



# **2020 Water and Wastewater Master Plan for the Lake-Based Systems Class Environmental Assessment Study Report Outline**

The report for the 2020 Water and Wastewater Master Plan for the Lake-based Systems ("2020 Master Plan") is a comprehensive document that describes the planning, evaluation, and decision-making process for developing the long-term water and wastewater strategies in the Region of Peel. The master plan documentation is compliant with the requirements of the *Environmental Assessment Act* and is being placed on public record for the prescribed review period.

The 2020 Master Plan Report is organized into five volumes:



### Volume 1 – Executive Summary

Provides a brief overview of the 2020 Master Plan. It summarizes the information contained in Volumes 2, 3, 4 and 5, including problem statement, purpose of the study, planning, policy and technical considerations, and description of the preferred water and wastewater servicing strategies, including depiction of the projects and capital programs.



### Volume 2 – Background and Planning Context

Details the master planning process including the Class EA process for Master Plans, related studies and background information, legislative and policy planning context, water and wastewater servicing principles and policies, population and employment growth forecasts, existing environmental and servicing conditions and future considerations.



### Volume 3 – Water Master Plan

Provides the comprehensive documentation for the water system and details the study objectives, approach, methodologies, technical analyses, evaluation and selection of the preferred water servicing strategy. This volume contains baseline water system data and performance information. This volume documents the water servicing strategy development, with detailed information on the projects and capital program associated with the preferred water servicing strategy.



### Volume 4 – Wastewater Master Plan

Provides the comprehensive documentation for the wastewater system and details the study objectives, approach, methodologies, technical analyses, evaluation and selection of the preferred wastewater servicing strategy. This volume contains baseline wastewater system data and performance information. This volume documents the wastewater servicing strategy development, with detailed information on the projects and capital program associated with the preferred wastewater servicing strategy.



### Volume 5 – Public and Agency Consultation

Contains all relevant documentation of the public consultation process including notices, comments and responses, and distribution information. Presentation material from all public information centres (PICs) held during the process is included. Additional presentation materials and discussion information from workshops held with relevant agencies, approval bodies and other stakeholders are also included.

The following sections present Volume 3 which is one of five volumes that make up the complete 2020 Water and Wastewater Master Plan Report and should be read in conjunction with the other volumes.

# **Table of Contents**

| 1.0 Introduction                                           | 1  |
|------------------------------------------------------------|----|
| 1.1 Background                                             | 1  |
| 1.2 Water and Wastewater Master Plan Objectives            | 2  |
| 1.3 Problem Opportunity Statement                          | 2  |
| 1.4 Study Area                                             | 3  |
| 2.0 Water System Policy and Criteria                       | 5  |
| 2.1 Water Servicing Principles and Policies                | 5  |
| 2.2 Decign Criteria Demands Projections                    |    |
| 2.2 Design Criteria – Demands Projections                  | 0  |
| 2.2.1 Water Demand Projections                             |    |
| 2.3 Design Chierra – System Assessment                     | 9  |
| 2.3.1 Water Treatment Plants                               | 9  |
| 2.3.2 Water Pumping Stations                               |    |
| 2.3.5 Water Storage Facilities                             | 11 |
| 2.3.5 Distribution Mains                                   |    |
| 2.3.6 Security of Supply                                   |    |
| 2.4 Cost Estimation Framework                              | 12 |
| 2.4.1 Unit Rates                                           |    |
| 2.4.2 Final Project Cost                                   |    |
| 2.4.3 Operation and Maintenance                            |    |
| 3.0 Existing Water Transmission System                     | 14 |
| 3.1 Existing Infrastructure                                | 14 |
| 3.1.1 Water Treatment Plants                               |    |
| 3.1.2 Pressure Zones                                       |    |
| 3.1.3 Transmission Mains                                   |    |
| 3.1.4 Water Pumping Stations and Reservoirs                |    |
| 3.2 Hydraulic Water Model                                  |    |
| 3.3 Lake-based Water Supply System Schematics              |    |
| 4.0 Assessment of Future Water Infrastructure Requirements |    |
| 4.1 Opportunities and Constraints                          |    |
| 4.1.1 Growth                                               |    |
| 4.1.2 Water Treatment Plants                               |    |
| 4.1.3 Transmission Mains                                   |    |
| 4.1.4 Pumping Stations and Storage Facilities              |    |
| 4.2 Water Demand Requirements                              | 34 |
| 4.3 Assessment of Water Infrastructure                     | 35 |
| 4.3.1 Water Treatment Plants                               |    |
| 4.3.2 Transmission Mains                                   |    |
| 4.3.3 Water Pumping Stations                               |    |
| 4.3.4 Water Storage                                        |    |
| 5.0 Water Servicing Strategy                               |    |
| 5.1 Objectives                                             | 43 |
| 5.2 Evaluation Process and Criteria                        | 43 |

# **Table of Contents**

| 5.3 Servicing Strategy Development                             | 46 |
|----------------------------------------------------------------|----|
| 5.3.1 System Wide Servicing Concepts                           |    |
| 5.3.2 System Wide Servicing Strategies Evaluation              |    |
| 5.3.3 Focus Area Servicing Solutions                           | 51 |
| 5.3.4 Inter-Regional Agreements                                |    |
| 6.0 Preferred Water Servicing Strategy                         | 66 |
| 6.1 Preferred Servicing Strategy                               | 66 |
| 6.2 Capital Program for the Preferred Water Servicing Strategy | 67 |
| 7.0 Implementation and Lifecycle                               | 80 |
| 7.1 Capital Program Implementation                             | 80 |
| 7.2 Lifecycle Costing                                          | 81 |
| 8.0 Intensification and Post-2041 Growth                       | 83 |
| 8.1 2041 Intensification                                       | 83 |
| 8.3 Post-2041 Vision                                           | 84 |

# **Appendices**

Appendix 3A: Design Criteria Memo Appendix 3B: Cost Estimation Framework Memo Appendix 3C: Lake-based Water Schematics Appendix 3D: Detailed Capacity Assessments Appendix 3E: Strategy Evaluation Appendix 3F: Standby Power Report Appendix 3G: Maps

# **1.0 Introduction**

- 1.1 Background
- 1.2 Water and Wastewater Master Plan Objectives
- 1.3 Problem Opportunity Statement
- 1.4 Study Area

# **1.0 Introduction**

## 1.1 Background

The Region of Peel is made up of three local municipalities: the City of Mississauga, the City of Brampton, and the Town of Caledon. Located in southern Ontario, the Region of Peel is part of the Greater Golden Horseshoe area, one of the most dynamic and fast-growing regions in Canada and North America.

The Region of Peel is responsible for water treatment, transmission and distribution mains, storage facilities and pumping stations, as well as wastewater treatment, sanitary sewers, force mains and sewage pumping stations. The Region builds and maintains infrastructure to treat, deliver and move water and wastewater across the Region.



As one of the fastest growing municipalities in Ontario, the Region of Peel and its Public Works department recognizes that readily available and accessible public water and wastewater infrastructure is essential to the viability of existing and growing communities across the Region. The *Places to Grow Act* and supporting documentation has identified the 2041 residential and employment projection for the Region of Peel. The Region of Peel's population is expected to grow to almost 2 million people by 2041<sup>1</sup>. This means that by 2041, the Region needs to accommodate water and wastewater servicing for over 542,000 new residents and 275,000 additional jobs.

To balance the needs of growth with the protection and preservation of natural, environmental and heritage resources, the Region of Peel initiated an update of its water and wastewater master plan.

The 2020 Water and Wastewater Master Plan for the Lake-Based Systems ("2020 Master Plan") is a study intended to address the increasing demands on the Region's water and wastewater infrastructure. The study provides a review, evaluation, and development of water and wastewater servicing strategies for all servicing needs within the lake-based systems in the cities of Mississauga and Brampton and parts of the Town of Caledon. The 2020 Master Plan does not examine the groundwater-based systems or communal wastewater systems in Caledon as they are addressed separately by the Region.

The 2020 Master Plan builds on previous work undertaken as part of the 1999 Master Plan, the 2002 Master Plan Addendum, the 2007 Master Plan, and the 2013 Master Plan. The master plan is a critical component of the Region's growth management strategy and will provide the framework and vision for the water and wastewater servicing needs for the lake-based service areas of the Region to 2041 and beyond. In addition, the 2020 Master Plan serves as the basis for short-term and long-term infrastructure programming and capital budgeting. The 2020 Master Plan is the foundation for the water and wastewater program as part of the Region of Peel's Development Charges (DC) Background Study and By-law update.

### **1.2 Water and Wastewater Master Plan Objectives**

The 2020 Master Plan comprehensively documents the development, evaluation and selection of the preferred water and wastewater servicing strategies to meet the servicing needs of existing and future development to 2041.

#### The key objectives of the 2020 Water and Wastewater Master Plan are as follows:

- Identify a preferred lake-based water and wastewater servicing strategy to support existing servicing needs and projected growth.
- Coordinate with the Regional Official Plan Amendment (ROPA), which guides provincially mandated growth within the Region to 2041.
- Consider emphasis on intensification, post-2041 growth and alignment with the Regional Strategic Plan.
- Provide the need, timing and cost of servicing and infrastructure.
- Follow the Municipal Class Environmental Assessment process for master plans.

The 2020 Master Plan study incorporates the latest planning information, modelling tools, historical flow and demand data, and servicing studies to complete a full review and update of the servicing strategies. The study also reviews the Region's capital plan to meet the current servicing agreements with York Region and the City of Toronto.

This study follows Approach 1 of the Class Environmental Assessment (EA) process for master plans. The approach involves preparing a master plan document at the conclusion of Phase 1 and 2 of the Class EA process. This approach allows for Schedule A, A+ identified in the master plan to move forward to implementation and become the basis for future investigations for specific Schedule B and C projects.

## **1.3 Problem Opportunity Statement**

The problem or opportunity statement defines the principal starting point in the undertaking of the Class EA study and assists in defining the scope of the project. The problem or opportunity statement for the 2020 Master Plan for the Lake-Based Systems is defined as follows:

The Region of Peel has completed several updates to the water and wastewater master plan, completing the most recent update in 2013.

With an updated planning horizon to 2041, the Master Plan needs to be updated to determine how the Region's water and wastewater infrastructure will support growth in a sustainable and financially responsible manner.

The Master Plan will develop a long-term servicing strategy and capital forecast to ensure level of service for existing residents and businesses, to support future growth in the community through 2041, and to consider potential impacts post-2041.

# 1.4 Study Area

The Region of Peel is situated in the west-central inner ring of the Greater Golden Horseshoe area. The Region is bounded to the north by Dufferin County and Simcoe County, to the south by Lake Ontario, to the east by the City of Toronto and York Region, and to the west by Halton Region and Wellington County.

The Region of Peel is made up of three local municipalities: the City of Mississauga; the City of Brampton; and the Town of Caledon, as shown in **Figure 1**. The Region includes a diverse mix of urban, suburban, rural, agricultural and natural landscapes including the Oak Ridges Moraine, the Niagara Escarpment and the Greenbelt.

The Region of Peel covers an area of 1,247 square kilometres with a population of approximately 1.4 million people as listed in the 2016 census. The study area covers the existing and future lake-based water and wastewater systems. The groundwater-based systems and communal wastewater system in Caledon are not included in the scope of this study.



Figure 1 – Study area for the 2020 Water and Wastewater Master Plan.

# 2.0 Water System Policy and Criteria

- 2.1 Water Servicing Principles and Policies
- 2.2 Design Criteria Demands Projections
- 2.3 Design Criteria System Assessment
- 2.4 Cost Estimation Framework

# 2.0 Water System Policy and Criteria

Water policies, design criteria, and level of service requirements were updated as part of the 2020 W/WW Master Plan to provide guidelines and direction to the master planning process, in addition to ensuring that water demands are adequately representative to support the decision making for sizing and timing of future infrastructure.

# 2.1 Water Servicing Principles and Policies

The Region developed a principles and policies paper during the 2007 Master Plan and updated it as part of the 2013 Master Plan. Through the 2020 W/WW Master Plan, principles and policies were reviewed and updated to guide the development of water servicing strategies.

In general, the Region's goal is to build and maintain efficient, reliable, sustainable, and well-managed water systems that provide a high level of service to the public. In order to capture these goals, the servicing principles and policies have been structured as follows:

### **General Water and Wastewater Policies**

Outlines policies and guiding principles that impact both water and wastewater servicing.

