | COMMEN
&
GRAIN SI
DISTRIBUT
(%) | ZE
TON | | | 5 | Local Ground Surfa | ce Elevation: 0.0 m
bout 100 mm TOPSO | L -0.1 | Sa | Sa | å | ß | ä | <u> </u> | 20 | 40 | 60 80 | | 0 40 | | 80 | žž | GR | SA | SI | α | | | | brown
Gravel and Sand FILL
moist | | ss | , | 63 | 7 | | | 0 | | | 5 | | | | | | | | | | | t | brown
Silty Clay FILL
race sand, trace grave
moist | 0.7 | SS | 2 | 67 | 8 | - 1 | -1 | 0 | | | ∆ ¹⁵ | | | | | | | | | | | | brown
Sendy Sift FILL
trace clay
moist | | ss | 3 | 78 | 9 | | | 0 | | | Δ ¹⁵ | | | | | | | | | | | SILT A | brown
ND SAND / SILTY SAN
trace gravel
very dense
moist | — — — -2.4
ND TILL | SS | 4 | 100 | 50/15 | - 2 | -2 | | 56 | } | Δ ²⁵ | | | | | | | | | | 0 0 0 | ti | race cobbies / boulder | s | SS | 5 | 100 | 50/15 | -3 | -3 - | | 50 | > | A 5 | | | | | | | | | | | | reddish brown
WEATHERED SHALE | 4,0
4.0 | | | | | -4 | 4- | | | | | | | | | | | | | | | | End of Borehole | -4.6
4.6 | SS | 5 | 100 | 50/5 | | | | 5 | | 5 | | | | | | | | |
 A dir
104
Sca | Crockford Boule
rborough, Ontari | Americas Limited
ward | 꽃 No freest | Tel - | ada MTR 3C3
+1(416) 751-656
+1(416) 751-759
xamec.com | | Borehole details
a qualified Geote
commissioned at | as press
chnical I
nd the ac | nted, do
Engineer.
compeny | not cons
Also, bo
ying Expl | titute a th
rehole in
anation o | orough
formatik
f Boreh | understa
on should
tole Log'. | nding of all
be read in | l poter
conju | tial conditions p
action with the g | resent a
potechni | nd requ
Ical rep | ire interp
ort for wh | retative as
ich it was | elstance fr | om | - 1 | Scale: 1
age: 1 | | | R | ECORD | OF BORE | IOLE N | o. ! | BC : | <u> 25</u> | | | | | | | | amec | , | |----------------|--------------------------------|---|------------------|-------------|---------------|--------------|---------------|-------------|---------------|--|---|--|--------------|--|---| | Pro | ject Number: | TT93042 | | | | | | | Drilling | Location: | 170 m West | of Driveway #2594 | | Logged by: JF | _ | | Pro | ject Client: | AMEC Infrastruct | ure Group | | | | | | Drilling | Method: | 150 mm So | id Stem Augering | | Compiled by: SN | _ | | Pro | ject Name: | Geotechnical inve | estigation for | Bovai | rd Driv | e Clas | s EA S | tudy | Drilling | Machine: | Truck Moun | ted Drill | | Reviewed by: PB | _ | | Pro | ject Location: | Bovaird Drive from | m Lake Louis | e Drive | to Pe | el/Halt | on | | Date S | started: | Oct 28, 09 | Date Completed: Oct 2 | 8, 09 | Revision No.: 0, 2/9/10 | _ | | | ЦТН | OLOGY PROFIL | | | | MPLI | NG | Г | Т | FIELD | TESTING | LAB TESTING | | | _ | | Lithology Ptot | | DESCRIPTION | | Sample Type | Sample Number | Recovery (%) | SPT 'N' Value | DЕРТН (m) | ELEVATION (m) | O SPT □ MTO Vane* Δ Intact Δ Removald * Undrained Sh | ♦ Intact
♦ Remould
ear Strength (kPa) | Darts per melon (ppm) 100 200 300 400 ▲ Lower Explosive Limit (LEL) W, W, W, Plastic Liquid | INSTALLATION | COMMENTS & GRAIN SIZE DISTRIBUTION (%) GR SA SI CI | L | | ▩ | | brown
brown
Sand and gravel FILL | | - vo | - vo | u. | - 00 | - | | 20 40 | w w | 20 40 60 80 | == | | _ | | | , | trace silt
moist | | ss | 1 | 67 | 30 | | | 0 | | 0 | | | | | | | | | ss | 2 | 78 | 18 | - 1 | -1 | o | | 0 | | | | | | t | reddish brown
Silty Clay FILL
race sand, trace grave
moist | | ss | 3 | 67 | 13 | | | o | | ٥ | | | | | | | | | | | | | - 2 | -2 - | | | | | | | | | | | | SS | 4 | 56 | 12 | | | 0 | | 0 | | | | | | | | | SS | 5 | 67 | 6 | -3 | -3- | o | | ٥ | | | | | GI) | | orown to reddish brown | 4.0 | | | | | -
-
- | 4- | | | | | | | | | | trace sand
stiff to hard
moist | | | | | | | | | | | | | | | | | | | SS | 6 | 56 | 14 | - 5 | -5 - | О | | o | | | | | | | | | | | | | - | | | | | | | | | | EC Earth & Envi | | ☑ No freest | anding | grounde | vater me | asured | in one | n boreho | le on complet | ion of drilling | | | | _ | | 104 | Crockford Boule | | = | | | | | | - | | | | | | | | Car | rborough, Ontar
ada M1R 3C3 | 0 | Borehole details | as prese | nted, do | not cons | titute a ti | horough | understa | nding of all pote | ential conditions p | resent and require interpretative as | elstance fro | om I a | _ | Tel +1(416) 751-6665 Fax +1(416) 751-7592 www.amec.com Continued on Next Page Borehole details as presented, do not constitute a thorough understanding of all potential conditions present and require interpretative assistance from a qualified Geotechnical Engineer. Also, borehole information should be read in conjunction with the geotechnical report for which it was commissioned and the accompanying Explanation of Borehole Log. # RECORD OF BOREHOLE No. BC 25 amec® Project Number: TT93042 Drilling Location: 170 m West of Driveway #2594 Logged by: JF | | LITHOLOGY PROFILE | SC | IL SA | MPLI | NG | | | FIELD TESTING | LAB TESTING | | | |----------------|-----------------------|-------------|---------------|--------------|--------------|-----------|-----------|---|---|---------------------------------|----------------------------| | | | | | | | | (E) | PenetrationTesting | * Rinse pH Values 2 4 6 8 10 12 Soil Vapour Reading | INSTRUMENTATION
INSTALLATION | COMMENTS
& | | Jot. | DESCRIPTION | 8 | m per | (%) | 3 | · | | O SPT PPT • DCPT MTO Vane* Nilcon Vane* | 100 200 300 400 | FINTA | GRAIN SIZE
DISTRIBUTION | | 99 | | Sample Type | Sample Number | Recovery (%) | SPT Nº Value | DEРТН (m) | ELEVATION | Δ Intact ♦ Intact Δ Remould ♦ Remould | Lower Explosive Limit (LEL) W, W W, | ALLA | (%) | | 5 | | Samp | Samo | Явсо | SPT | DEP | ELE | * Undrained Shear Strength (kPa)
20 40 60 80 | Plastic Liquid
20 40 60 80 | INST | GR SA SI CL | | Lithology Plot | trace shale fragments | ss | 7 | 100 | 50/15 | - | - | 58
18 | 5 | | | | nn | End of Borehole 62 | 33 | <u> </u> | 100 | 50/15 | | _ | 15 | R | ECORD | OF BORE | HOLE N | o. ! | BC: | <u> 26</u> | | | | | | | | | | | | | | a | m | ec | V | |--|--|--|------------------|-------------|---------------|--------------|-------------|---------|-----------|--------------------|---------|------------------------|--------|---------------|--------------------------------|----------------|---------|---------------------------------|-----|----------|----------|---------|------| | Pro | ject Number: | TT93042 | | | | | | | Drilling | Location: | 50 | m East o | of Dri | veway | #270 | 2 | | | l | ogged | by: | JF | | | Pro | ject Cllent: | AMEC Infrastruct | ure Group | | | | | | Drilling | Method: | 1 | 50 mm S | olld S | Stem | Augeri | ing | | | (| Compile | d by: | SN | _ | | Pro | ject Name: | Geotechnical Inv | estigation for | Boval | rd Driv | e Clas | s EAS | tudy | Drilling | Machine: | T | uck Mour | nted | Drill | | | | | F | Reviewe | d by: | PB | | | Pro | ject Location: | Bovaird Drive fro