- G.01: Municipal Servicing
- G.02: Environmental Protection
- G.03: Planning Horizon
- G.04: Reserve Capacity
- G.05: System Reliability and Security
- G.06: Location of Municipal Services and Facilities
- G.07: Climate Change
- G.08: Energy Efficiency
- G.09: Integrated Infrastructure Program
- G.10: Level of Service
- G.11: Inter-Regional Collaboration
- G.12: Sustainability
- G.13: Source Water Protection
- G.14: Term of Council Priorities

#### **Water Policies**

Outlines policies and guiding principles that impact water servicing only, including:

- W.01: Health and Safety
- W.02: Raw Water Quality
- W.03: Treatment and Distribution
   Water Quality
- W.04: Water Demand Projections
- W.05: Distribution Requirements
- W.06: Fire Flow Requirements
- W.07: Water Efficiency and Consumption Trends
- W.08: Water Supply and Distribution Security
- W.09: Design Criteria
- W.10: Costing Criteria
- W.11: Pressure Zone Boundaries

The complete list of servicing principles and policies can be found in **Volume 2 – Appendix 2A.** 

# 2.2 Design Criteria - Demands Projections

The guiding principle for the design criteria is to ensure that demand projections are accurately predicted with an appropriate level of safety and risk management. This principle ensures that infrastructure has capacity to meet servicing requirements and that the timing of key infrastructure does not compromise operation of the facilities or impede approved and planned growth.

The development of design criteria is an element that has been reviewed during each master plan update and, as a result, has evolved over the years. As such, an analysis of water design criteria was completed by the Region to ensure that the projected water demands are accurate and reflect new trends to support decision making for the sizing and timing of future infrastructure. The Region produced a Design Criteria Memorandum, which is included in **Appendix 3A**. The following is a summary of the findings and recommendations:

- Recent trends in water consumption in the Region of Peel support the reduction of the average day water design criteria from 280 to 265 L/person or employee/day. This represents a reduction of 5.4 percent.
- As part of the Growth Management Initiative, discussions with the development industry have led to the decision of discretizing a single design criterion into separate residential and nonresidential components based on serviced population.
- The residential average day water demand will be 270 L/person/day, while employment will be 250 L/employee/day.
- The residential maximum day demand (MDD) peaking factor will be reduced from 2.0 to 1.8, while the non-residential MDD peaking factor will remain unchanged at 1.4.
- The peak hour demand (PHD) peaking factor will also remain unchanged at 3.0.



#### Figure 2 – Water design criteria evolution.

**Table 1** provides a summary of the recommended water design criteria. The design criteria were used to identify water infrastructure requirements for the 2020 Master Plan.

#### Table 1 – Water design criteria for growth within the lake-based water system.

| Type of Development | Average Day Demand | Maximum Day Factor | Peak Hour Factor |
|---------------------|--------------------|--------------------|------------------|
| Residential         | 270 L/person/day   | 1.8                | 3.0              |
| Employment          | 250 L/employee/day | 1.4                | 3.0              |

### 2.2.1 Water Demand Projections

Water demand projections are required in order to establish the capital infrastructure needs to service existing users and future growth. Consistent with previous Master Plans, the Region's water demand projections are calculated based on a "Starting Point" methodology. This methodology uses historical measured (actual) water demands as a basis to calculate a representative starting point that serves as the baseline for projecting future water demands.

### 2.2.1.1 Starting Point Methodology

The starting point was calculated based on a 5-year rolling average as follows:

- 1. Compile data for the water supplied from each water treatment facility for the past five years.
- 2. Subtract flow transfers to York Region.
- 3. Calculate equivalent per capita consumption rate for every year by dividing annual maximum day production by annual total residential serviced population.
- 4. Calculate the average of the equivalent per capita consumption rate for the past five years (5year rolling average)
- 5. Calculate the year's Starting Point by multiplying the year's serviced population by the 5-year rolling average and add back York water demands.

The calculation of the 2019 Starting Point is summarized as follows:

### 2019 Starting Point = (2019 Serviced Population x Equivalent per capita rate 5-year Rolling Average) + York

### 2.2.1.2 Future Demand Projections

The approach to determine growth demand projections continues to be based on establishing an annual starting point and projecting growth demands from that point forward. Future growth maximum day demands throughout the system are determined by multiplying the residential population and employment growth forecasts by the design criteria presented in **Table 1**.

The future total maximum day demands are then determined by adding the future growth needs to the starting point calculated using the 5-year rolling average methodology and York demands based on the York-Peel Water Servicing Agreement.

The calculation of future maximum day demands can be summarized as follows:

### 2041 Demand = 2019 Starting Point + (2041 Growth x Design Criteria) + York

**Figure 3** presents a graphical representation of the starting point and growth demand projection for the Peel lake-based system. More detailed information about water demand projections is presented in **Section 4.2**.



Figure 3 – Water starting point and growth demands projects.

# 2.3 Design Criteria - System Assessment

### **2.3.1** Water Treatment Plants

Water treatment plants are generally designed to provide capacity to meet maximum day demand requirements with an additional factor for in-facility uses such as filter backwashing. Consistent with the previous master plan, the following criteria were used in regard to water treatment facility expansions:

- The rated capacity of a water treatment plant is defined as the maximum daily flow that the facility is approved to treat.
- When 90 percent of the plant rated capacity is projected to be reached, an expansion to the treatment plant is required to be in service, noting that different treatment processes have specific design criteria that are applicable
- If an expansion is recommended, further analysis should be conducted to confirm actual timing of the plant expansion project. The age and condition of the plant should be considered as well as the amount of storage in the system that can be used to supply maximum day demand.



Figure 4 – A.P. Kennedy Water Treatment Plant

### 2.3.2 Water Pumping Stations

Pumping stations are rated on their firm capacity, which is nominally defined as the capacity of the pumping station with the largest pump out of service. For each pressure zone, the pumping stations should be able to:

- Provide peak hour demands in the immediate serviced zones.
- Have capacity to transfer maximum day demands to the upper serviced pressure zones.
- Capacity expansions are required once the pumping station's firm capacity reaches the required maximum day demand or peak hour demand, depending on high-lift or low-lift requirements.

### 2.3.3 Water Storage Facilities

Required storage is dictated by the ability to provide the required equalization storage, fire storage and emergency supply to maintain a satisfactory level of service. Reservoir storage capacity at each pumping station is based on the following:

- Equalization: 25 percent of the maximum day demand for the upper pressure zones serviced by each pumping station from the reservoir.
- Fire: in accordance with the Ministry of Environment, Conservation and Parks guidelines, to a maximum of 378 L/s for 6 hours when the total equivalent population (Residential plus Employment) for each zone is greater than 40,000<sup>2</sup>.
- Emergency: 25 percent of the equalization requirement plus 25 percent of fire storage for the lower pressure zone at the reservoir's HGL.

Given that Peel's water supply system typically operates under pumped supply, the reservoirs do not supply the pressure zone at the reservoir's hydraulic grade line (HGL). Rather, they float the lower zone and control the operating pressure. As such, the typical storage capacity criteria are also cross-reference against storage volumes required for the pressure zones serviced by that pumping facility. **Figure 5** below presents a sample of storage requirements.



Figure 5 – Sample storage requirements.

### **2.3.4 Transmission Mains**

Transmission mains are designed based on water demands and service levels (e.g., pressure, velocity, head loss), including:

- Convey the combined maximum day demands for the local zone and each subsequent upper zone.
- Transfer flow with an acceptable HGL and typically below 100 psi.
- Maintain velocities within transmission mains below 2.0 m/s.
- Oversizing can be considered in areas where future potential growth post-2041 is expected to
  occur.

Transmission mains are typically fed from the low-lift pumps, which also directly feed the local distribution system. As such, transmission main maximum flow is based on current pumping capacity, pressure head and the need to operate these pumps with an acceptable HGL.

The Region of Peel's full pipe hydraulic model was utilized to assess the network and to further refine transmission main capacities. Four scenarios (minimum hour, maximum day, peak hour and maximum day plus fire) were evaluated to confirm transmission main requirements.

### **2.3.5 Distribution Mains**

Water mains that are part of the local distribution system are sized based on flow demands and pressure requirements, which include:

- Convey the greater of maximum day demand plus fire flows or peak hour demand.
- Maintain operating pressures in the distribution system between 40 and 100 psi.
- Maintain pressures higher than 40 psi to account for hydraulic losses in the local system.
- Under emergency conditions, it is allowable for pressures to drop to a minimum of 20 psi (140 kPa).

Although the focus of the 2020 Master Plan is on the water transmission system, service impacts to the local distribution system are also considered.

### 2.3.6 Security of Supply

The Region of Peel's lake-based water system is designed to include multiple facilities servicing the same zone, which provide supply security to the system. In addition to the multiple facilities for supply security, the following key water components are included in the system for further providing sustainable water service to the customers:

- Emergency power supply (standby power).
- Storage facilities.
- Cross pressure zones connections (pressure reducing valves, check valves, etc.).
- Consideration of transmission main twinning to address growth and system security.
- Operational strategy.

## **2.4 Cost Estimation Framework**

The cost estimation framework for capital projects at a master planning level are typically based on an overall unit cost approach. In this approach, project costs are generated from unit rates with added contingency and other additional costs.

### 2.4.1 Unit Rates

The unit cost rates used for this master plan are represented in 2020 dollars and, in general, take into consideration costs of labour and availability of materials in Southern Ontario. The development of these rates was informed by multiple master planning studies and have undergone peer reviews in order to further refine and ensure overall accuracy of the cost estimates. They were also compared to costs of recent capital projects completed within the Region of Peel and the GTA. A summary of the unit costs is provided in **Appendix 3B**.

### 2.4.2 Final Project Cost

A capital cost is provided for all projects proposed as part of this master plan. For most water system projects, a base construction cost was obtained using either a unit rate construction cost or unique project analysis. The base construction cost considers several factors specific to each project such as:

- Creek crossings
- Railway and highway crossings
- Utility crossings
- Tunneling requirements
- Location of construction (rural, urban, suburban).

Design, administration, contingency, and non-recoverable HST costs were added to arrive at a final project cost estimate. Detailed costing sheets were developed to support the financial evaluation for each capital project. The final project costs are provided in the Capital Program, **Section 6.2**.

More detailed information about the cost estimation framework is provided in Appendix 3B.

### 2.4.3 Operation and Maintenance

Operation and Maintenance (O&M) costs were considered qualitatively at every stage of the evaluation process. For example, where one strategy requires more pumping stations relative to other strategies, that strategy will score less favourably under the financial impact category due to higher O&M costs inherent with the new facilities.

In addition, the capital program provides a list and timing of new assets that the Region will have to operate and maintain; therefore, it is the starting point for the planning of O&M costs and resource allocation for new water infrastructure.

# 3.0 Existing Water Transmission System

- 3.1 Existing Infrastructure
- 3.2 Hydraulic Water Model
- 3.3 Lake-based Water Supply System Schematics

# **3.0 Existing Water Transmission System**

# **3.1 Existing Infrastructure**

The Region of Peel's lake-based water system services the City of Mississauga, the City of Brampton, and parts of the Town of Caledon. Water is supplied from Lake Ontario by two water treatment plants (WTP) and conveyed by the transmission and distribution systems.

The transmission system consists of two treatment facilities, transmission mains, pumping stations, reservoirs and elevated tanks. Due to the width of the Region's lake-based service area, the transmission system is divided into three main trunk systems: west, central and east. The transmission system provides direct supply to the local water distribution system which consists of the water mains extending down to the water service level for each customer. Combined, all the components of the transmission and distribution systems deliver water to users through seven pressure zones separated by approximately 30-metre intervals of elevation.

The Region of Peel also maintains four municipal groundwater systems servicing rural communities in the Town of Caledon. These municipal groundwater systems are not included in the 2020 Master Plan. **Table 2** and **Figure 6** provides an overview of the Region's existing water lake-based transmission system.

| West Trunk System                                                                                                                                                                                                                                                                                                                                                                                    | Central Trunk System                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | East Trunk System                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Snelgrove Elevated Tank (WS6)<br>Alloa Reservoir (WS5) and<br>Pumping Station (LLP6W,<br>HLP7W)<br>West Brampton Reservoir (WS4)<br>and Pumping Station (LLP5W,<br>HLP6W)<br>Meadowvale North Reservoir<br>(WS3) and Pumping Station<br>(LLP4W, HLP5W)<br>Streetsville Reservoir (WS2) and<br>Pumping Station (LLP3W,<br>HLP4W)<br>Herridge Reservoir (WS1) and<br>Pumping Station (HLP3W,<br>LLP2W) | Mayfield West Elevated Tank (CS7)<br>North Brampton Reservoir (CS5)<br>and Pumping Station (LLP6C,<br>HLP7C)<br>East Brampton Reservoir (CS4) and<br>Pumping Station (LLP5C, HLP6C)<br>Beckett Sproule Reservoir (CS3)<br>and Pumping Station (LLP4C,<br>HLP5C)<br>Hanlan Reservoir (CS2) and<br>Pumping Station (LLP3C, HLP4C)<br>Silverthorn Reservoir (CS1) and<br>Pumping Station (LLP2C, HLP3C)<br>A. P. Kennedy Water Treatment<br>Plant and Pumping Stations<br>(HLP1C, HLP2C) | Bolton Elevated Tank, West<br>Bolton Elevated Tank and<br>Standpipes (BS6)<br>Tullamore Reservoir (ES4)<br>and Pumping Station (LLP5E,<br>HLP6E)<br>Airport Road Reservoir (ES3)<br>and Pumping Station (LLP4E,<br>HLP5E, York Transfer)<br>Beckett Sproule Transfer<br>Pumping Station |
|                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                         |

### Table 2 – Existing lake-based water transmission facilities.

\*Nomenclature of transmission facilities: (W)-West, (C)-Central, (E)-East, (S)-Storage, (LLP)-Low Lift Pump, (HLP)-High Lift Pump, # - pressure zones serviced by facility



Figure 6 – Existing Region of Peel lake-based water transmission system.

### **3.1.1** Water Treatment Plants

The Region of Peel is serviced by two large water treatment plants (WTP): A.P. Kennedy WTP and Lorne Park WTP. The plants are located on the shore of Lake Ontario and are operated by the Ontario Clean Water Agency (OCWA) on behalf of the Region. These facilities provide safe drinking water to customers in the City of Brampton, City of Mississauga and parts of the Town of Caledon.





### 3.1.1.1 A.P. Kennedy Water Treatment Plant

The A.P. Kennedy WTP (formerly the Lakeview WTP) is located in southeast Mississauga, east of Cawthra Road and south of Lakeshore Road East, at the south end of East Avenue.

The A.P. Kennedy WTP treats water through multiple levels of treatment and processes including:

- 1. Primary Disinfection
  - Conventional Treatment Coagulation, Flocculation, Sedimentation, Dual Media Filtration
  - OBM1 Ozone, Biologically Activated Carbon Contactors (BACC) and Membrane Treatment
  - OBUM2 Ozone, BACC, UV and Membrane Treatment
- 2. Fluoridation and additional Chlorination
- 3. Distribution

In 2014, a capacity expansion at the plant was completed. The expansion increased the installed treatment capacity to approximately 1200 million litres of water per day (ML/d), making the A.P. Kennedy WTP one of the largest membrane treatment facilities in the world.

Sourcing water from Lake Ontario, the raw water intake to the plant consists of a 2550-mm diameter pipe extending 2,000 metres into the lake. The pipe has two intake cribs that feed a common intake pipe with an approximate capacity of 1,150 ML/d.



### 3.1.1.2 Lorne Park Water Treatment Plant

The Lorne Park WTP is located in southwest Mississauga, east of Southdown Road and south of Lakeshore Road West within Jack Darling Memorial Park. The plant uses advanced technology to treat water through multiple levels of treatment and processes including:

- 1. Primary Disinfection
  - Conventional Treatment Coagulation, Flocculation, Sedimentation, Dual Media Filtration
  - Membrane, UV and Granular Activated Carbon Contractor (GACC) Treatment
- 2. Fluoridation and additional Chlorination
- 3. Distribution

The Lorne Park WTP has an installed treatment capacity of approximately 500 ML/d, consisting of: Plant 1 Conventional Treatment with a capacity of 120 ML/d and Plant 2 Membrane Filtration Plant with a capacity of 380 ML/d.

The Lorne Park WTP raw water intake has a design capacity of 550 ML/d, consisting of: 1230-metre long horseshoe shaped tunnel 1800-mm in diameter, 180 metres of 2,400-mm and 310 metres of 2,100-mm pipes.

### **3.1.2 Pressure Zones**

The Region of Peel transmission and distribution systems deliver water to users through seven pressure zones separated by approximately 30-metre intervals of elevation. **Table 3** presents a summary of the lake-base water system pressure zones.

| Pressure Zone | Top Water Level | Hydraulic Grade Line | Serviceable Elevation |
|---------------|-----------------|----------------------|-----------------------|
| Zone 1        | 144.8 m         | 152.4 m              | 75.0 – 106.7 m        |
| Zone 2        | 175.3 m         | 182.9 m              | 87.8 – 137.2 m        |
| Zone 3        | 205.7 m         | 213.4 m              | 135.9 – 167.6 m       |
| Zone 4        | 236.2 m         | 243.8 m              | 166.4 – 210.6 m       |
| Zone 5        | 266.7 m         | 274.3 m              | 182.4 – 236.2 m       |
| Zone 6        | 297.2 m         | 304.8 m              | 214.5 – 259.1 m       |
| Zone 7        | 327.7 m         | 335.3 m              | 243.4 – 289.6 m       |

#### Table 3 – Lake-based water system pressure zones.

### **3.1.3 Transmission Mains**

The Region Peel transmission system is divided into three main trunk systems: West, Central and East. In reviewing the flow transfer capability of the transmission main, two important factors are considered; theoretical capacity and actual capacity. The capacity of the transmission main is defined based on the watermain characteristics as follows:

Theoretical capacity

- Size of the transmission main,
- Expected resistance (or energy loss) of the transmission main, and
- Standard/assumed roughness coefficient for a new transmission main.

Actual capacity

- Size of the transmission main,
- Expected resistance (or energy loss) of the transmission main, and
- Roughness coefficient obtained from the calibrated hydraulic model.

### 3.1.3.2 West Trunk System

#### WT1: Lorne Park WTP to the Herridge Reservoir (Pressure Zone 1)

1500-mm diameter Pressure Zone 1 transmission main from the Lorne Park WTP to the Herridge Reservoir. The theoretical capacity of this transmission main is approximately 271 ML/d. However, the actual capacity is estimated at approximately 181 ML/d.

#### WT2S: Lorne Park WTP to the discharge side of the Herridge Pumping Station (Pressure Zone 2)

2100-mm diameter Pressure Zone 2 transmission main from Lorne Park WTP to the Herridge Pumping Station. The theoretical capacity of this transmission main is approximately 657 ML/d. However, the actual capacity is estimated at approximately 695 ML/d.

#### WT2: Herridge Pumping Station to the Streetsville Reservoir (Pressure Zone 2)

There are two transmission mains from the Herridge Pumping Station to the Streetsville Reservoir: a 1050-mm diameter transmission main and a 1500-mm diameter transmission main. The total theoretical Pressure Zone 2 west transmission capacity is approximately 378 ML/d. However, the actual capacity is estimated at approximately 330 ML/d.

#### WT3: Streetsville Pumping Station to the Meadowvale North Reservoir (Pressure Zone 3)

There are two transmission mains from the Streetsville Pumping Station to the Meadowvale North Reservoir: a 900-mm diameter transmission main and a 1200-mm diameter transmission main. The total theoretical Pressure Zone 3 west transmission capacity is approximately 222 ML/d. However, the actual capacity is estimated at approximately 211 ML/d.

#### WT4: Meadowvale North Pumping Station to the West Brampton Reservoir (Pressure Zone 4)

1500-mm diameter Pressure Zone 4 transmission main from Meadowvale North Pumping Station to the West Brampton Reservoir. The theoretical capacity of this transmission main is approximately 271 ML/d. However, the actual capacity is estimated at approximately 230 ML/d.

#### WT5: West Brampton Pumping Station to the Alloa Reservoir (Pressure Zone 5)

1200-mm diameter Pressure Zone 5 transmission main from West Brampton Pumping Station to the Alloa Reservoir. The theoretical capacity of this transmission main is approximately 151 ML/d. However, the actual capacity is estimated at approximately 150 ML/d.

The west transmission system is shown in **Figure 7**.



Figure 7 – West transmission system.

### 3.1.3.3 Central Trunk System

#### CT1: A.P. Kennedy WTP to the Silverthorn Reservoir (Pressure Zone 1)

There are two transmission mains from the A.P. Kennedy WTP to the Silverthorn Reservoir: a 900-mm diameter transmission main and a 1500-mm diameter transmission main. The total theoretical Pressure Zone 1 central transmission capacity is approximately 342 ML/d. However, the actual capacity is estimated at approximately 279 ML/d.

#### CT2: Silverthorn Pumping Station to the Hanlan Reservoir (Pressure Zone 2)

1500/1200-mm diameter Pressure Zone 2 transmission main from the Silverthorn Pumping Station to the Hanlan Reservoir. The theoretical transmission capacity of this main is approximately 151 ML/d. However, the actual capacity is estimated at approximately 136 ML/d.

#### CT2H: A.P. Kennedy WTP to the Hanlan Reservoir (Pressure Zone 2)

There are two transmission mains from the A.P. Kennedy WTP to the Hanlan Reservoir: a 2100-mm/1800mm diameter transmission main and a 2400-mm diameter transmission main. The total theoretical Pressure Zone 2 central transmission capacity is approximately 1,372 ML/d. However, the actual capacity is estimated at approximately 1,311 ML/d.

#### CT3: Hanlan Pumping Station to the Beckett Sproule Reservoir (Pressure Zone 3)

There are three transmission mains from the Hanlan Pumping Station to the Beckett Sproule Reservoir: a 1200-mm diameter transmission main, a 1500-mm diameter transmission main a 2100-mm diameter transmission main. The total theoretical Pressure Zone 3 central transmission capacity is approximately 1,080 ML/d. However, the actual capacity is estimated at approximately 1,069 ML/d.

#### CT4: Beckett Sproule Pumping Station to the East Brampton Reservoir (Pressure Zone 4)

1050-mm diameter Pressure Zone 4 transmission main from the Beckett Sproule Pumping Station to the East Brampton Reservoir. The theoretical transmission capacity of this main is approximately 106 ML/d. However, the actual capacity is estimated at approximately 89 ML/d.

#### CT5: East Brampton Pumping Station to the North Brampton Reservoir (Pressure Zone 5)

900-mm diameter Pressure Zone 5 transmission main from the East Brampton Pumping Station to the North Brampton Reservoir. The theoretical transmission capacity of this main is approximately 71 ML/d. However, the actual capacity is estimated at 60 ML/d.

#### CT7: North Brampton Pumping Station to the Mayfield West Elevated Tank (Pressure Zone 7)

600-mm diameter Pressure Zone 7 transmission main from the North Brampton Pumping Station to the Mayfield West Elevated Tank. The theoretical transmission capacity of this main is approximately 24 ML/d. However, the actual capacity is estimated at 26 ML/d.

The central transmission system is shown in Figure 8.



Figure 8 – Central transmission system.

### 3.1.3.4 East Trunk System

# ET3A: Beckett Sproule Transfer Pumping Station to the Airport Road Reservoir (Airport Road Transfer)

2100-mm diameter transmission main from the Beckett Sproule Pumping Station to the Airport Road Reservoir to transfer water from the central to the east transmission system. The theoretical capacity of this transfer main is approximately 657 ML/d. However, the current actual transmission capacity is estimated at approximately 612 ML/d.

### ET5Y: Airport Road Pumping Station to York Region (York Transfer)

1800-mm diameter transmission main from the Airport Road Pumping Station to the York-Peel boundary to supply water to York Region as per the York-Peel Water Supply Agreement. The theoretical capacity of this transmission main is 438 ML/d. However, the current actual transmission capacity is estimated at approximately 421 ML/d.

### ET4: Airport Road Pumping Station to the Tullamore Reservoir (Pressure Zone 4)

1050-mm diameter Pressure Zone 4 transmission main from the Airport Road Pumping Station to the Tullamore Reservoir. The theoretical and actual transmission capacities of this main is approximately 106 ML/d.