Boundary at Case | m Lake Louis | e Drive | to Pe | el/Halt | on | | Date 9 | Started: | 0 | ct 28, 09 | _ D | ate C | omple | ted: C | Oct 28 | 3, 09 | . F | Revision | No.: | 0, 2/9/ | 10 | | | LITH | OLOGY PROFIL | | | | MPLI | NG | | T | FIELD | TE | STING | I | | TES | | | | | | _ | | | | | | | | | | | | | | | | Testing | | 4 | 6 8 | 10 | | NOIL | | COM | MEN
& | rs | | | ğ | | DESCRIPTION | | 8 | mper | 3 | 3 | | E
z | O SPT D | | ● DCP1 | ΙΔ. | parts pe | apour
P
r million
100 30 | (pppm) | * I | NOT | | | IN SIZ | | | | P Vgo | | | | te Tyj | S S | Recovery (%) | 'N' Value | E H | E | Δ Intact ▲ Remould | 0 | | - | Lower E
W, | xplosive
W | Limit (LI
W | | LEA. | | DISTR | (%) | ON | | | Lithology Plot | Local Ground Surfa | ce Elevation: 0.0 m | | Sample Type | Sample Number | Reco | SPT ' | DEPTH | ELEVATION | | | trength (kPa)
50 80 | | Plastic
20 | 40 6 | Liqui
80 | | INSTRUMENTATION
INSTALLATION | GR | SA | | a | α | | | | brown
Sand and Gravel FILL | | | | | | - | - | | | | Т | | | | | | | | | | | | | | moist | | ss | 1 | 75 | 30 | t | | | l | | 5 | .i | | | | | | | | | | | | | | | 33 | | ,,, | ~ | - | | | | | Ī | ţ | | | | <u>ii</u> | ļ | .i | | | | | | | | | | | | | | | | | | | ŀ | | 1 | | | 1 | | | | | | | | | | | | | | trace clay | | | | | | F | | | ļ | ļļ | | ļ | į | | | | | | | | | | | | | | SS | 2 | 100 | 20 | -1 | -1 - | 0 | | | ł° | - | | | | ļ <u>i</u> | ļ | .i | i | | | | | | | | | | | | | | | | | | ţ | _ | _ | _ | ł | | | | ļļ | | | ļ | | | | | | | | | | | | | | ss | 3 | 100 | 30 | F | | | | | lo | | | | | | | | | | | | | | trace asphalt debris | | 33 | 3 | 100 | 30 | t | | | | ļ ļ | Ť | ļ | - | | | | | | | | | | | | | | _ | | | - | - 2 | -2 - | | | | | | | | | | | | | | | | | | grey | | | | | | Ė | | | | <u> </u> | ļ | | | | | | | | | | | | | trace sand, | Clayey Sift FILL
trace organics and ye
moist | ellow stains | | | | | ŀ | | | | | ı | | | | | | | | | | | | | | most | | SS | 4 | 100 | 18 | F | - 3 | 0 | | | 0 | · | : | | | | | | | | | | | | | | | | | | t | | | | | 1 | | | | - 1 | | | | | | | | | | | -2.9 | | | | | ŀ | | | | | 1 | | | | | | | | | | | | H | | CLAYEY SILT TILL | | | | | | - 3 | -3 - | | | | | | | | | | | | | | | | | | trace sand
hard | | | | | | ŀ | | | | | | | | | | | | | | | | | Ж | | damp | | SS | 5 | 100 | 32 | - | | 0 | | ļļ | ł°. | į | | | | | | | | | | | 批 | | | | | | | | ļ | | | | | 1 | | | | | | | | | | | | 섺 | | | | | | | | ŀ | | | | ļļ | ļ | ļ | 1 | | | | | | | | | | M | | | | | | | | F | | | | | 1 | | | | | | | | | | | | Ж | | | | | | | | Ļ₄ | -4- | | | | | .j | | | | | | | | | | | 批 | | | | | | | | - | | | | | 1 | | | | | | | | | | | | 輧 | | reddish brown | | | | | | F | | | | inning | 1 | ģ. | | | | | | | | | | | N | | | | | | | | t | | | | | | | | | | | | | | | | | Ж | | | -4.7 | SS | 6 | 100 | 50/13 | ŀ | | | 50 | | 0 | | | | | | | | | | | | - COLOR | | End of Borehole | 4.7 | | | | | | | | 13 | | Τ | - | 1 | | | - | 1 | | | 0 | - 1 | ı | | | i | 1 | | | - | - 1 | ☑ No freest | andina | atounde | rater me | asured | in one | n boreho | ie on comoin | etion : | of drilling | _ | _ | - | - | _ | | | | | | | | AMEC Earth & Environmental A division of AMEC Americas Limited 104 Crockford Bouldward The Procedure of Control Contr | | | | | | | | | | | | a urang. | | | | | | | | | | | | | Car | rborough, Ontari
ada M1R 3C3
+1/416) 751-656 | | Borehole details | as press | nted, do | not cons | Citute a ti | horough | understa | nding of all po | tentia | conditions | resent | and re | guire int | erpretal | tive as | sistance f | rom | \neg | | calo: 1 | . 22 | Tel +1(416) 751-6565 Fax +1(416) 751-7592 www.amec.com a qualified Geotechnical Engineer. Also, borehole information should commissioned and the accompanying Explanation of Borehole Log. | RI | ECORD OF BOREHOLE | No. | вс | 27 | | | | | | | | | | | | am | ec® | |----------------|--|-------------|---------------|--------------|---------------|-----------|---------------|---|-------------------|---|----------|---------|---|---------------|--------------|---|-----------| | Pro | ject Number: TT93042 | | | | | | Drilling | Location | : ! | Driveway #2 | 702 | | | | | Logged by: | JF | | Pro | ect Client: AMEC Infrastructure Group | | | | | | Drilling | Method: | | 150 mm So | lid St | em A | ugering | | | Compiled by: | SN | | Pro | ect Name: Geotechnical Investigation | or Bova | ird Driv | re Clas | s EAS | tudy | Drilling | Machine | : : | Truck Moun | ted Dr | 111 | | | | Reviewed by: | PB | | Pro | ect Location: Bovaird Drive from Lake Lo
Boundary at Caseley Drive, | ulse Driv | e to Pe | el/Halt | on | | Date S | Started: | ! | Oct 28, 09 | _ Dat | e Cor | mpleted: 6 | Oct 2 | 8, 09 | Revision No.: | 0, 2/9/10 | | | LITHOLOGY PROFILE | | | MPLI | NG | | | FIEL | DΤ | ESTING | _ | | TESTING | | | | | | Lithology Plot | DESCRIPTION | Sample Type | Sample Number | Recovery (%) | SPT 'N' Value | DEPTH (m) | ELEVATION (m) | O SPT MTO Van Δ Intact A Remoul * Undrained | Pi
Hd
Sheer | nTesting PT DCPT Nilcon Vane* O Intact Remould Strength (kPa) | Sc ps 10 | wer Exp | 5 8 10
cour Readin
million (ppm)
0 300 40
closive Limit (L
W V | O
EL)
V | INSTALLATION | COMMEN
&
GRAIN SI
DISTRIBUT
(%) | ZE | | 2.2 | Local Ground Surface Elevation: 0.0 m
about 100 mm TOPSOIL .0 | .1 | 5 | - | S | | <u> </u> | 20 | 40 | 60 80 | 20 | 9 40 | 60 8 | 0 | == | uri uri | J | | | brown Sand and Gravel FILL trace to some sit, trace rootlets moist | SS SS | , | 75 | 8 | | | 0 | ÷ | | 0 | | | | | | | | | reddish brown
Silty Clay FILL
trace sand, trace gravel, trace oxidation
moist | ss | 2 | 0 | 12 | -1 | -1 | 0 | | | 0 | | | | | | | | | reddish brown CLAYEY SILT TILL trace shale fragments hard damp | ss | 3 | 100 | 38 | - 2 | .2 - | | 0 | | o | | | | | | | | | | ss | 4 | 100 | 50/15 | | | | 50
15 | , | o | | | | | | | | | | SS | 5 | 100 | 50/13 | -3 | -3 - | | 50
13 |) | 5 | | | | | | | | | | | | | | 4 | 4- | | <u>.</u> | | | | | | | | | | | | 6.6 SS | Б | 100 | 50/5 | | | | 50 | , | 5 | | | | | | | | | EC Earth & Environmental | | | | | | | | | | | | | | | | | | A di
104 | vision of AMEC Americas Limited Crockford Boulevard rborough, Ontario | estanding | ground | water me | easured | n oper | n boreho | le on comp | letion | of drilling. | | | | | | | | | R | ECORD | OF BORE | HOLE N | o. | BC | 28 | | | | | | | | | | | am | ec® | |----------------|-------------------|--|---------------------------------|-------------|---------------|--------------|---------------|-----------|---------------|---|-------------|--|------------------------|---|------------------|-----------------|------------------------------|-----------| | Pro | ject Number: | TT93042 | | | | | | | Drllling | Location | n: <u>C</u> | riveway #2 | 719 | | | | Logged by: | JF | | Pro | ject Client: | AMEC Infrastruct | ure Group | | | | | | Drilling | Method: | | 50 mm Sc | lid Sten | Auger | ing | | Compiled by: | <u>SN</u> | | Pro | ject Name: | Geotechnical Inve | estigation for | Bovai | rd Driv | e Clas | s EA S | tudy | Drilling | Machine | : <u>T</u> | ruck Moun | ted Drill | | | | Reviewed by: | PB | | Pro | ject Location: | Boundary at Case | m Lake Louis