### BT6: Tullamore Pumping Station to the Bolton Elevated Tank (Pressure Zone 6)

750-mm diameter Pressure Zone 6 transmission main from the Tullamore Pumping Station to the Bolton Elevated Tanks. The theoretical transmission capacity of this main is approximately 44 ML/d. However, the actual capacity is estimated at 40 ML/d.

The east transmission system is shown in Figure 9.

VOLUME 3 – WATER MASTER PLAN



Figure 9 – East transmission system.

## **3.1.4 Water Pumping Stations and Reservoirs**

**Table 4** to **Table 7** summarize the existing pumping stations and reservoir facilities in the Region of Peellake-based water system.

| Facility                            | Serviced<br>Pressure Zone | No. of<br>Pumps | Installed<br>Capacity (ML/d) | Firm Capacity<br>(ML/d) | Actual Firm<br>Capacity* (ML/d) |
|-------------------------------------|---------------------------|-----------------|------------------------------|-------------------------|---------------------------------|
| Lorne Park Water<br>Treatment Plant | LL in Plant               | 10              | 1041                         | 900                     | n/a                             |
| Lorne Park                          | HLP1W                     | 7               | 541                          | 450                     | 336                             |
| Pumping Station                     | HLP2W                     | 2               | 300                          | 150                     | 152                             |
| Herridge Pumping                    | LLP2W                     | 8               | 408                          | 340                     | 309                             |
| Station                             | HLP3W                     | 4               | 100                          | 68                      | 48                              |
| Streetsville                        | LLP3W                     | 6               | 379                          | 289                     | 250                             |
| Pumping Station                     | HLP4W                     | 5               | 272                          | 204                     | 179                             |
| Battleford<br>Pumping Station       | 4A                        | 4               | 189                          | 142                     | n/a                             |
| Meadowvale North                    | LLP4W                     | 6               | 346                          | 276                     | 226                             |
| Pumping Station                     | HLP5W                     | 6               | 143                          | 116                     | 97                              |
| West Brampton                       | LLP5W                     | 4               | 90                           | 60                      | 40                              |
| Pumping Station                     | HLP6W                     | 4               | 93                           | 62                      | 93                              |
| Alloa Pumping                       | LLP6W                     | 3               | 126                          | 84                      | 80                              |
| Station                             | HLP7W                     | 3               | 45                           | 30                      | 27                              |

### Table 4 – Lake-based water pumping stations (west transmission system).

\*Actual Firm Capacity generated from model runs accounts for head losses due to friction

| Facility                                 | Serviced<br>Pressure Zone | No. of<br>Pumps | Installed<br>Capacity (ML/d) | Firm Capacity<br>(ML/d) | Actual Firm<br>Capacity* (ML/d) |
|------------------------------------------|---------------------------|-----------------|------------------------------|-------------------------|---------------------------------|
| A.P. Kennedy<br>Water Treatment<br>Plant | LL in Plant               | 11              | 1,681                        | 1,494                   | n/a                             |
| A. P. Kennedy                            | HLP1C                     | 5               | 425                          | 335                     | 282                             |
| Pumping Station                          | HLP2C                     | 7               | 950                          | 800                     | 998                             |
| Silverthorn                              | LLP2C                     | 5               | 495                          | 387                     | 192                             |
| Pumping Station                          | HLP3C                     | 3               | 103                          | 58                      | 58                              |
| Hanlan Pumping                           | LLP3C                     | 9               | 1150                         | 1005                    | 1024                            |
| Station                                  | HLP4C                     | 4               | 160                          | 103                     | 119                             |
| Beckett Sproule                          | LLP4C                     | 6               | 390                          | 297                     | 195                             |
| Pumping Station                          | HLP5C                     | 6               | 255                          | 195                     | 176                             |
| East Brampton                            | LLP5C                     | 4               | 177                          | 117                     | 100                             |
| Pumping Station                          | HLP6C                     | 4               | 205                          | 140                     | 109                             |
| North Brampton                           | LLP6C                     | 4               | 126                          | 90                      | 73                              |
| Pumping Station                          | HLP7C                     | 4               | 36                           | 26                      | 21                              |

### Table 5 – Lake-based water pumping stations (central transmission system).

\*Actual Firm Capacity generated from model runs accounts for head losses due to friction

| Facility                                       | Serviced<br>Pressure Zone | No. of<br>Pumps | Installed<br>Capacity (ML/d) | Firm Capacity<br>(ML/d) | Actual Firm<br>Capacity* (ML/d) |
|------------------------------------------------|---------------------------|-----------------|------------------------------|-------------------------|---------------------------------|
|                                                | York                      | 10              | 458                          | 402                     | n/a                             |
| Airport Road<br>Pumping Station                | LLP4E                     | 4               | 182                          | 126                     | 149                             |
|                                                | HLP5E                     | 4               | 180                          | 135                     | 131                             |
| Beckett Sproule<br>Transfer Pumping<br>Station | Transfer                  | 4               | 408                          | 306                     | 2750                            |
| Tullamore Pumping                              | LLP5E                     | 3               | 90                           | 60                      | 48                              |
| Station                                        | HLP6E                     | 4               | 160                          | 120                     | 120                             |
| Bolton North Hill<br>Pumping Station           | 6B                        | 3               | 14                           | 9                       | n/a                             |

### Table 6 – Lake-based water pumping stations (east transmission system).

\*Actual Firm Capacity generated from model runs accounts for head losses due to friction

### Table 7 – Lake-based water system reservoirs.

|      | Facility Name                        | Serviced<br>Pressure Zone | Total Reservoir<br>Capacity (ML*) |
|------|--------------------------------------|---------------------------|-----------------------------------|
|      | Lorne Park Water Treatment Plant     | WS1                       | 23                                |
|      | Herridge Reservoir                   | WS1                       | 47                                |
|      | Streetsville Reservoir               | WS2                       | 48                                |
| WEST | Meadowvale North Reservoir           | WS3                       | 55                                |
|      | West Brampton Reservoir              | WS4                       | 40                                |
|      | Alloa Reservoir                      | WS5                       | 35                                |
|      | Snelgrove Elevated Tank              | WS6                       | 4                                 |
|      | A.P. Kennedy Water Treatment Plant   | CS1                       | 25                                |
|      | Silverthorn Reservoir                | CS1                       | 46                                |
| _    | Hanlan Reservoir                     | CS2                       | 74                                |
| NTR  | Beckett Sproule Reservoir            | CS3                       | 93                                |
| IJ   | East Brampton Reservoir              | CS4                       | 39                                |
|      | North Brampton Reservoir             | CS5                       | 53                                |
|      | Mayfield West Elevated Tank          | CS7                       | 9                                 |
|      | Airport Road Reservoir               | ES3                       | 54                                |
| EAST | Tullamore Reservoir                  | ES4                       | 48                                |
|      | Bolton Elevated Tanks and Standpipes | BS6                       | 19                                |

\*ML: Million Litres

## **3.2 Hydraulic Water Model**

The Region of Peel's hydraulic water model includes all local distribution mains, transmission mains and water facilities. The first all-pipe hydraulic model for the Region was developed in 2003 and the model was last calibrated in 2013 by *AECOM*. The calibration of the hydraulic model was completed based on field test data and Supervisory Control and Data Acquisition (SCADA) records. The purpose of the calibration was to adjust the modelling parameters such as Hazen William C-factor and minor losses within the water facilities to ensure the modelling results were within a desirable accuracy. The following generalizes the approach applied to the model calibration:

- Updated model with the latest Geographic Information System (GIS) records.
- Conducted flow balance calculation to determine water demands and water demand patterns for model calibration period.
- Conducted demand allocation based on 2010 AquaPeel records.
- Updated model with water demand, patterns, boundary conditions (initial storage level) and pump ON/OFF sequence for model calibration.
- Adjusted modelling parameters to allow the match between observed data and model data are within the desirable accuracy.
- Performed series of internal and external workshops and meetings to ensure accuracy of model results.

Subsequent to the model calibration in 2013, an update of the hydraulic model was performed to reflect the latest infrastructure status as per GIS. The following summarizes the model update activities:

- Local Distribution Network January 2019
- Water Demand Allocation Update (Scenario 16) February 2019
- Future Infrastructure Update (phasing and sizing as per Master Plan study) August 2019

## 3.3 Lake-based Water Supply System Schematics

The Region of Peel has developed a water supply system schematics tool for evaluating water servicing requirements including immediate pressure zone demands as well as capacity required to service subsequent pressure zones in the lake-based system.

The tool has evolved over several years and contains useful information to assess system capacities and potential constraints including schematics, tables and charts covering system components such as treatment, transmission, pumping and storage. Water schematics were developed for several planning periods including 2041 and post-2041.

The Lake-based Water Supply System Schematics are included in Appendix 3C.

# 4.0 Assessment of Future Water Infrastructure Requirements

- 4.1 Opportunities and Constraints
- 4.2 Water Demand Requirements
- 4.3 Assessment of Water Infrastructure
# **4.0 Assessment of Future Water Infrastructure Requirements**

A critical initial step in the master planning process is the assessment of existing infrastructure to establish the water system baseline conditions. These conditions become the basis of future recommendations of the master plan; therefore, it is important that they be determined through a comprehensive detailed analysis of the system. Once the existing system conditions are established, potential impacts of future growth needs on the water system are analyzed to develop and recommend future servicing strategies.

The following sections describe current opportunities and constraints in the existing water system and assess the capacity deficiencies within the 2041 planning horizon with some post-period considerations.

## 4.1 Opportunities and Constraints

Existing water opportunities and constraints were identified through discussions with Regional staff as well as a baseline review and preliminary hydraulic analyses. The following opportunities were identified:

## 4.1.1 Growth

- Requirement to extend servicing to new growth areas in West Bolton and north of Mayfield Road.
- Significant growth continues to be anticipated in Bolton, northeast Brampton and northwest Brampton areas.
- Downtown Brampton and Uptown Brampton are anticipated to be the City's focus for future development and intensification.
- The Hurontario Corridor and Mississauga City Centre continue to be targeted for high-density intensification.
- Growth continues to be projected in the Mayfield West development area including new growth areas north of the Etobicoke Creek.
- Specific development areas identified due to their growth potential include: Inspiration Lakeview, Port Credit Mobility Hub, Dundas Connects, Uptown Mississauga (Hurontario and Eglinton), Bovaird and Creditview, Clarkson GO, and Reimagining the Mall (Central Erin Mills, Meadowvale, Rathburn-Applewood, Sheridan and South Common Community Nodes).

Additionally, the following considerations for post-period growth were also identified:

- Opportunity to upsize strategic infrastructure to account for potential post-period growth.
- If the GTA West Transportation Corridor proceeds, the Region expects increased growth and intensification to occur along the corridor area.

## **4.1.2 Water Treatment Plants**

- The A.P. Kennedy WTP is projected to provide sufficient capacity to service 2041 demands.
   However, the plant may require an increase in treated water storage to support growth.
- The Lorne Park WTP currently has sufficient capacity to service projected 2041 demands.

## **4.1.3 Transmission Mains**

- Additional transmission capacity required to move water north to service upper pressure zones.
- New transmission mains will be required to transfer water to new facilities in the north such as the Victoria Reservoir and the proposed West Caledon Elevated Tank.
- Completion of the Hanlan Transmission Main from the A.P. Kennedy WTP to the Hanlan Reservoir provides the transmission capacity to support growth and meets the requirements of the York-Peel Water Supply Agreement. It has the ancillary benefit of providing for system security and flexibility.

## 4.1.4 Pumping Stations and Storage Facilities

- Future growth to 2041 increases pumping requirements to move water to upper zones.
   Additional pumping capacity requirements have been recognized for: Pressure Zone 2,
   Pressure Zone 5, and transfer from the Beckett Sproule Pumping Station to the Airport Road Reservoir.
- Some pumping stations have been identified with limited site capacity for additional pumps, including: Meadowvale North, East Brampton, and Airport Road.
- Water is supplied to York Region from the Airport Road Pumping Station.
- There is an opportunity to optimize east-west transfers with distribution and pumping for improved level of service and security of supply.
- Additional storage capacity may be required to service Pressure Zone 7.

These opportunities and constraints were used as a starting point to define the potential servicing strategies, which are discussed in **Section 5**.