eley Drive, Bra | e Drive | e to Pe | el/Halt | on | | Date S | Started: | 2 | ct 28, 09 | _ Date | Comple | ted: Oct 2 | 8, 09 | Revision No.: | 0, 2/9/10 | | | ЦТН | OLOGY PROFIL | | | | MPLI | NG | | | FIEL | DΤ | STING | | B TES | | , | COMMEN | me | | Lithology Plot | Local Ground Surb | DESCRIPTION | | Sample Type | Sample Number | Recovery (%) | SPT 'N' Value | DEPTH (m) | ELEVATION (m) | O SPT MTO Var Δ Intact Δ Remox 'Undrained | ne" i | Filcon Vane* Intact Remould Strength (kPa) | Soil
A parts
100 | Vapour F
per million
200 30
Explosive
W | 10 12
Reading | INSTRUMENTATION | GRAIN SI
DISTRIBUT
(%) | ZE | | 8 | | brown | 0.1 | | | | | - | | | | | | | | | | | | | | Sand and Gravel FILL
moist | | ss | 1 | 100 | 29 | | | o | | | o | | | | | | | | | | <u>1.4</u> | ss | 2 | 100 | 16 | -, | -1- | ٥ | | | 0 | | | | | | | | | grey Sitty Clay FILL trace sand moist reddish brown CLAY / CLAYEY SILT trace shale fragments hard | <u>1.8</u>
1.8 | ss | 3 | 100 | 82 | -2 | -2 - | | | 0 | o | | | | | | | | | damp | | SS | 4 | 100 | 50/13 | | | | 50
13 | | o | | | | | | | | | | | SS | 5 | 100 | 50/5 | -3 | -3 | | 505 | | 0 | | | | | | | | | | | | | | | -4 | 4- | | | | | | | | | | | | | End of Borehole | -4.6
4.6 | -55 | • | 100 | 503 | - | - | | 59 <u>.</u> | | 5 | EC Earth & Envi | ronmental
Americas Limited | No freest | anding (| groundv | vater me | nasured | in open | boreho | le on comp | eletion | of drilling. | | | | | | | AMEC Earth & Environmental A division of AMEC Americas Limited 104 Crockford Boulevard Scarborough, Ontario Canada M1R 3C3 Tel +1(416) 751-6565 Fax +1(416) 751-7592 www.amec.com | | | OF BORE | HOLE N | o. | BC: | <u>29</u> | | | | | | | | | | а | m | ec | 0 | |----------------|--|--|--|-------------|---------------|--------------|---------------|-----------|---------------|---|------------
--|-------------------------|---|-----------------|-------------|--------------------------------------|------------------|----| | | ject Number: | TT93042 | | | | | | | | Location | | Driveway #2 | | | | Logged | - | JF_ | _ | | | ject Cllent: | AMEC Infrastruct | | | 404 | 01 | | | | Method | | 150 mm So | | | | Compile | | SN | _ | | | ject Name:
ject Location: | Geotechnical Inv
Boyalrd Drive fro | | | | | | tudy | | machine
Started: | | Truck Moun
Oct 28, 09 | | Completed: Oct : | | Revisio | ed by: | | | | FIO | | Boundary at Cas | eley Drive, Br | ampto | n, ON. | | | _ | Date | | | | | | T T | Hevisio | 11140 | 0, 23 | | | Lithology Plot | шн | OLOGY PROFIL DESCRIPTION | Æ | Sample Type | Sample Number | Recovery (%) | SPT 'N' Value | DЕРТН (m) | ELEVATION (m) | Pend
O SPT
MTO Var
Δ Intact
Δ Remov | etration P | ESTING onTesting PT | Soil A parts | Vapour Reading
per million (ppm)
200 300 400
r Explosive Limit (LEL)
W. | INSTRUMENTATION | GR/
DIST | MMEN
&
AIN SIZ
RIBUT
(%) | ZE
ION | | | . 5 | | brown | | Sa | S. | æ | S. | - | <u> </u> | | 40 | | 20 | 40 60 80 | 22 | GR S | . : | St | CL | | | | Sand and Gravel FILL
moist | -0.6 | ss | 1 | 79 | 32 | | | c | , | | 0 | | | | | | | | | tra | dark grey
Clayey Silit FILL
ace sand, trace organi
moist | 0.6
cs | ss | 2 | 78 | 14 | - 1 | -1- | 0 | | | o | | | | | | | | | | reddish brown
CLAYEY SILT TILL
trace shale fragments
hard
damp | | ss | 3 | 100 | 50/15 | | | | 50
15 | , | o | | | | | | | | | | | | | | | | - 2 | -2 - | | | | | | | | | | | | | | | | SS | 4 | 100 | 50/13 | | | | 50
13 | , | o | | | | | | | | | | | | ss | 5 | 100 | 50/10 | -3 | -3 - | | 50 | | o | | | | | | | | | | | | | | | | | | | : | | | | | | | | | | | | | | | | | | -4 | .4- | CK) | | End of Borehole | -4.6
4.6 | SS | 6 | 100 | 50/5 | | | | 50 | | 0 | A di
104 | Crockford Bould | Americas Limited
ward | Ÿ No freest | anding (| groundw | vater me | asured | in oper | n boreho | le on comp | pletion | of drilling. | | | | | | | | | Tei -
Fax | rborough, Ontari
ada M1R 3C3
+1(416) 751-656
+1(416) 751-75
x.amec.com | 55 | Borehole details
a qualified Geote
commissioned as | chnical E | inginger. | . Aleo, bo | rehole in | formatic | on should | nding of all
be read in o | potent | fal conditions pr
ction with the gr | esent and
otechnical | require interpretative a
i report for which it was | esistance fro | m | | cale: 1
ge: 1 | | | R | ECORD | OF BOREH | OLE N | o. ! | ВС | <u>30</u> | | | | | | | | | | | | | amec | |----------------|--|--|--------------|-------------|---------------|--------------|---------------|-----------|---------------|----------------------------|-------------------------|-------------|--|--------|--------------------------------------|-----------|--|--|--| | Pro | ject Number: | TT93042 | | | _ | | _ | - | Drillin | g Loca | ation: | 35 1 | m East o | f Driv | eway | #277 | 4 | | Logged by: JF | | - | ject Client: | AMEC Infrastructure | e Group | | | | | | Drillin | g Meth | nod: | 150 | mm Sc | olld S | tem A | lugeri | ng | | Compiled by: SN | | Pro | ject Name: | Geotechnical Invest | tigation for | Boval | rd Driv | re Clas | s EAS | tudy | Drillin | g Mac | hine: | Tru | ck Moun | nted D | rill | | - | | Reviewed by: PB | | Pro | ject Location: | Bovaird Drive from
Boundary at Casele | Lake Louis | e Drive | to Pe | el/Halt | ton | | Date : | Starte | d: | Oct | 28, 09 | _ Da | te Co | omple | ted: Oct 2 | 28, 09 | Revision No.: 0, 2/9/10 | | | LITH | OLOGY PROFILE | y Dilve, Di | SC | IL SA | MPLI | NG | | T | F | IELD | TES | TING | T | LAB | TES | TING | | | | Lithology Piot | Local Connect Surfa | DESCRIPTION | | Sample Type | Sample Number | Recovery (%) | SPT 'N' Value | DEPTH (m) | ELEVATION (m) | O SP
MTO
△ In
▲ R | Vane*
tact
emould | PPT
Nilc | esting DCPT on Vane* Intact Remould ength (kPa) | 4 p | oil Va
arts per
00 2
ower E | million (| 10 12
leading
ppm)
0 400
Limit (LEL)
W,
Liquid | INSTRUMENTATION
INSTALLATION | COMMENTS & GRAIN SIZE DISTRIBUTION (%) GR SA SI CL | | | | con Elevation: 0.0 m
court 120 mm ASPHALT | -0.1 | | | | | - | | | | i | | | | | | | | | ▓ | | Sand and Gravel FILL | -0.3 | 3 | | | | ŀ | 8 | 1 | | | | | | | | | | | * | | reddish brown
Sitty Clay FILL | 0.3 | | | | | Į. | | 1 | | | | - | | | | 1 1 | | | ▓ | | moist | -0.6 | SS | 1 | 56 | 10 | ŀ | 6 | 0 | | | | Į°. | | | | | | | SP. | SILTY | reddish brown
CLAY / CLAYEY SILT T | 0.6 | | | | | | | 1 | | | | 1 | | | | 1 1 | | | 117 | | sand, trace shale fragme
hard | | | | | | ŀ | 9 | ł | | | | | | | | | | | И | | damp | | | | | | Ļ, | -1 - | 1 | | 50 | ender. | 1. | | | | 1 1 | | | K | | | | SS | 2 | 83 | 50/15 | - | | 1 | | 8 | | †° | | | | | | | 挧 | | | | | | | _ | t | 59 | | | | | | | | | | | | PAR | | | | | | | | - | | 1 | | - | | 1 | | | | | | | W | | | | SS | 3 | 100 | 50/8 | ł | - 8 | | | 8 | | 0 | | | | | | | | 1 | | | | | | | F | - 5 | 1 | | 8 | | | | | | 1 1 | | | 扰 | | | | | | | | ŀ | | | | eri) | | | | | | | | | d. | | | | | | | | L 2 | -2 - | 1 | | - | 1 | | | | | | | | 112 | | | | | | | | - | | ł | | | İ | | | | | | | | | | grey to reddish brown
WEATHERED SHALE | 21 | | | | | ŧ | | 1 | | 20 | | | | | | | | | | | damp | | SS | 4 | 100 | 50/13 | F | | - | | 803 | | ł°. | | | | 1 1 | | | | | | | | | | | ŀ | 8 | 1 | | 1 | | | | | | 1 1 | | | | | | | | | | | [| | 1 | | | | | | | | | | | | | | | | | | | ŀ | - 3 | 1 | | | | 1 | | | | | | | | | | | - 3 | | | | L3 | -3 - | 1 | | _ : | | 1 | | | | | | | | | | | SS | 5 | 100 | 50/8 | 1 | | | | 8 | | 10 | | | | 1 1 | | | | | | | | | | | t | - 5 | 1 | | 2 1 | | 1 | | | | | | | | | | | | | | | ŀ | | 1 | | ~~! | | 1 | | | man from | | | | | | | - 1 | | | | | t | 3 | 1 | | | | 1 | | | | 1 1 | | | | | | | | | | | F | | | | ••••• | | | | | ••••• | 1 1 | | | | | | | | | | | ŀ | | 1 | | | | | | | | 1 1 | | | | | | | | | | | -4 | -4 - | | |] | | | | | | | | | | | | | | | | | ŀ | | 1 | | - 1 | | 1 | | | | | | | | | | | | | | | | | 1 | | | | | | | | 1 1 | | | | | | | | | | | ŀ | 8 | 1 | | - 1 | | | | | | | | | | | 5-1-15 | -4.6 | ss | | 100 | 503 | _ | | | | 8 | | 0 | | | | 1 1 | | | | | End of Borehole | 4.6 | | | | | | | | | 3 | - | - 8 | | 1 | | | | | | | | | | | | | 1 | | | | | | - 1 | | | | | | 1 1 | | | | | | | | | | | | | | | - | - | - | - | _ | E0 E | | _ | | | | | | | | : | : | | 1_ | _ | | - | | | | Ad | | Americas Limited | ¥ No freest | anding | ground | water m | easured | in ope | n boreh | ole on o | complet | ion of | drilling. | | | | | | | | Sca | Crockford Bouk
arborough, Ontar
nada M1R 3C3 | | | | 110000 | | | 21.07 | _ | | | | | | | | | DESCRIPTION OF THE PROPERTY | | Tel +1(416) 751-6565 Fax +1(416) 751-7592 www.amec.com | | | OF BOREH | IOLE N | o. | вс | <u>31</u> | | | - | | | | | | | | am | eď | 9 | |----------------|--|---|-----------------|-------------
---------------|--------------|--------------|-----------|---------------|------------------------------|---------|--------------|-----|--|-----|-----------------|------------------------------|----------|-----| | | ject Number: | | 0 | | | | | | | Location | | Driveway # | | Ausadas | | | Logged by: | JF
CN | | | | ject Cllent: | AMEC Infrastructu | | D | -40- | - 0 | - 540 | | | Method | | 150 mm S | | Augering | | | | SN | | | | ject Name: | Geotechnical Inve | | | | | | tuay | | | | ruck Mour | | Completed | | 0.00 | Reviewed by: | | | | PIO | ject Location: | Boundary at Case | ley Drive, Br | ampto | n, ON. | | | _ | Date | Started: | | Oct 28, 09 | | Completed | | 0, 09 | Revision No.: | 0, 2/9/1 | | | | штн | OLOGY PROFILE | E | SC | OIL SA | MPLI | NG | | ├ | | | STING | | B TESTIN | VG | z | COMMEN | TS | | | Lithology Plot | Local Ground Surf | DESCRIPTION | | Sample Type | Sample Number | Recovery (%) | SPT N' Value | DEРТН (m) | ELEVATION (m) | O SPT MTO Va Δ Intact Δ Remo | ne" | nTesting T | 100 | /apour Rea
er million (ppr
200 300
Explosive Lim
W | 400 | INSTRUMENTATION | GRAIN SI
DISTRIBUT
(%) | ZE | cı. | | *** | ~a | bout 70 mm ASPHALT
brown | % + | | | | | - | | | | | | | | | | | | | | ! | Sand and Gravel FILL
trace to some sit
moist | | ss | 1 | 56 | 12 | | | 0 | - | | o | | | | | | | | ** | | reddish brown | -0.8 | | | | | - | | | 1 | | | | | | | | | | | trace | CLAYEY SILT TILL
sand, trace shale fragm
hard
damp | | ss | 2 | 78 | 58 | - 1 | -1 - | | | 0 | 0 | | | | | | | | | | grey
WEATHERED SHALE | 1.4 | SS | 3 | 100 | 50/10 | - | | | 50 | <u>.</u> | 5 | | | | | | | | | | limestone seams
damp | | | Ť | 100 | 50.10 | | | | 10 | | | | | | | | | | | | | | | | | | _2 | -2 - | ŀ | | | | 1-1- | ļi | t | | | | | | | | | | | SS | 4 | 100 | 50/8 | - | | | 50 | | 5 | | | | | | | | | | | | | | | | - | - | | | | | | | | | | | | | | | | | SS | 5 | 100 | 50/5 | - 3 | -3 - | | 50 | de la | 0 | + | | | | | | | | | | | | | | | | | | | -ll | ļ | | | | | | | | | | | | | | | | - | | | 1 | | | | | | | | | | | | | | | | | | Ė | -4 | -4 - | | Ť | | 1 | | | | | | | | | | | | | | | | ŀ | | | | ļļ | ļ | | | | | | | | | | reddish brown | | | | | | Ė | | | . 59 | | 10 | | | | | | | | | | End of Borehole | -4.6
4.6 | SS | 6 | 100 | 305 | | | | 5 | A di
104 | EC Earth & Envi
ivision of AMEC
Crockford Bouk
irborough, Ontar | Americas Limited
evard | ☑ No freest | anding | groundv | water me | easured | in oper | n boreho | ie on com | pletion | of drilling. | | | | | | | | A division of AMEC Americas Limited 104 Crockford Boulevard Scarborough, Ontario Canada MTR 3C3 Tel +1(416) 751-6565 Fax +1(416) 751-7592 www.amec.com | R | ECORD | OF BOREHO | LE No | o. | BC : | <u>32</u> | | | | | | | | amec | |----------------|-------------------|--|--------------------|-------------|---------------|--------------|---------------|------------------|---------------|-------------------------------------|--|--|---------------------------------|---| | Pro | ect Number: | TT93042 | | | | | | | Dritting | Location: | 40 m West o | of Driveway #2774 | | Logged by:JF | | Pro | ect Client: | AMEC Infrastructure | Group | | | | | | Dritting | Method: | 150 mm Sc | olid Stem Augering | | Compiled by: SN | | Pro | ject Name: | Geotechnical investig | ation for | Boval | rd Driv | e Class | EA S | tudy | Dritting | Machine: | Truck Moun | ted Drill | | Reviewed by: PB | | Pro | ject Location: | Bovaird Drive from La
Boundary at Caseley | ke Louis | e Drive | e to Pe | eVHalt | on | | Date 9 | tarted: | Oct 28, 09 | Date Completed: Oct 28 | , 09 | Revision No.: 0, 2/9/10 | | | LITH | OLOGY PROFILE | Drive, Dra | | | MPLI | VG | | | FIELD | TESTING | LAB TESTING | Т | | | Lithology Plot | Local Ground Surh | DESCRIPTION | | Sample Type | Sample Number | Recovery (%) | SPT 'N' Value | DEPTH (m) | ELEVATION (m) | OSPT □ MTO Vane* Δ Intact ▲ Remould | ♦ Intact
♦ Remould
hear Strength (kPa) | # Rree pH Values 2 4 9 10 12 Soil Vapour Reading A parts per million (ppm) 100 200 300 400 Lower Explosive Limit (LEL) W, W W, B 0 Plastic Liquid 20 40 60 80 | INSTRUMENTATION
INSTALLATION | COMMENTS & GRAIN SIZE DISTRIBUTION (%) GR SA SI CL | | | | brown
Sand and Gravel FILL
moist | | ss | 2 | 79 | 25 | | | 0 | | 0 | | | | | | reddish brown
CLAYEY SILT TILL
trace shale fragments
hard
damp | <u>-1.4</u>
1.4 | ss | 3 | 100 | 50/5 | - 2 | -2- | | 8 | 0 | | | | 8 6 7 6 8 | | | | SS | 4 | 100 | 50/5 | | | | 80 | 0 | | | | | | | | SS | 5 | 100 | 50/5 | -3 | -3 - | | 50