## **4.2 Water Demand Requirements**

Water demand requirements were developed for the system to identify existing and potential future supply deficiencies. Based on the future planning projections and approximate service area boundaries for the west, central and east systems, the maximum day demand projections for the Region's lake-based system, including York flows, are summarized below:

| Service Area                | 2019 | 2021 | 2026 | 2031 | 2036 | 2041 |
|-----------------------------|------|------|------|------|------|------|
| West Transmission System    | 294  | 308  | 337  | 367  | 390  | 412  |
| Central Transmission System | 395  | 408  | 434  | 461  | 490  | 518  |
| East Transmission System    | 73   | 78   | 94   | 108  | 120  | 133  |
| Bolton                      | 16   | 16   | 17   | 18   | 19   | 21   |
| Peel Total                  | 779  | 810  | 883  | 954  | 1019 | 1084 |
| York Region (Agreement)     | 211  | 232  | 277  | 331  | 331  | 331  |
| Peel Total including York   | 989  | 1042 | 1159 | 1285 | 1350 | 1415 |







## 4.3 Assessment of Water Infrastructure

The assessment of the lake-based water infrastructure was completed based on the Region's planning estimates and design criteria as described in previous sections. The results of the assessment are summarized in the following sections.

## 4.3.1 Water Treatment Plants

The assessment of water treatment plants capacity indicated that the existing treatment capacity would be sufficient to meet projected growth within the planning horizon. **Table 9**, **Figure 11** and **Figure 12** summarize the projected demands for each water treatment plant based on their service area and results of the treatment capacity assessment. The table and figures below show capacity and demand by WTP service area. Although there are two WTPs and in general, two service areas (West and Central/East) that are serviced by these plants, the interconnectivity between the West and Central/East systems enables the Region to move water between the west and central/east pressure zones in order to optimize available capacity.

#### Table 9 – Water treatment plants assessment result summary.

| Treatment Capacity Assessment            | 2019      | 2021 | 2026 | 2031 | 2036 | 2041 |
|------------------------------------------|-----------|------|------|------|------|------|
| А.Р. Ке                                  | ennedy W  | /ТР  |      |      |      |      |
| Plant Capacity* (ML/d)                   | 1080      | 1080 | 1080 | 1080 | 1080 | 1080 |
| Forecasted Demand (ML/d)                 | 695       | 734  | 822  | 918  | 960  | 1003 |
| Capacity Surplus(+) / Deficit (-) (ML/d) | +385      | +346 | +258 | +162 | +120 | +77  |
| Lorne                                    | e Park W1 | ГР   |      |      |      |      |
| Plant Capacity* (ML/d)                   | 450       | 450  | 450  | 450  | 450  | 450  |
| Forecasted Demand (ML/d)                 | 294       | 308  | 337  | 367  | 390  | 412  |
| Capacity Surplus(+) / Deficit (-) (ML/d) | +156      | +142 | +113 | +83  | +60  | +38  |

\*90 percent of installed treatment capacity.



Figure 11 – Projected water demands at A.P Kennedy Water Treatment Plant.



Figure 12 – Projected water demands at Lorne Park Water Treatment Plant.

For more detailed information about the water treatment plants capacity assessment, please refer to **Appendix 3D**.

## 4.3.2 Transmission Mains

The InfoWater hydraulic model, in combination with the water system schematics were used to evaluate the water system's transmission capacity. The assessments of transmission mains capacity involve the following considerations:

- Location of growth.
- Existing water network.
- Overall supply strategy.
- System security.
- Ability to provide water service beyond planning horizon.

The following existing transmission mains were identified as not being able to supply future demands:

#### WT2: Herridge Pumping Station to the Streetsville Reservoir (Pressure Zone 2)

The existing Pressure Zone 2 transmission mains from the Herridge Pumping Station to the Streetsville Reservoir will reach their capacity by 2036. Twinning of the existing transmission mains with a new 2100-mm transmission main will be required.

#### WT3: Streetsville Pumping Station to the Meadowvale North Reservoir (Pressure Zone 3)

The existing Pressure Zone 3 transmission mains from the Streetsville Pumping Station to the Meadowvale North Reservoir will reach their capacity by 2036. Twinning of the existing transmission mains with a new 1800-mm transmission main will be required.

#### CT4: Beckett Sproule Pumping Station to the East Brampton Reservoir (Pressure Zone 4)

The existing Pressure Zone 4 transmission main from the Beckett Sproule Pumping Station to the East Brampton Reservoir is at capacity. Twinning of the existing transmission main with a new 1500-mm transmission main is required.

Future new transmission mains were identified, including the need for a new transmission main from the North Brampton Pumping Station to the Victoria Reservoir and new transmission main to move water from the Alloa Pumping Station to the proposed West Caledon Elevated Tank.

**Table 10** provides a summary of the existing and future transmission mains requirements. For more detailed information, please refer to **Appendix 3D**.

#### Table 10 – Water transmission mains assessment.

| Project Description               | Assessment<br>Parameters           | 2019 | 2021 | 2026 | 2031 | 2036 | 2041 |
|-----------------------------------|------------------------------------|------|------|------|------|------|------|
| Existing Transmiss                | sion Mains                         |      |      |      |      |      |      |
| East Brampton<br>Transmission     | Forecasted<br>Demand (ML/d)        | 97   | 105  | 113  | 120  | 129  | 135  |
| Mains                             | Existing System<br>Capacity (ML/d) | 89   | 89   | 89   | 89   | 89   | 89   |
| Streetsville                      | Forecasted<br>Demand (ML/d)        | 241  | 254  | 282  | 310  | 330  | 350  |
| Transmission Main                 | Existing System<br>Capacity (ML/d) | 330  | 330  | 330  | 330  | 330  | 330  |
| Meadowvale<br>North               | Forecasted<br>Demand (ML/d)        | 145  | 151  | 173  | 195  | 212  | 228  |
| Transmission<br>Mains             | Existing System<br>Capacity (ML/d) | 211  | 211  | 211  | 211  | 211  | 211  |
| Future Transmissi                 | on Mains                           |      |      |      |      |      |      |
| Victoria                          | Forecasted<br>Demand (ML/d)        | 0    | 25   | 26   | 27   | 27   | 28   |
| Transmission Main                 | Future System<br>Capacity (ML/d)   | 0    | 71   | 71   | 71   | 71   | 71   |
| West Caledon<br>Transmission Main | Forecasted<br>Demand (ML/d)        | 0    | 0    | 6    | 9    | 11   | 13   |
|                                   | Future System<br>Capacity (ML/d)   | 0    | 0    | 0    | 24   | 24   | 24   |

### 4.3.3 Water Pumping Stations

Assessment of pumping capacity was based on the ability to provide the firm capacity to meet the required demands in the system. This assessment required comprehensive hydraulic analysis undertaken with the Region's water hydraulic model as well as cross checked using the water system schematics. Utilizing the system head curves developed in the hydraulic model, the actual pumping capacity for each station was identified and used to determine pumping station requirements. Based on the analysis, the following pumping deficiencies were identified:

#### **Lorne Park Pumping Station**

Expansion of the Pressure Zone 2 high-lift pumping at the Lorne Park WTP is required. The station requires additional 150 ML/d to service growth.

#### West Brampton Pumping Station

Expansion of Pressure Zone 5 low-lift pumping is required at the West Brampton Pumping Station. The station requires additional 90 ML/d to service growth.

Expansion of Pressure Zone 6 high-lift pumping is required at the West Brampton Pumping Station. The station requires additional 31 ML/d to service growth.

#### **Becket Sproule Transfer Pumping Station**

Additional transfer pumping capacity required at the Becket Sproule Transfer Pumping Station. The station requires two additional 102 ML/d pumps primarily to provide additional water supply for York Region.

**Table 11** provides a summary of the above pumping station requirements. For more detailed information, please refer to **Appendix 3D**.

#### Table 11 – Water pumping stations assessment.

| Project Description                                 | Assessment<br>Parameters            | 2019 | 2021 | 2026 | 2031 | 2036 | 2041 |
|-----------------------------------------------------|-------------------------------------|------|------|------|------|------|------|
| Lorne Park WTP<br>Pumping Station –<br>Z2 High-Lift | Forecasted<br>Demand (ML/d)         | 166  | 180  | 210  | 227  | 250  | 274  |
|                                                     | Existing System<br>Capacity* (ML/d) | 152  | 152  | 152  | 152  | 152  | 152  |
| West Brampton                                       | Forecasted<br>Demand (ML/d)         | 62   | 62   | 67   | 99   | 108  | 116  |
| Z5 Low-Lift                                         | Existing System<br>Capacity* (ML/d) | 74   | 74   | 74   | 74   | 74   | 74   |
| Beckett Sproule                                     | Forecasted<br>Demand (ML/d)         | 300  | 325  | 387  | 457  | 469  | 484  |
| Station                                             | Existing System<br>Capacity* (ML/d) | 275  | 275  | 275  | 275  | 275  | 275  |
| West Brampton<br>Pumping Station -<br>Z6 High-Lift  | Forecasted<br>Demand (ML/d)         | 52   | 57   | 77   | 88   | 99   | 110  |
|                                                     | Existing System<br>Capacity* (ML/d) | 87   | 87   | 87   | 87   | 87   | 87   |

\*Actual capacity determined from system head curves.

## 4.3.4 Water Storage

Water storage requirements were assessed using the Water System Schematics, population projections and design criteria. Required storage is dictated by the ability to provide the required equalization storage, fire storage and emergency supply to maintain a satisfactory level of service. Based on the analysis, the following storage deficiencies were identified:

#### **Silverthorn Reservoir**

The existing Silverthorne Reservoir will require a capacity expansion to service growth to 2041. A new 25 ML reservoir cell will be required to service projected growth within the reservoir service area.

#### West Brampton Reservoir

The existing West Brampton Reservoir will require a capacity expansion to service growth to 2041. A new 20 ML reservoir cell will be required to service projected growth within the reservoir service area.

Future storage requirements were identified including the need for new storage to service Pressure Zone 6 Central (Victoria Reservoir) and Pressure Zone 7 West (West Caledon Elevated Tank).

**Table 12** provides a summary of the existing and future storage requirements. For more detailed information, please refer to **Appendix 3D**.

| Project Description           | Assessment<br>Parameters            | 2019 | 2021 | 2026 | 2031 | 2036 | 2041 |
|-------------------------------|-------------------------------------|------|------|------|------|------|------|
| Existing Water Sto            | orage                               |      |      |      |      |      |      |
| Silverthorn                   | Required<br>Capacity (ML)           | 31   | 31   | 43   | 44   | 46   | 49   |
| Reservoir                     | Existing Available<br>Capacity (ML) | 46   | 46   | 46   | 46   | 46   | 46   |
| West Brampton                 | Required<br>Capacity (ML)           | 31   | 32   | 34   | 44   | 46   | 49   |
| Reservoir                     | Existing Available<br>Capacity (ML) | 40   | 40   | 40   | 40   | 40   | 40   |
| Future Water Sto              | rage                                |      |      |      |      |      |      |
| Victoria Posorvoir            | Required<br>Capacity (ML)           | 0    | 0    | 18   | 19   | 19   | 19   |
| Victoria Reservoir            | Future Available<br>Capacity (ML)   | 0    | 0    | 40   | 40   | 40   | 40   |
| West Caledon<br>Elevated Tank | Required<br>Capacity (ML)           | 0    | 0    | 0    | 5    | 6    | 8    |
|                               | Future Available<br>Capacity (ML)   | 0    | 0    | 0    | 10   | 10   | 10   |

#### Table 12 – Water storage assessment.

## 5.0 Water Servicing Strategy

- 5.1 Objectives
- 5.2 Evaluation Process and Criteria
- 5.3 Servicing Strategy Development

## 5.0 Water Servicing Strategy

The identification and evaluation of servicing options is a fundamental component of the master planning process. The servicing strategy development process allows for a comprehensive review of various servicing solutions and is completed through a transparent process to fully demonstrate decision-making and to provide defensible recommended strategies.

Consistent with previous water and wastewater master plans, each system was considered in isolation with the list of opportunities, issues, and constraints in mind, both within the larger Regional context and at the localized service level. The 2020 Master Plan revisited concepts and strategies outlined in the previous master plans from a new perspective to take into consideration key changes that are critical for the Region's infrastructure plan moving forward. The purpose of this process was to validate current water and wastewater servicing strategies, and to ensure that all options are considered while highlighting why the preferred servicing solutions were chosen.