5 | .86 | | | | | | | | SS | 6 | 100 | 50/5 | 4 | -4 | | 9 | 3 | | | | Au | EC Earth & Envi | End of Borehole | 4.6 | | | | | | | | 5 | | | | | | | Americas Limited = | No freesta | anding | groundy | vater me | asured | in oper | n boreho | e on complet | tion of drilling. | | | | Advision of AMEC Americas Limited 104 Crockford Boulevard Scarborough, Ontario Canada M1R 3C3 Tel +1(416) 751-6565 Fax +1(416) 751-7592 www.amec.com | 1 | ECORD | OF BOREI | HOLE N | 0. | вс | 33 | | | Drillin | g Location: | Driveway # | 2838 | | | a | me | c _© | |-------------------|---|--|-------------------|-------------|---------------|--------------|---------------|---|----------------|--------------------------------------|--|---------------------|---|-----------------|--------------|----------------------------|----------------| | | ject Client: | AMEC Infrastruc | ture Group | | | | | | | g Method: | 150 mm Sc | | Augering | | Compile | | SN | | Pro | oject Name: | Geotechnical Inv | restigation for | Boval | rd Driv | re Clas | s EA S | tudy | Drillin | g Machine: | Truck Mour | nted Drill | | | Reviewe | d by: P | В | | Pro | ect Location: | Bovaird Drive fro | | | | | on | | Date : | Started: | Oct 27, 09 | _ Date 0 | Completed: Oct 2 | 7, 09 | Revision | No.: 0 | , 2/9/10 | | | ЦТН | OLOGY PROFIL | | | | MPLI | NG | | | FIELD | TESTING | | BTESTING | | | | | | Lithology Plot | Local Ground Burk | DESCRIPTION | | Sample Type | Sample Number | Recovery (%) | SPT 'N' Value | DEPTH (m) | ELEVATION (m) | O SPT □ MTO Vane* Δ Intact ▲ Remould | ppT ● DCPT Nilcon Varie* ○ Irsact ● Remould ear Strength (kPa) 60 80 | Soil V
A parts p | pH Values 6 8 10 12 /apour Reading er million (ppm) 290 390 490 Explosive Limit (LEL) W Liquid 40 60 80 | INSTRUMENTATION | GRA
DISTR | MENTS & IN SIZE IBUTIO (%) | E | | | | | -0.2 | | | | | | | 1 | | | | | | | | | | , | brown
Sand and Gravel FILI
trace to some sit
moist | 0.2 | ss | 1 | 83 | 18 | | | 0 | | Å ° | | | | | | | | | | .14 | ss | 2 | 78 | 17 | -
-1
- | -1 - | O | | ļ. | | | | | | | | , | brown
Sandy Silt FILL
race clay, trace grave
moist | 7 · | SS | 3 | 56 | 12 | - 2 | -2 - | 0 | | ° | | | | | | | | | brown CLAY / CLAYEY SIL id, trace gravel, trace salf moist | | ss | 4 | 100 | 12 | | | 0 | | <u></u> | | | | | | | m n | | | | ss | 5 | 100 | 18 | - 3
- 3 | -3 - | o | | ∆ ¹⁰ | | | | | | | | SILTA | orown to reddish brow
ND SAND / SILTY SAI
clay, trace shale frage
hard
wet | ND TILL | | | | | -
-
-
- 4
- <u><u>-</u>
-</u> | -4 -
Z
Z | | | | | | | | | | φ.
• | | | -5.0 | ss | 6 | 100 | 70 | -
-
-
-
- 5 | -5 - | | o | ₽ 10 | | | | | | | | | End of Borehole | 5.0 | | | | | | | | | | | | | | | | Ad | EC Earth & Envi | Americas Limited | ⊈ Groundwa | ater dep | oth on co | ompletio | n of drilli | ng on | 10/27/2 | 009 at a depth | of: <u>4.1 m</u> . | | | | | | | | Sca
Car
Tel | rborough, Ontari
nada M1R 3C3
+1(416) 751-656 | 5 | a qualified Geote | christal 8 | Engineer. | Also, bo | rehole int | ormetic | on should | ending of all pote | ential conditions p | resent and re | equire interpretative as
report for which it was | elstance from | | Sca | ale: 1 : 32 | | | (+1(416) 751-75
w.amec.com | 92 | commissioned ar | nd the ac | company | ying Expir | enetion of | Boreho | ole Log'. | | | | | | | | e: 1 of 1 | | R | ECORD | OF BOREHOLE | No | o. | BC | <u>34</u> | | | | | | | | amec | |----------------|--|---|-------------|-------------|---------------|--------------|-------------|--------------------|---------------|--------------------------------------|--|---------------------------------|---------------------------------
--| | Pro | ject Number: | TT93042 | | | | 7-20- | _ | | Dritting | Location: | Driveway #2 | 2809 | | Logged by: JF | | Pro | ject Client: | AMEC Infrastructure Grou | up | _ | | | | | Dritting | Method: | 150 mm So | olid Stem Augering | | Compiled by: SN | | Pro | ject Name: | Geotechnical Investigatio | n for | Boyal | rd Driv | re Clas | 8 EAS | Study | Drilling | Machine: | Truck Moun | ted Drill | | Reviewed by: PB | | Pro | ject Location: | Bovaird Drive from Lake I
Boundary at Caseley Driv | Louis | e Drive | e to Pe | el/Halt | on | | Date S | Started: | Oct 27, 09 | _ Date Completed: Oct 2 | 7, 09 | Revision No.: 0, 2/9/10 | | | ЦТН | OLOGY PROFILE | 0,01 | | | MPLI | NG | | | FIELD | TESTING | LAB TESTING | | I STATE OF THE STA | | Lithology Plot | Local Ground Surf. | DESCRIPTION See Birection: 0.0 m out 200 mm ASPHALT | | Sample Type | Sample Number | Recovery (%) | SPT W Value | DЕРТН (m) | ELEVATION (m) | O SPT □ MTO Vane* Δ insect Δ Remould | etionTesting PPT DCPT Nilcon Vane* Infact Pernoud eer Strength (kPa) 60 80 | # Pirse pH Values 2 | INSTRUMENTATION
INSTALLATION | GRAIN SIZE DISTRIBUTION (%) GR SA SI CL | | | | | -0.2
0.2 | | | | | t | - 8 | | | | | | | | | brown
Sand and Gravel FILL
some sit
moist | | ss | 1 | 83 | 13 | | | 0 | | 5 5 | | | | | tra | brown
Silty Sand FILL
ce gravel, trace organics
moist | -0.8
0.8 | ss | 2 | 78 | 7 | -, | -1 | o | | 7 ₽10 | | | | | Sin
trace sar | brown to dark grey
y Clay / Clayey Silt FILL
d, trace gravel, trace organics
moist | -1.7
1.7 | ss | 3 | 67 | 12 | - 2 | -2- | o | | Δ2814 | | | | | | | | ss | 4 | 89 | 11 | | | 0 | | ∆ ²⁵ o ²³ | | | | | SILTY | Drown CLAY/CLAYEY SILT TILL | -3.4
3.4 | ss | 5 | 56 | 6 | -
- 3
-
- | -3 - | o | | ∆ ² 5 ¹⁷ | | | | | | ace sand, trace cobbles
firm
moist | -43 | | | | | -4 | 4- | | | | | | | 0 | | brown
ND SAND / SILTY SAND TILL
trace clay, trace gravel
loose
wet | 4.3 | | | | | 1 | Z
-
- | | | | | | | | | End of Borehole | -5.0
5.0 | ss | 6 | 100 | 8 | -
-
- 5 | -5 - | 0 | | ∆ ³ 816 | | | | A d
104 | EC Earth & Envi
vision of AMEC
Crockford Boule
urborough, Ontar | Americas Limited = Gro | oundw | ater dep | oth on c | ompletio | on of drift | lling on | 10/27/20 | 109 at a depth | ot: 43m. | | | | Canada MTR 3C3 Tel +1(416) 751-6565 Fax +1(416) 751-7592 www.amec.com Borehole details as presented, do not constitute a thorough understanding of all potential conditions present and require interpretative as a qualified Geotechnical Engineer. Also, borehole information should be read in conjunction with the geotechnical report for which it was commissioned and the accompanying Explanation of Borehole Log'. Scale: 1:32 | R | ECORD | OF BOREH | OLE No | o. ! | BC : | <u>35</u> | | | | | | | | | amec | |----------------|---------------------------------|---|------------------|-------------|---------------|--------------|---------------|---|---------------|--|--|----------------------------|---|---------------------------------|--| | Pro | ject Number: | TT93042 | | | | | | _ | Drilling | Location: | 15 m West o | of Driveway # | 2838 | | Logged by: JF | | Pro | ject Client: | AMEC Infrastructure | e Group | | | _ | | | Drilling | Method: | 150 mm Sc | olid Stem Aug | ering | | Compiled by: SN | | Pro | ject Name: | Geotechnical Invest | tigation for | Bovali | rd Driv | e Clas | EA St | udy | Dritting | Machine: | Truck Moun | nted Drill | | | Reviewed by: PB | | Pro | ject Location: | Bovaird Drive from