Key changes since the previous master plan include:

- Planning projections to the new 2041 planning horizon.
- Expansion of the future lake-based servicing boundary to areas north of Mayfield Road and west Bolton.
- Changes to Master Plan Evaluation Criteria, including the addition of the Innovation/Adaptation criteria.
- Increased focus on climate change considerations in the Region's decision-making and planning processes.

The water servicing strategy development process is described in the following sections.

## 5.1 Objectives

The Region intends for the 2020 Master Plan to meet the Approach 1 requirements under the Municipal Engineers Association (MEA) Class EA process. Under Approach 1, a master plan report is prepared at the conclusion of Phases 1 and 2 of the Class EA process. This approach allows for all Schedule A and A+ projects identified in the master plan to move forward to implementation. Any Schedule B and C projects identified will require supporting information and decision-making to proceed onto separate studies and continue through Phases 3 and 4 of the Class EA process.

The proposed strategy development approach described herein has been designed to ensure a logical and transparent process that documents the evaluation and decision-making that will ultimately develop a capital program that is defensible. Sustainability principles were also considered in the development of the 2020 Master Plan and were integrated within the strategy development, such as:

- 1. Making best use of existing infrastructure.
- 2. Minimizing the cost of new infrastructure.
- 3. Considering operation and maintenance costs to ensure financial sustainability.
- 4. Ensuring the long-term reliability and security of the water and wastewater systems.
- 5. Increasing system resiliency to climate change.
- 6. Avoiding disruptions to natural and cultural heritage resources.
- 7. Minimizing environmental crossings and other disruptions to the environment.
- 8. Planning for future infrastructure within the existing road right-of-way, where possible.
- 9. Avoiding/reducing production of greenhouse gas (GHG) emissions.
- 10. Preventing impact to areas that could represent a significant drinking water threat.

## 5.2 Evaluation Process and Criteria

Opportunities and constraints for the water system were identified at the outset of the study and were used as a starting point for identifying conceptual servicing options. The evaluation process progresses from high-level concepts to more detailed servicing strategies and, where applicable, to further evaluation of specific servicing solutions in certain focus areas. The progression from high-level to more detailed servicing strategies allows for a more efficient process as it screens out non-feasible and unfavourable servicing concepts before they are carried forward for detailed evaluation.

Servicing concepts, strategies and specific servicing solutions are subject to evaluation of six major areas of impact: technical, environmental, financial, legal/jurisdictional, socio/cultural, and innovation/ adaptation. The evaluation criteria and their associated impacts are described in **Table 13**.

#### Table 13 – Master Plan evaluation criteria.

| Criteria             | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Technical Impact     | <ul> <li>Describes any overall technical advantage/disadvantage to an option related to capacity requirements and level of service</li> <li>Describes difficulty and feasibility of construction (construction in limited areas, crossings, protection of utilities, trees or structures)</li> <li>Assesses whether existing infrastructure upgrades are required</li> <li>Describes risk considerations such as level of security of water supply/transmission and operational flexibility</li> <li>Describes the ability for phasing:         <ul> <li>Staged growth and maximizing the use of existing or planned infrastructure and service areas</li> <li>Incremental extensions of infrastructure as growth progresses</li> <li>Describes potential opportunities/constraints to servicing post-2041 and intensification</li> </ul> </li> <li>Describes potential opportunity to decommission existing infrastructure and allow for gravity solutions</li> <li>Describes the technical consideration required for construction and maintenance:         <ul> <li>Highlights need for deep pipe construction, creek/highway/railway crossings, alignments along road rights-of-way and/or easements, and potential challenges during construction of projects that can be coordinated with road improvements or construction of other projects</li> <li>Assesse proximity and/or conflicts with existing infrastructure</li> <li>Considers ability to maintain existing services during construction/implementation</li> </ul> </li> </ul> |  |  |  |  |  |
| Environmental Impact | <ul> <li>Describes the potential impacts of the option on the natural environment</li> <li>Proximity to existing natural features and designations including but not limited to the Greenbelt, Niagara Escarpment, ESAs, ANSIs, conservation authority regulation limits, vegetation, woodlands, wildlife, aquatic resources and fisheries and nearby agricultural lands</li> <li>Highlights requirements for major environmental crossings, deep sewers, development through environmental designated areas, and requirements for mitigative action</li> <li>Describes potential impact on groundwater quantity and quality</li> <li>Consider resiliency and adaptation to climate change</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |

| Criteria                         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Financial Impact                 | <ul> <li>Outlines when use of existing infrastructure is maximized</li> <li>Considers construction costs for new infrastructure and for upgrades to existing system</li> <li>Describes the capital cost relative to other options</li> <li>Highlights major projects that differ from other options that significantly contribute to the capital costs</li> <li>Describes large up-front costs required for phasing of growth and implementation of capital projects over time</li> <li>Comments on long-term energy costs and operation and maintenance costs and requirements</li> <li>Assesses long-term financial sustainability</li> <li>Describes opportunities for integration with state of good repair projects</li> </ul> |
| Legal / Jurisdictional<br>Impact | <ul> <li>Notes any land requirement issues and agency concerns that may arise related to project alignments, land acquisition, planning permits, crossings, etc.</li> <li>Notes if coordination, approvals and land acquisition will be required</li> <li>Potential to maximize worker safety and operability</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                            |
| Socio / Cultural<br>Impact       | <ul> <li>Describes the potential impacts to local businesses and residents,<br/>archaeological/heritage resources, and visual aesthetics</li> <li>Describes any potential noise, odour, dust, vibrations, traffic disruptions to<br/>residents and businesses during construction and operation</li> <li>Consider potential community resistance to servicing alternatives</li> </ul>                                                                                                                                                                                                                                                                                                                                               |
| Innovation /<br>Adaptation       | <ul> <li>Considers ability to apply innovation and new technologies</li> <li>Highlights use of data for evidence based decision-making process</li> <li>Outlines opportunities for operational flexibility to adapt to climate change</li> <li>Describes ability to maximize energy efficiency, incorporate water conservation, and other sustainability and environmental practices</li> <li>Considers performance of system under power outage conditions and opportunities for renewable energy production and use</li> <li>Comments on avoiding energy-intensive infrastructure</li> </ul>                                                                                                                                      |

## **5.3 Servicing Strategy Development**

Within a Master Plan for such a large, mature municipality such as Peel, with well-established trunk infrastructure networks it can be beneficial to develop several separate focused strategies with clearly defined constraints and goals, in addition to a broad system wide servicing strategy.

The Peel Water Strategies consisted of the following:

- System Wide Servicing Concepts address future water supply sources and locations to facilitate servicing of new growth
- Focus Areas Servicing Solutions zone by zone review of infrastructure needs and strategies to address growth within the given pressure zone as well as support growth in the downstream service areas.

## **5.3.1 System Wide Servicing Concepts**

A list of servicing concepts to address existing and future servicing issues was considered at a high level, weighing the advantages and disadvantages of each concept. The initial, strategic concepts were evaluated simplistically, with advantages and disadvantages listed. Based on the evaluation, concepts were either screened out or carried forward in combination for further evaluation. The concepts evaluated are listed below along with the description and detailed evaluation of these concepts can be found in **Appendix 3E**.

| Concept                                             | Carried Forward / Screened Out |
|-----------------------------------------------------|--------------------------------|
| Do Nothing                                          | Screened Out                   |
| Limit Growth                                        | Screened Out                   |
| Build Off Planned 2031 Infrastructure               | Carried Forward 🖌              |
| Construct New Stream-Based or Groundwater-Based WTP | Carried Forward 🖌              |
| Construct New WTP on Shoreline of Lake Ontario      | Screened Out                   |
| Water Conservation Practices                        | Carried Forward 🗸              |

#### Table 14 – Water system wide servicing concepts.

## **5.3.2 System Wide Servicing Strategies Evaluation**

Combinations of the concepts carried forward formed various strategies that are generally considered complete system-wide solutions. The descriptions of the strategies are relatively detailed and thus offer greater scope for more detailed evaluation. At this stage, each strategy is subjected to evaluation against the 2020 Master Plan Evaluation Criteria.

Three water system-wide servicing strategies were developed and evaluated with this process. The system wide servicing strategies are described as follows:

#### Strategy 1 – Build off Planned 2031 Infrastructure

- The most recent Water and Wastewater Master Plan was completed in 2013, which
  recommended a servicing strategy and capital program to meet growth to the 2031 planning
  horizon. The Region has implemented several of the master plan recommended projects since
  that time to service growth. This strategy builds off the historically planned 2031 infrastructure
  by further expanding transmission, storage and pumping to support development of upper
  zones where growth is projected to continue.
- Increase connectivity within the transmission and distribution systems.
- Continue to implement the Region's water efficiency strategy and conservation program.

#### Strategy 2 – New Stream-Based Water Treatment Plant

- Modified version of the planned 20431 infrastructure with less expansion of transmission, storage and pumping to support development of upper zones.
- Construct a new stream-based water treatment plant to service growth in the upper pressure zones.
- Provide supply to upper pressure zones from the new stream-based water treatment plant.
- Increase connectivity within the transmission and distribution systems.
- Continue to implement the Region's water efficiency strategy and conservation program.

#### Strategy 3 – New Groundwater-Based Water Treatment Plant

- Modified version of the planned 2031 infrastructure with less expansion of transmission, storage and pumping to support development of upper zones.
- Construct a new groundwater-based water treatment plant to service growth in the upper pressure zones.
- Provide supply to upper pressure zones from the new groundwater-based water treatment plant.
- Increase connectivity within the transmission and distribution systems.
- Continue to implement the Region's water efficiency strategy and conservation program.

The results of the strategy evaluation show that Strategy 2 and 3, shown schematically in **Figure 14** and **Figure 15**, respectively were screened out and Strategy 1, shown in **Figure 13** was carried forward. The evaluation of the system-wide servicing strategies is presented in **Appendix 3E**.







Figure 14 – System wide servicing strategy 2 - New stream-based water treatment plant.



Figure 15 – System wide servicing strategy 3 - New groundwater-based water treatment plant.

## 5.3.3 Focus Area Servicing Solutions

The lake-based water system is a complex system with multiple components. In addition to the System Wide Servicing Strategy outlined above, the 2020 Master Plan outlines servicing solutions in focus areas where key components of the system are reviewed, and the optimal servicing solutions are identified and presented. Collectively, the System Wide and Focus Area Servicing Solutions combine to form the overall water servicing strategy for the Region of Peel. The following sections summarize key aspects of the water servicing solutions for treatment and each pressure zone in the lake-based system. Additional information is provided in **Appendix 3E**.

#### 5.3.3.1 Treatment

The Region of Peel water treatment plants (WTP) are anticipated to have enough capacity to meet the projected water demands for the Region up to 2041. Therefore, expansion of the treatment capacity at the current facilities has not been identified as part of the preferred water servicing strategy. However, the following treatment upgrade components are incorporated in the servicing strategy:

#### A.P. Kennedy WTP – New Intake

Currently, a single 2550-mm intake pipe installed in 1991 is providing water from Lake Ontario to the A.P. Kennedy WTP. A new intake pipe and structure at the plant is identified as being required by the end of the planning period (2041). It is anticipated that this project will require the completion of a Schedule C Class Environmental Assessment prior to proceeding with design and implementation.

#### A.P. Kennedy WTP – Standby Power

Additional standby power has been installed at the existing A.P. Kennedy WTP. The plant is equipped with the standby power units that provide a total energy of 12MW for treatment, base loads and highlift pumping to the system. For more details, see **Appendix 3F** for standby power report.

#### A. P. Kennedy WTP – Waste Building Expansion

It is anticipated that this project will require the completion of a Schedule C Class Environmental Assessment prior to proceeding with design and implementation.

#### A.P. Kennedy WTP – Reservoir Expansion

Both the A.P. Kennedy WTP and the Lorne Park WTP have treated water reservoirs with a capacity of 23 million litres (ML). The Lorne Park WTP reservoir has a capacity to provide 1.3 hours of storage time by 2041 during system-wide maximum day demands. Under the same conditions, the A.P. Kennedy WTP reservoir provides 0.5 hours of storage time. The storage volumes and time are shown in **Table 15**.

The 2020 Master Plan has identified a reservoir expansion of 35 ML at the A.P. Kennedy WTP for the plant to be able to provide a similar level of service as the Lorne Park WTP of 1.3 hours of storage time by 2041 during system-wide maximum day demands. Due to the complexity of this project, it is anticipated that a completion of a Schedule C Class Environmental Assessment will be required prior to proceeding with design and implementation.

#### Table 15 – Water treated capacity and storage time.

| WTP          | Service Area             | Reservoir Capacity                     | 2041 Maximum<br>Day Demands | 2041 Storage<br>Time |
|--------------|--------------------------|----------------------------------------|-----------------------------|----------------------|
| Lorne Park   | West Zones MDD           | 23 ML (existing)                       | 436                         | 1.3 hours            |
|              | East/Central/York<br>MDD |                                        | 1,053                       |                      |
| A.P. Kennedy |                          | 23 ML (existing)                       |                             | 0.5 hours            |
|              |                          | 23 ML (existing) + 35<br>ML (proposed) |                             | 1.3 hours            |

#### 5.3.3.2 Pressure Zone 1

Pressure Zone 1 has projected adequate storage and pumping capacity to 2041. The servicing solutions for this area are centered around increasing connectivity of the distribution system to support projected growth within the pressure zone, including areas such as Inspiration Lakeview, Port Credit Mobility Hub, West Village and Clarkson GO. Pressure Zone 1 is shown in **Figure 16**.

#### Distribution

Although the focus of the 2020 Master Plan is on the water transmission system, some key distribution projects are considered within this pressure zone such as the Lakeshore Water Distribution Main from the A.P. Kennedy WTP to the Lorne Park WTP.



Figure 16 – Pressure Zone 1.

#### 5.3.3.3 Pressure Zone 2

The servicing solutions for Pressure Zone 2 mainly consist of increasing transmission and pumping capacity to move water to the upper pressure zones, supporting growth within intensification areas such as Dundas Connect. Additionally, the solutions support the Queensway Zone 1 / Zone 2 switchover and connection to the Silverthorn Pumping Station. Pressure Zone 2 is shown in **Figure 17**.

#### Key projects required to achieve the proposed solutions include:

#### **Streetsvillle Transmission Main**

Construction of a new transmission main from the Herridge Pumping Station to the Streetsville Reservoir.

### Queensway Sub-Transmission Main Extension

Construction of a sub-transmission main on Bloor Street and Cawthra Road from the Silverthorn Pumping Station to The Queensway East.

It is anticipated that the Streetsville Transmission Main and the Queensway Sub-Transmission Main will require the completion of Schedule C and Schedule B Class Environmental Assessments, respectively prior to proceeding with design and implementation; therefore, for the purposes of the Master Plan, detailed options for other alternative routes / alignments were not further explored.

#### Lorne Park Pumping Station Capacity Expansion

Installation of additional high-lift pumping capacity at the Lorne Park WTP to service development in west Peel will be required. No building expansion is required to increase the pumping capacity and therefore the project can proceed directly to implementation (Schedule A).

#### Silverthorn Reservoir and Pumping Station Expansion

Construction of major improvements and upgrades at the Silverthorn Reservoir and Pumping Station, including a new 25-ML reservoir cell and pumping equipment improvements to improve hydraulic performance and efficiency for Pressure Zone 2. The proposed upgrades and expansion were subjected to a Schedule B Class Environmental Assessment in 2018<sup>3</sup>.

#### Distribution

Although the focus of the 2020 Master Plan is on the water transmission system, some key distribution projects considered in this pressure zone include the distribution mains along Dundas Street East from Dixie Road to Confederation Parkway.



Figure 17 – Pressure Zone 2.

#### 5.3.3.4 Pressure Zone 3

The servicing solutions for Pressure Zone 3 mainly consist of increasing transmission and pumping capacity to move water to the upper pressure zones and support growth within intensification areas such as the Mississauga City Centre and the Hurontario Corridor. Pressure Zone 3 is shown in **Figure 18**.

#### Key projects required to achieve the proposed solutions include:

#### Meadowvale North Transmission Main

Construction of a new transmission main from the Streetsville Pumping Station to the Meadowvale North Reservoir. This project will require the completion of a Schedule C Class Environmental Assessment prior to proceeding with design and implementation, and therefore for the purposes of the Master Plan detailed options for other alternative routes/alignments were not further explored.

#### **Burnhamthorpe Road Sub-Transmission Main**

Construction of a new sub-transmission main on Burnhamthorpe Road from Cawthra Road to Grand Park Drive. The proposed sub-transmission main was subjected to a Schedule B Class Environmental Assessment in 2015<sup>4</sup>. The EA confirmed the preferred alternative for the Burnhamthorpe watermain including size, material, alignment and construction method.





#### **Confederation Parkway Sub-Transmission Main**

Construction of a new sub-transmission main on Confederation Parkway from Burnhamthorpe Road West to Eglinton Avenue West to service future growth in the Mississauga City Centre. This project is anticipated to require the completion of a Schedule B Class Environmental Assessment prior to proceeding with design and implementation, and therefore for the purposes of the Master Plan detailed options for other alternative routes/ alignments were not further explored.

#### Beckett Sproule Transfer Pumping Station Capacity Expansion

Installation of additional transfer pumping capacity at the Beckett Sproule Pumping Station. No building expansions are required to increase the capacity at Beckett Sproule, therefore it can proceed directly to implementation (Schedule A).

#### Distribution

Although the focus of the 2020 Master Plan is on the water transmission system, some key distribution projects are considered in this pressure zone such as distributions mains in the Mississauga City Centre.

#### 5.3.3.5 Pressure Zone 4

Pressure Zone 4 has projected adequate pumping capacity to 2041. The servicing solutions for Pressure Zone 4 consist mainly of improving the feed to the East Brampton Reservoir and expansion of the West Brampton Reservoir. Pressure Zone 4 is shown in **Figure 19**.

#### Key projects required to achieve the proposed solutions include:

#### **East Brampton Transmission Main Twinning**

Construction of a new transmission main from the Beckett Sproule Pumping Station to East Brampton Reservoir. The proposed transmission main was subjected to a Schedule C Class Environmental Assessment in 2014<sup>5</sup>. The EA confirmed the preferred alternative for the transmission main including size, material, alignment as well as construction methods and mitigation measures.

#### West Brampton Reservoir Expansion

Expansion of the West Brampton Reservoir with the construction of a third 20-ML reservoir cell to service future development in the Bram West, Huttonville North and Mount Pleasant West secondary plan areas.

#### Distribution

Although the focus of the Master Plan is on the water transmission system, some key distribution projects are considered in this pressure zone such as distribution mains along Hurontario Street and Queen Street East, among others.



Figure 19 – Pressure Zone 4

#### 5.3.3.6 Pressure Zone 5

The servicing solutions for Pressure Zone 5 consist of extending servicing for future greenfield growth and into the Uptown Brampton growth node, improving connectivity across Pressure Zone 5, and supporting intensification in areas such as Downtown Brampton. Another key aspect of the servicing solution for this pressure zone is the absence of storage facility for Zone 5 East. Equalization, fire and emergency storage for this pressure zone are provided by pumping from Tullamore and Airport pumping stations. Pressure Zone 5 is shown in **Figure 20**.

#### Key projects required to achieve the proposed solutions in Pressure Zone 5 include:

#### Central Brampton Sub-Transmission Main

Construction of a new sub-transmission main from the Beckett Sproule Pumping Station to the East Brampton Pumping Station. The proposed sub-transmission main was subjected to a Schedule C Class Environmental Assessment in 2014<sup>5</sup>. The EA confirmed the preferred alternative for the sub-transmission main including size, material, alignment as well as construction methods and mitigation measures.

#### Williams Parkway Sub-Transmission Main

Construction of a new sub-transmission main on Williams Parkway from the West Brampton Pumping Station to Dixie Road. The proposed sub-transmission main was subjected to a Schedule C Class Environmental Assessment in 2013<sup>6</sup>. The EA confirmed the preferred alternative for the sub-transmission main including size, material, alignment as well as construction method. Due to the overall water main distance, during the Class EA study it was anticipated that the Williams Parkway sub-transmission main will be constructed in phases

Four key sub-transmission projects, required to achieve the proposed solution and that have been identified as Schedule A+ are as follows:

#### **Countryside Drive Sub-Transmission Main**

Construction of a new sub-transmission main on Countryside Drive from The Gore Road to Clarkway Drive to service future development in the Highway 427 Industrial Secondary Plan.

#### **Centre Street Sub-Transmission Main**

Construction of a new sub-transmission main on Centre Street from Williams Parkway to John Street to service future development in central Brampton.

#### **Goreway Drive Sub-Transmission Main**

Construction of a new sub-transmission main on Goreway Drive from Castlemore Road to Countryside Drive to service future development in the Highway 427 Industrial Secondary Plan.

#### **Mayfield Road Sub-Transmission Main**

Construction of a new sub-transmission main on Mayfield Road from Innis Lake Road to the North Brampton Reservoir to service future development in northeast Brampton.

#### West Brampton Pumping Station - Capacity Expansion

Installation of additional low-lift pumping capacity at the West Brampton Pumping Station. No building expansion is required to increase the pumping capacity and therefore the project can proceed directly to implementation (Schedule A).

#### Distribution

Although the focus of the 2020 Master Plan is on the water transmission system, several distribution projects are included in the Master Plan to support the servicing solutions within Pressure Zone 5. Most of the distribution projects are in growth areas such as Highway 427 Industrial Secondary Plan, Bram West, Uptown Brampton and Brampton Downtown, among others.



Figure 20 – Pressure Zone 5.

#### 5.3.3.7 Pressure Zone 6

The servicing solutions for Pressure Zone 6 consist of extending servicing into northwest Brampton, adding a secondary feed to west Bolton and providing floating storage with the new Victoria Reservoir. Pressure Zone 6 is shown in **Figure 21**.

#### Key projects required to achieve the proposed solutions in Pressure Zone 6 include:

#### West Brampton Pumping Station Capacity Expansion

Installation of additional high-lift pumping capacity at the West Brampton Pumping Station. No building expansion is required to increase the pumping capacity and therefore the project can proceed directly to implementation (Schedule A).

#### Victoria Reservoir

Construction of a new 40-ML reservoir in the vicinity of King Street and Hurontario Street to provide storage for Pressure Zone 6.

#### Victoria Transmission and Sub-Transmission Mains

Construction of a new transmission main and a new sub-transmission main from the North Brampton Pumping Station to the Victoria Reservoir

The Victoria Reservoir and associated transmission and sub-transmission mains were subjected to a Schedule C Class Environmental Assessment in 2011<sup>7</sup>. The EA confirmed the preferred storage facility location as well as the preferred route for the water mains including size, material, alignment as well as construction methods and mitigation measures.

Key sub-transmission projects, required to achieve the proposed solution and that have been identified as Schedule A+ are as follows:

#### **Bovaird Drive West Sub-Transmission Main**

Construction of a new sub-transmission main on Bovaird Drive West from Mississauga Road to Heritage Road to service future development in the Heritage Heights Secondary Plan.

#### **Mayfield Road Sub-Transmission Main**

Construction of a new sub-transmission main on Mayfield Road from Heritage Road to Mississauga Road to service future development in the Mount Pleasant West Secondary Plan.

#### Heritage Road (North) Sub-Transmission Main

Construction of a new sub-transmission main on Heritage Road from Wanless Drive to Mayfield Road to service future development in the Mount Pleasant West Secondary Plan.

#### Heritage Road Sub-Transmission Main

Construction of a new sub-transmission main on Heritage Road from the West Brampton Pumping Station to Bovaird Drive to service future development in the Heritage Heights Secondary Plan.

#### Distribution

Although the focus of the 2020 Master Plan is on the water transmission system, several distribution projects are included in the Master Plan to extend servicing to growth areas such as northwest and northeast Brampton, Tullamore Industrial area and West Bolton.

A key element of the Pressure Zone 6 servicing solution is the need for a secondary feed to west Bolton. The secondary feed to west Bolton is triggered by additional growth in the area identified to 2041.

As part of the 2020 Master Plan two alignment options shown below were considered and further investigated:



More details on the evaluation of these two options can be found in **Appendix 3E**.

The proposed secondary feed to west Bolton along Innis Lake Road and Healy Road will require the completion of a Schedule B Class Environmental Assessment prior to proceeding with design and implementation. Through the EA process other alignments and options could be evaluated and consideration for size, material, construction methods and mitigation measures should be made.



Figure 21 – Pressure Zone 6.