Boundary at Casele | Lake Louise | e Drive | to Pe | el/Halt | on | _ | Date S | Started: | Oct 27, 09 | _ Date Com | pleted: Oct 2 | 7, 09 | Revision No.: 0, 2/9/10 | | | ПТН | OLOGY PROFILE | , one | | | MPLI | NG | | | FIELD | TESTING | | STING | | | | Lithology Plot | Local Ground Suffi | DESCRIPTION | | Sample Type | Sample Number | Recovery (%) | SPT 'N' Value | DEPTH (m) | ELEVATION (m) | O SPT □ MTO Vane* Δ Intact Δ Remould *Undrained Sh | tionTesting PPT DCPT Nilcon Vane* Intact Remould eer Strength (kPa) 60 80 | A parts per mil
100 200 | 6 10 12
ur Reading
ion (ppm)
300 400
sive Limit (LEL) | INSTRUMENTATION
INSTALLATION | GRAIN SIZE DISTRIBUTION (%) GR SA SI CL | | | ~at | brown | 88 | | | | | | | | | | | 2626 | | | | 1 | Sand and Gravel FILL
trace sift, trace clay
moist | | A | 1 | | | - 1
- 1 | -1- | | | | | 35555 | | | | trac | e organics, trace rooflets | | A | 2 | | | - 2 | -2 - | | | | | | | | | | | | | | | | - 3
- 3
 | .3 - | | | | | | | | | | brown to grey
Clayey Silt FILL
race sand, trace gravel
moist | | | | | | -4 | -4- | | | | | Be | intonite: 0.3 - 11.3 m | | | | | | A | 3 | | | -
-
-
-
-
-
-
-
- | -5 - | | | | | | | | AM | EC Earth & Envi | ronmental | ☑ No freest | andica | | unter | age and a | 6 | herek | in on correlati | ion of delice | | | | Hulsi- Edinasis | | Ad | | Americas Limited | = NO ITEEST | anuing | ground | water me | asured i | oper | Doreno | -c on complet | on animng. | | | | | | Sca | rborough, Ontari
ada M1R 3C3 | 0 | lorehole detaile | as press | nted, do | not cons | titute a the | orough | understa | nding of all pot | ential conditions p | present and require | interpretative se | eletance from | Paula 1 22 | Tel +1(416) 751-6565 Fax +1(416) 751-7592 www.amec.com Continued on Next Page Geotechnical Engineer. Also, borshole information should ned and the accompanying Explanation of Borehole Log. ### RECORD OF BOREHOLE No. BC 35 Project Number: TT93042 Dellina Laurena Drilling Location: 15 m West of Driveway #2838 amec⁽¹⁾ | 4-76 | LITHOLOGY PROFILE | SC | AL SA | MPLI | NG | | | FIELD TESTING | LAB TESTING | V | 222223333333 | |----------------|---|-------------|---------------|--------------|---------------|-----------|---------------|---|-----------------|------------------------------|--| | Lithology Plot | DESCRIPTION | Sample Type | Sample Number | Recovery (%) | SPT 'N' Value | ОЕРТН (m) | ELEVATION (m) | PenetrationTesting ○ SPT □ PPT ● DCPT MTO Vane* Nilcon Vane* △ Intact ○ Intact ▲ Remould ● Remould *Uncrianed Shear Strength (APa) 20 40 60 60 | Firme pH Values | INSTRUMENTATION INSTALLATION | COMMENTS & GRAIN SIZE DISTRIBUTION (%) GR SA SI CL | | | brown to grey Clayey Sift FILL trace sand, trace gravel moist | A | 4 | | | 7 | -7 - | | | | | | | | ^ | 5 | | | 8 | -8 | | | | | | | | | | | | 10 | -10 - | | | | | | | reddish brown 11.0 WEATHERED SHALE Imestone seams damp | ss | 6 | 56 | 32 | -11 | -11 - | ٥ | | | | | | | SS | 7 | 100 | 50/5 | 12 | -12 | 90
8 | | | Slotted pipe and sand: 11.3 m - 12.9 m | Borshole details as presented, do not constitute a thorough understanding of all potential conditions present and require interpretative assistance from a qualified Geotechnical Engineer. Also, borehole information should be read in conjunction with the geotechnical report for which it was commissioned and the accompanying Explanation of Borehole Log: #### RECORD OF BOREHOLE No. BC 35 Drilling Location: 15 m West of Driveway #2838 Logged by: JF Project Number: TT93042 Rinse pH Values 2 4 6 8 10 12 Soil Values part Specific (ppm) 100 200 300 400 Lower Explosive Limit (EL) W, W, Liquel LITHOLOGY PROFILE SOIL SAMPLING FIELD TESTING LAB TESTING COMMENTS INSTRUMENTATION
INSTALLATION PenetrationTesting & GRAIN SIZE DISTRIBUTION O SPT PPT • DCPT DESCRIPTION MTO Vane* Nilcon Vane* Δ Intact Φ Intact Δ Remould Φ Remould Lithology Plot Recovery (%) DEPTH (m) Sample Type (%) Undrained Shear Strength (kPa) 20 40,0 60 80 GR SA SI End of Borehole Auger refusal at 13.0 m depth. Scale: 1:32 ## **APPENDIX B** # SINGLE WELL RESPONSE TEST ANALYSES #### WELL TEST ANALYSIS Data Set: \...\BC11 pump&recover test.aqt Date: 04/06/10 Time: 12:52:25 #### PROJECT INFORMATION Company: AMEC Client: Peel Region Project: SW1309037 Location: Brampton ON Test Well: BC11 Test Date: 16 March 2010 #### AQUIFER DATA Saturated Thickness: 2.5 m Anisotropy Ratio (Kz/Kr): 1. #### WELL DATA | P | umping Wells | | Observation Wells | | | | |-----------|--------------|-------|-------------------|-------|-------|--| | Well Name | X (m) | Y (m) | Well Name | X (m) | Y (m) | | | BC11 | 0 | 0 | □ BC11 | 0 | 0 | | #### SOLUTION Aquifer Model: Confined $= 7.7E-8 \text{ m}^2/\text{sec}$ Solution Method: Theis (Recovery) S/S' = 0.9386 #### AQTESOLV for Windows Data Set: \\WAT-FS1\ProjectF\$\2007-2009\2009\Environmental Projects 2009\SW1309037 Bovaird Drive EA\EA W Date: 04/06/10 Time: 12:53:15 #### PROJECT INFORMATION Company: AMEC Client: Peel Region Project: SW1309037 Location: Brampton ON Test Date: 16 March 2010 Test Well: BC11 #### **AQUIFER DATA** Saturated Thickness: 2.5 m Anisotropy Ratio (Kz/Kr): 1. #### PUMPING WELL DATA No. of pumping wells: 1 Pumping Well No. 1: BC11 X Location: 0. m Y Location: 0. m Casing Radius: 0.0255 m Well Radius: 0.0255 m Partially Penetrating Well Depth to Top of Screen: 0.9 m Depth to Bottom of Screen: 2.5 m No. of pumping periods: 2 Time (sec) Pumping Period Data Rate (L/min) Time (sec) 600. Rate (L/min) #### **OBSERVATION WELL DATA** No. of observation wells: 1 Observation Well No. 1: BC11 X Location: 0. m Y Location: 0. m Radial distance from BC11: 0. m Partially Penetrating Well Depth to Top of Screen: 0.9 m Depth to Bottom of Screen: 2.5 m No. of Observations: 14682 | | Observation | on Data | | |------------|------------------|------------|------------------| | Time (sec) | Displacement (m) | Time (sec) | Displacement (m) | | 1. | 0.0204 | 7356. | 1.668 | | 2. | 0.061 | 7357. | 1.668 | | 3. | 0.1039 | 7358. | 1.668 | | 4. | 0.1475 | 7359. | 1.668 | | 5. | 0.2023 | 7360. | 1.668 | | 6. | 0.1703 | 7361. | 1.668 | | 7. | 0.1695 | 7362. | 1.668 | | 8. | 0.1802 | 7363. | 1.668 | | 9. | 0.1865 | 7364. | 1.668 | | Time (sec) | Displacement (m) | Time (sec) | Displacement (m) | | |----------------|------------------|----------------------|------------------|--| | 7327. | 1.672
1.672 | 1.467E+4 | 1.114 | | | 7328. | 1.672 | 1.467E+4
1.467E+4 | 1.114 | | | 7329. | 1.672 | 1.467E+4 | 1.114 | | | 7330. | 1.672 | 1.467E+4 | 1.114 | | | 7331. | 1.672 | 1.467E+4 | 1.114 | | | 7331.
7332. | 1.672
1.672 | 1.467E+4 | 1.114 | | | 7333. | 1.671 | 1 467F+4 | 1.114 | | | 7334. | 1.671 | 1.467E+4
1.468E+4 | 1.114 | | | 7335. | 1.671 | 1.468E+4 | 1:114 | | | 7336 | 1.671 | 1.4000.4 | | | | 7336.
7337. | 1.671 | 1.468E+4 | 1.114 | | | 7338. | 1.071 | 1.468E+4 | 1.114 | | | 7330. | 1.671 | 1.468E+4 | 1.114 | | | 7339. | 1.671 | 1.468E+4 | 1.113 | | | <u>7</u> 340. | 1.671 | 1.468E+4 | 1.114 | | | <u>7341</u> . | 1.67 | 1.468E+4 | 1.113 | | | 7342. | 1.671 | 1.468E+4 | 1.113 | | | <u>7</u> 343. | 1.67 | 1.468E+4 | 1.114 | | | 7344. | 1.67 | 1.469E+4 | 1.114 | | | 7345. | 1.67
1.67 | 1.469E+4 | 1.113 | | | 7346. | 1.67 | 1.469E+4 | 1.114 | | | 7347. | 1.67 | 1.469E+4 | 1.113 | | | 7348. | 1.67 | 1.469E+4 | 1.113 | | | 7349. | 1.669 | 1.469E+4 | 1.113 | | | 7350. | 1.669 | 1.469E+4 | 1.113 | | | 7351. | 1.669
1.669 | 1.469E+4 | 1.113 | | | 7352. | 1.669 | 1.469E+4 | 1.113 | | | 7353. | 1.668 | 1.469E+4 | 1.113 | | | 7354. | 1.669 | 1.47E+4 | 1.113 | | | 7355. | 1.669 | 1.47E+4 | 1.113 | | | 7333. | 1.009 | 1.47644 | 1.113 | | #### SOLUTION Pumping Test Aquifer Model: Confined Solution Method: Theis (Recovery) #### VISUAL ESTIMATION RESULTS #### **Estimated Parameters** Parameter | Estimate 7.7E-8 0.9386 m²/sec S/S' K = T/b = 3.08E-8 m/sec (3.08E-6 cm/sec) #### WELL TEST ANALYSIS Data Set: \...\BC35 pump&recover test.aqt Date: 04/06/10 Time: 13:23:46 #### PROJECT INFORMATION Company: AMEC Client: Peel Project: SW1309037 Location: Bovaird Rd. W., Brampton ON Test Well: BC35 Test Date: 27 January 2010 #### AQUIFER DATA Saturated Thickness: 1.91 m Anisotropy Ratio (Kz/Kr): 1. #### WELL DATA | P | umping Wells | | Observation Wells | | | |-----------|--------------|-------|-------------------|-------|-------| | Well Name | X (m) | Y (m) | Well Name | X (m) | Y (m) | | BC35 | 0 | 0 | □ BC35 | 0 | 0 | #### SOLUTION Aquifer Model: Confined $T = 1.313E-7 \text{ m}^2/\text{sec}$ Solution Method: Theis (Recovery) S/S' = 0.9347 #### AQTESOLV for Windows Data Set: \\WAT-FS1\ProjectF\$\2007-2009\2009\Environmental Projects 2009\SW1309037 Bovaird Drive EA\EA W Date: 04/06/10 Time: 13:24:12 #### PROJECT INFORMATION Company: AMEC Client: Peel Project: SW1309037 Location: Bovaird Rd. W., Brampton ON Test Date: 27 January 2010 Test Well: BC35 #### AQUIFER DATA Saturated Thickness: 1.91 m Anisotropy Ratio (Kz/Kr): 1. #### PUMPING WELL DATA No. of pumping wells: 1 Pumping Well No. 1: BC35 X Location: 0. m Y Location: 0. m Casing Radius: 0.0255 m Well Radius: 0.075 m Partially Penetrating Well Depth to Top of Screen: 0.3 m Depth to Bottom of Screen: 1.9 m No. of pumping periods: 2 Time (sec) Pumping Period Data Rate (L/min) 0.43 Time (sec) 1456. Rate (L/min) #### OBSERVATION WELL DATA No. of observation wells: 1 Observation Well No. 1: BC35 X Location: 0. m Y Location: 0. m Radial distance from BC35: 0. m Partially Penetrating Well Depth to Top of Screen: 0.3 m Depth to Bottom of Screen: 1.9 m No. of Observations: 4395 | Observation | | | |------------------|--|--| | Displacement (m) | Time (sec) | Displacement (m) | | 0. | 4430. | 1.19 | | 0.16 | 4432. | 1.19 | | 0.15 | 4434. | 1.19 | | 0.19 | 4436. | 1.19 | | 0.2 | 4438. | 1.19 | | 0.2 | 4440. | 1.19 | | 0.2 | 4442. | 1.19 | | 0.2 | 4444. | 1.19 | | 0.22 | 4446. | 1.19 | | | Displacement (m) 0. 0.16 0.15 0.19 0.2 0.2 0.2 0.2 0.2 | 0. 4430.
0.16 4432.
0.15 4434.
0.19 4436.
0.2 4438.
0.2 4440.
0.2 4442.
0.2 4444. | | Time (sec) | Displacement (m) | Time (sec) | Displacement (m) | | |----------------------------------|------------------|--|------------------|--| | 4340. | 1.19 | 8736. | 1.11 | | | 4342. | 1.19
1.19 | 8738. | 1.11 | | | 4344. | 1 19 | 8740. | 1.11 | | | 4346 | 1 19 | 8742. | 1.11 | | | 4348 | 1.19
1.19 | 8744 | 1.11 | | | 4350 | 1.19 | 8746 | 1:11 | | | 4348.
4350.
4352.
4354. | 1.19 | 8748 | 1.11 | | | 4354 | 1.19 | 8750 | 1:11 | | | 4356. | 1.19 | 8752 | 1.11 | | | 4358. | 1.19 | 8754 | 1.11 | | | 4360 | 1.19 | 8744.
8746.
8748.
8750.
8752.
8754.
8756.
8758.
8760.
8762. | 1.11 | | | 4362.
4364.
4366. | 1.19 | 8758 | 1.11 | | | 4364 | 1.19 | 8760 | 1.11 | | | 4366 | 1.19 | 8762 | 1:11 | | | 4368. | 1.19 | 8764. | 1.11 | | | 4370 | 1.19 | 8766 | 1.11 | | | 4370.
4372.
4374. | 1.19 | 8766.
8768.
8770. | 1.11 | | | 4374 | 1.19 | 8770 | 1:11 | | | 4376 | 1.19 | 8772 | 1.11 | | | 4378.
4380.
4382. | 1.19 | 8772.
8774. | 1.11 | | | 4380 | 1.19 | 8776 | 1.11 | | | 4382 | 1.19 | 8776.
8778. | 1:11 | | | 4384. | 1.19 | 8780 | 1.11 | | | 4386 | 1.19 | 8780.
8782.
8784.
8786.
8788.
8790.
8792.
8794.
8796.
8798. | 1.11 | | | 4386.
4388. | 1.19 | 8784 | 1.11 | | | 4390 | 1.19 | 8786 | 1.11 | | | 4390.
4392. | 1.19 | 8788 | 1.11 | | | 4394. | 1.19 | 8790 | 1.11 | | | 4396. | 1.19 | 8792 | 1.11 | | | 4398. | 1.19 | 8794 | 1.11 | | | 4400. | 1.19 | 8796 | 1.11 | | | 4402. | 1.19 | 8798 | 1.11 | | | 4404. | 1.19 | 8800 | 1.11 | | | 4406. | 1.19 | 8802.
8804.
8806. | 1.11 | | | 4408. | 1.19 | 8804. | 1.11 | | | 4410. | 1.19 | 8806. | 1.11 | | | 4412. | 1.19 | 8808. | 1.11 | | | 4414. | 1.19 | 8810. | 1.11 | | | 4416. | 1.19 | 8812. | 1.11 | | | 4418. | 1.19 | 8814. | 1.11 | | | 4420. | 1.19 | 8816. | 1.11 | | | 4422. | 1.19 | 8818. | 1.11 | | | 4424. | 1.19 | 8820. | 1.11 | | | 4426. | 1.19 | 8822. | 1.11 | | | 4428. | 1.19 | | | | | ,,,, <u></u> , | | | | | #### SOLUTION Pumping Test Aquifer Model: Confined Solution Method: Theis (Recovery) #### VISUAL ESTIMATION RESULTS #### **Estimated Parameters** Parameter Estimate 1.313E-7 0.9347 m²/sec K = T/b = 6.877E-8 m/sec (6.877E-6 cm/sec) # APPENDIX C GRAINSIZE ANALYSES # GRAIN SIZE DISTRIBUTION Gravelly Sand FIGURE No. B1 | COBBLE | BLE COARSE FINE | | COARSE MEDIUM FINE | | FINE | SILT and CLAY | | |--------|-----------------|--|--------------------|--|------|---------------|--| | SIZE | IZE GRAVEL | | SAND | | | FINE GRAINED | | | SYMBOL | BOREHOLE | SAMPLE | DEPTH (m) | ELEVATION (m) | |----------|----------|--------|-----------|---------------| | • | B 01 | SS1 | 0.00 | 0.00 | | x | B 09 | SS1 | 0.00 | 0.00 | | • | B 18 | SS1 | 0.00 | 0.00 | Date February 2010 Project TT93042 Prep'd Chkd. # GRAIN SIZE DISTRIBUTION Clayey Silt, Sandy FIGURE No. B2 | COBBLE | COARSE | FINE | COARSE | MEDIUM | FINE | SILT and CLAY | |--------|--------|------|--------|--------|------|---------------| | SIZE | GRA | VEL | | SAND | | FINE GRAINED | | SYMBOL | BOREHOLE | SAMPLE | DEPTH (m) | ELEVATION (m) | |--------|----------|--------|-----------|---------------| | • | B 01 | SS5 | 3.05 | -3.05 | | • | B 07 | SS2 | 0.76 | -0.76 | Date February 2010 Project TT93042 Prep'd # GRAIN SIZE DISTRIBUTION Silt and Sand FIGURE No. B3 | | | | | | | L | |--------|--------|------|--------|--------|------|---------------| | COBBLE | COARSE | FINE |
COARSE | MEDIUM | FINE | SILT and CLAY | | SIZE | GRA | VEL | Ī | SAND | | FINE GRAINED | | SYMBOL | BOREHOLE | SAMPLE | DEPTH (m) | ELEVATION (m) | | | | | |----------|----------|--------|-----------|---------------|--|--|--|--| | • | B 10 | SS2 | 0.76 | -0.76 | | | | | | x | BC 06 | SS3 | 1.52 | -1.52 | | | | | Date February 2010 Project TT93042 Prep'd # APPENDIX D WATER BUDGET ANALYSIS #### Appendix D Project Number SW1309027 Location Hydrogeologic Investigation - Bovaird Drive Class Environmental Assessment Owner Regional Municipality of Peel Site Elevation 235 masl Data Source: Environment Canada Canadian Climate Normals 1971-2000 Station: Toronto International Airport # APPENDIX D # SW1309027: Regional Municipality of Peel - Bovaird Drive Class Environmental Assessment | Project Number | SW1309027 | | 1 | 1 | | | | | | | 1 | | | _ | | | | - | | |-----------------------------------|---------------------------------------|----------------|--|----------------|--|--|--|--|----------------
--|--|--|--|----------
--|---|---------------|---------------|------------------| Regional Municipa; | ity of Peel - Hy | drogeologic | Investigation | n Bovaird Dri | ve Class E | nvironmental Assessr | nent | | | | | | | | | | | | | | w | 1-41 | | | | | | | | | | 1 | | | - | | | | | | | Water Balance Calc | ulation | | | | | | | | | | | | - | - | | | | | | | | Land Use | | 1 | Area (ha) | To | pography/Soil | Runoff C | oefficient | | | | | | | | | | | | | Total Area | Lana Ost | | 1 | 579 | - | родиарнуюон | T>0°C | | | | | | | | | | | | | | I Otal Alea | | | Un | developed | | | 1200 | 1400 | | | | | | _ | | | | | | | Cultivated/Pasture | | | T | | Flat/Silt CI | ay Loam | 0.15 | 0.08 | | | | | | 1 | | | | | | | Residential | | | | | Flat/SiltCla | | 0.35 | E CONTRACTOR DE | | | | | | | | | | | | | Industrial/Commerc | ial/Institutiona | ıl | | 30 | Flat/Silt Cl | ay Loam | 0.60 | 0.50 | | | | | | 1 | | | | | | | Woodland | | | | | Flat/Silt Ci | | 0.35 | - minutes in the last of | | 1 | | | | | | | | | | | Roadway | | | | | Flat/Silt Ci | ay Loam | 0.85 | | | | | | | | | | | | | | Wetland | | | | 15 | Water | | 0.05 | | | | | | | | | | | | | | Composite Runoff (| Coefficient | | | | | | 0.25 | 0.16 | | | | | | | | | | | | | Cultivate d/Desture | | | D | eveloped | Elet/Dertie | I Clay Leam | 0.15 | 0.00 | | | | | | - | | | | | | | Cultivated/Pasture
Residential | - | | | 58 | | I Clay Loam | 0.15 | | | | | | | | | | | | | | Industrial/Commerc | lal/Institutiona | d | 1 | 30 | | | 0.6 | | | | | | | | | | | | | | Woodland | | | | 72 | | | 0.35 | | | | | | | | | | | | | | Roadway | | | | 39 | | | 0.85 | | | | | | | 1 | | | | | | | Wetland | | | | 15 | Flat/Grass | shrubs-Clay Loam | 0.1 | | | | | | | | | | | | | | Composite Runoff (| Coefficient | | - C | | | | 0.26 | 0.17 | Reference Location | | mational Airpo | ort - Normals | 1971 to 2000 | | | | | | | | | | | | | | | | | Latitude | 43°41' N | Longitude | 79°38' W | Elevation | 173 m | · ··· · · · · · · · · · · · · · · · · | 40 1/407## | | 11.00-140-1- | | 4050) | | | - | _ | | | | - | | | | - | | | Potential Evapotrans | | | | | ner and Hav | /ens, 1958) | | | - | | - | | | - | | | | | | | where: | | | nspiration in m
perature in °C | | | | | | - | | | - | | - | | | | | | | | | | Sum of mont | | | | | | | - | | | - | - | | | | | _ | | | | | en average T | nonthly sunshi | | | | | | | | - | | | - | | | | | - | | | | | 00771 I ² + 0.0 | | | | | | | | | | | - | | | | | | | | G - 0.40 · 0 | 01101-0.000 | 0.0 | | | | | | - | | | | | | | | | | | | URO = Pre-developn | nent runoff | | 1 | · | | | | | | | | | | | | | | | | | AET=Actual evapotra | | er pre-develo | pment condition | ons | ure is < 0°C | , infiltration (UI*) is assi | umed to = 0. | 5*(precipita | ation - runoff | f) | | | | Tours of | | | | | v | | US = Water surplus of | due to unaccou | ntable losses; | ; such as subli | imation of sno | w | Academic and Academic Services Plans and Plans and Plans and Academic Services | | | | | | | | | | | | | | | UR = Pre-developme | | = UI x availa | ble area | | | | | | | | | | | | | | | | | | DRO = Post-develop | | | | 1 | | | | | | | | | | | | | | | | | DAET=Actual evapor | DS=Water surplus de | | | | | | | | | | | - | | | - | - | | | | _ | | | | | | air temperati | ure is < 0°C | infiltration (DI*) is assu | med to = 0. | 5*(precipita | tion - runoff |) | | | | | | | | | | | DR = Post developm | ent recharge = | UI x available | area | - | | | | | - | | | - | | | - | | - | | | | Month | Mean Tec | Dress mm | Rain mm | Snow mm | | | DET | AFT | URO mm | UPO m3 | UI mm | UI mm* | UR m³ | DAET mm | DPO === | DRO m³ | DI mm | DI* mm | DRm ³ | | Month
January | Mean T °C
-6.3 | | | | 0.000 | d | A STATE OF THE PARTY PAR | | | | | | and the state of t | | Control of the Contro | | 43.4 | 21.7 | 12565 | | February | -5.4 | | | | | | | | | | | | | | | | 35.4 | 17.7 | 10254 | | March | -0.4 | É | The second secon | | | | | | | | | | 139538 | | | | 47.5 | 23.7 | 13745 | | April | 6.3 | | | | | | | | | | | A second of the second of the second | and the state of t | | | I removable of the second or compared a feet of | 18.8 | 18.8 | 10914 | | May | 12.9 | | | | | | | | | | | the same and the same of s | | | | | 0.0 | 0.0 | | | June | 17.8 | | | | | 1.3 | | | | Annual Control of Cont | | | | | | | 0.0 | 0.0 | | | July | 20.8 | | | | the state of s | | | | | A reservoir contract the science and the science and the | | A STATE OF THE PARTY PAR | | | | | 0.0 | 0.0 | | | August | 19.9 | 79.6 | 79.6 | 0.0 | 8.095 | | | 59.5 | 20.1 | 11641.5 | 0.0 | 0.0 | C | 58.6 | 21.0 | 121708 | 0.0 | 0.0 | | | September | 15.3 | | and the second second second second | | | 1.05 | the trade formation as 'a facilitation for | A CONTRACTOR OF THE PARTY TH | | and accommodes to be required in a solety, made | Contract to the second | | | | | | 0.0 | 0.0 | | | October | 8.9 | | the second secon | | | 0.92 | the second of th | And the second s | | | Conditionable deal representations. Transport | | 59216 | | | An annual transmission of the State of Angles | 9.5 | 9.5 | 549 | | a distribution of the second | | 69.3 | 62.0 | 7.6 | 0.509 | 0.79 | 10.6 | 10.6 | 17.5 | 10135.1 | 41.2 | 41.2 | 238404 | 10.6 | 18.3 | 105960 | 40.4 | 40.4 | 23379 | | November | 3.2 | | | | | | | | | | And the second s | and the second s | annual and the second s | | | | | | | | November
December
Year | -2.9
7.5 | 60.9 | 34.7 | 29.2 | 0.000 | | | 0.0 | 9.5 | 5496.2 | 51.4 | 25.7 | 148824 | 0.0 | 10.3 | | 50.6
245.7 | 25.3
157.2 | 14660
91015 |