#### 5.3.3.8 Pressure Zone 7

The servicing solutions for Pressure Zone 7 consist of extending servicing to support growth in areas north of Mayfield Road and providing pumped storage until the new Pressure Zone 7 storage is commissioned. Key growth areas in this pressure zone include the Mayfield West developments and the Tullamore Industrial Area. Pressure Zone 7 is shown in **Figure 22**.

A key element of the Pressure Zone 7 servicing solution is the need for storage. This storage requirement is triggered by additional growth to 2041 identified within Pressure Zone 7. As part of the 2020 Master Plan the following storage options were considered and further investigated:

| Option 1: New Elevated Tank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Option 2: New In-ground Reservoir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| <ul> <li>Key Considerations:</li> <li>Construction in Greenbelt Area,<br/>potential to impact environmentally<br/>sensitive and protected areas. Less<br/>impact than option 2 due to potential<br/>location further south.</li> <li>Potential impact to surrounding prime<br/>agricultural areas</li> <li>Lower impact to groundwater and<br/>Source Water Protection than option 2.</li> <li>Requires new transmission and sub-<br/>transmission mains.</li> <li>Elevated tanks are not typically<br/>expanded and constructing new facilities<br/>is required to provide additional storage.</li> <li>Greater impact on visual aesthetics than<br/>option 2.</li> </ul> | <ul> <li>Key Considerations:</li> <li>Significant construction in greenbelt area, potential to impact environmentally sensitive and protected areas. Higher impact than option 1 due to potential location further north.</li> <li>Potential impact to surrounding prime agricultural areas</li> <li>Greater impact to groundwater and source water protection than option 1.</li> <li>Requires new longer transmission and sub-transmission mains than option 1.</li> <li>Inground reservoirs can be interconnected for potential expansion if required.</li> <li>Less impact on visual aesthetics than option 1.</li> </ul> |  |  |
| Carried Forward 🗸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Carried Forward 🗸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |

The proposed storage options, and associated transmission and sub-transmission mains will require the completion of a Schedule C Class Environmental Assessment prior to proceeding with design and implementation. As such, both options for new storage in Zone 7 are considered to be viable and are carried forward at this time. For the purposes of the Mater Plan Capital Program, a cost for the Option 1 – New Elevated Tank was carried. Both options will be reviewed through the EA process. Options for Pressure Zone 7 storage as well as water main alignments should be evaluated with due considerations for location, property requirements, size, material, construction methods, mitigation measures, among others should be made.

#### Distribution

Although the focus of the Master Plan is on the water transmission system, several distribution projects are included in the Master Plan to support new Greenfield growth north of Mayfield Road.



Figure 22 – Pressure Zone 7.

## 5.3.4 Inter-Regional Agreements

#### 5.3.4.1 York Region Water Servicing

The York water demand requirements are defined in the York-Peel Water Servicing Agreement, Schedule C. The agreement outlines that the 2041 water supply requirement for York Region is 331 ML/d. The maximum day demands as per the York-Peel Servicing Agreement are shown in **Figure 23**.

The York water demand requirements are a key component of the long-term water supply and servicing requirements for the Region of Peel. They are generally reflected in the water supply requirements for the Central and East Transmission Systems. Water supplied to York Region is treated at the A.P. Kennedy WTP and pumped north through the Central Transmission System. It is then transferred to the East Transmission System through the Beckett Sproule Transfer Pumping Station and ultimately pumped to York Region from the Airport Road Pumping Station.

The York water demands requirement is supplied by the A.P. Kennedy WTP. This facility has sufficient capacity to service the required maximum day water demands to 2041, including York demands as per the Agreement.

The 2013 Master Plan identified infrastructure upgrades to meet York's water demand requirements. Some of these upgrades have been implemented while others continue to be valid and are included in the 2020 Master Plan capital program such as the Beckett Sproule Transfer Pumping Station capacity expansion.

A major recent upgrade to the Central and East Transmission Systems was the construction of the 2400-mm Hanlan Transmission Main.

This transmission main will service future growth in Peel as well as York water demand requirements.



Figure 23 – Maximum day demand (MDD) as per the York-Peel Water Servicing Agreement.

## 6.0 Preferred Water Servicing Strategy

- 6.1 Preferred Servicing Strategy
- 6.2 Capital Program for the Preferred Water Servicing Strategy

## 6.0 Preferred Water Servicing Strategy

This section summarizes the preferred Water Servicing Strategy for the Region of Peel to service growth to 2041.

## 6.1 Preferred Servicing Strategy

The Preferred Water Servicing Strategy is a combination of system-wide recommendations, area-specific servicing solutions, plus water system and facility recommendations collectively addressing the water needs of the Region of Peel out to year 2041.

The preferred water servicing strategy is outlined in Figure 24 and was developed to ensure that:

- Extension of the existing lake-based water system is aligned with existing Regional and Local planning policies.
- Use of the existing water system and facilities is maximized and used as the backbone for new infrastructure to meet the planned 2041 needs.
- Strategic oversizing of infrastructure, where justified, is planned to support growth beyond 2041.
- The Master Plan recommendations were developed by, and provided feedback to, the Region's Growth Management Strategy through an integrated process.

#### Zone 7

- Extension of distribution network.
- New West Caledon Transmission Main.
- New floating storage: West Caledon Elevated Tank.

#### Zone 6

- New Victoria Transmission Main.
- · Extend watermains into northwest Brampton Greenfield.
- New secondary feed to West Bolton .
- New floating storage: Victoria Reservoir.

#### Zone 5

- Extend watermains for Greenfield growth.
- · Improve connectivity between Williams Parkway and
- supplement Downtown Brampton Intensification.
  Extend servicing into Uptown Brampton Growth Area.

#### Zone 4

 Improve feed to East Brampton Zone 4 Reservoir via East Brampton Transmission Main Twinning.

#### Zone 3

- Increase transmission and pumping capacity to move water north.
- New watermains to support growth within intensification areas.

#### Zone 2

- Increase transmission and pumping capacity to move water north.
- Queensway Zone 1/2 switchover and connection to Silverthorn

#### Zone 1

Support growth and pressure zone interconnectivity.

#### Water Treatment

- Plants will meet capacity needs to 2041.
- A.P. Kennedy reservoir expansion.

#### Region of York

 Peel will continue to provide water to York Region as per existing agreement.

#### Figure 24 – Preferred water servicing strategy for the lake-based system.



## 6.2 Capital Program for the Preferred Water Servicing Strategy

As described in previous sections, the preferred Water Servicing Strategy is developed to support servicing needs of the existing and future growths areas within the Region of Peel lake-based system to 2041. The capital costs for each project of the preferred servicing strategy were estimated according to the costing methodology describe in **Section 2.4**. These projects are listed according to their project type ("D" Distribution, "ST" Sub-Transmission, "T" Transmission, "P" Pumping Station, "S" Storage Facility, "TR" Water Treatment Plant) and project number in the capital program map and table.

The capital program table contains project descriptions, project type, location, dimensions, proposed timing, and estimated total project cost. The capital program table also outlines the Class EA requirement for each project including those that have been completed.

The water capital program will work as a foundation for the Region of Peel Capital Budget. The water capital program is a comprehensive list of projects complete with description, costs and timing. This program is not only a list of capital investment, it also represents new infrastructure that will require future operation and maintenance costs. Capital costs in combination with the ongoing operation and maintenance costs for the Region infrastructure.

The capital program table for the preferred Water Servicing Strategy is shown in Table 16.

The capital program map for the preferred Water Servicing Strategy is shown in **Figure 25**. The water capital program map presents the general location and extents of the projects that form the preferred servicing strategy.


#### Figure 25 – Preferred water servicing strategy capital program for the lake-based system.



# Table 16 – Capital program table for the preferred water servicing strategy.

| Master Plan<br>ID | Project Name                                                              | Project Description                                                                                                                  | Year in<br>Service | Municipality | Pressure<br>Zone | Class EA    | Project<br>Type |
|-------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------|------------------|-------------|-----------------|
| W-D-001           | 400-mm Water Main - Future<br>Financial Drive (Bram West)                 | Construction of a 400-mm water main on the future<br>Financial Drive from Heritage Road to Winston Churchill<br>Boulevard.           | 2023               | Brampton     | 5                | Schedule A+ | WDM             |
| W-D-003           | 400-mm Water Main - Bovaird Drive<br>West                                 | Construction of a 400-mm water main on Bovaird Drive<br>West from Heritage Road to a future street.                                  | 2030               | Brampton     | 6                | Schedule A+ | WDM             |
| W-D-004           | 600-mm Water Main - Future<br>Sandalwood Parkway West                     | Construction of a 600-mm water main on the future<br>Sandalwood Parkway West from Mississauga Road to<br>Heritage Road.              | 2032               | Brampton     | 6                | Schedule A+ | WDM             |
| W-D-005           | 400-mm Water Main - Future Street<br>(Heritage Heights)                   | Construction of a 400-mm water main on a future street from Heritage Road to 750 metres westerly.                                    | 2029               | Brampton     | 6                | Schedule A+ | WDM             |
| W-D-007           | 400-mm Water Main - Wanless<br>Drive                                      | Construction of a 400-mm water main on Wanless Drive from Mississauga Road to Heritage Road.                                         | 2034               | Brampton     | 6                | Schedule A+ | WDM             |
| W-D-008           | 400-mm Water Main - Wanless<br>Drive                                      | Construction of a 400-mm water main on Wanless Drive from Winston Churchill Boulevard to Heritage Road.                              | 2035               | Brampton     | 6                | Schedule A+ | WDM             |
| W-D-009           | 400-mm Water Main - Mayfield<br>Road                                      | Construction of a 400-mm water main on Mayfield Road from Heritage Road to Winston Churchill Boulevard.                              | 2038               | Brampton     | 6                | Schedule A+ | WDM             |
| W-D-010           | 600-mm Water Main - Countryside<br>Drive (Highway 427 Industrial)         | Construction of a 600-mm water main on Countryside<br>Drive from Clarkway Drive to the future north-south road.                      | 2025               | Brampton     | 5                | Schedule A+ | WDM             |
| W-D-011           | 600-mm Water Main - Clarkway<br>Drive (Highway 427 Industrial)            | Construction of a 600-mm water main on Clarkway Drive from Countryside Drive to Mayfield Road.                                       | 2026               | Brampton     | 5                | Schedule A+ | WDM             |
| W-D-012           | 400-mm Water Main - Future East-<br>West Road (Highway 427 Industrial)    | Construction of a 400-mm water main on the future east-<br>west road from The Gore Road to Clarkway Drive.                           | 2023               | Brampton     | 5                | Schedule A+ | WDM             |
| W-D-013           | 400-mm Water Main - Future East-<br>West Road (Highway 427 Industrial)    | Construction of a 400-mm water main on the future east-<br>west road from Coleraine Drive to the future north-south<br>road.         | 2026               | Brampton     | 5                | Schedule A+ | WDM             |
| W-D-014           | 400-mm Water Main - New Road A<br>(Bram West)                             | Construction of a 400-mm water main on New Road A<br>(Bram West) from Winston Churchill Boulevard to Heritage<br>Road.               | 2027               | Brampton     | 5                | Schedule A+ | WDM             |
| W-D-015           | 400-mm Water Main - Winston<br>Churchill Boulevard                        | Construction of a 400-mm water main on Winston<br>Churchill Boulevard from New Road A (Bram West) to the<br>future Bramwest Parkway. | 2028               | Brampton     | 5                | Schedule A+ | WDM             |
| W-D-021           | 400-mm Water Main - Heart Lake<br>Road (Mayfield West Phase 1)            | Construction of a 400-mm water main on Heart Lake Road<br>from Mayfield Road to Abbotside Way.                                       | 2019               | Caledon      | 7                | Schedule A  | WDM             |
| W-D-023           | 600-mm Water Main - Future Street<br>(Highway 427 Industrial)             | Construction of a 600-mm water main on the future north-<br>south road from the future east-west road to Countryside<br>Drive.       | 2025               | Brampton     | 5                | Schedule A+ | WDM             |
| W-D-025           | 400-mm Water Main - Future<br>Inspire Boulevard (Countryside<br>Villages) | Construction of a 400-mm water main on the future<br>Inspire Boulevard from Bramalea Road to approximately<br>700 metres westerly.   | 2019               | Brampton     | 6                | Schedule A+ | WDM             |
| W-D-026           | 400-mm Water Main - Future<br>Inspire Boulevard (Countryside<br>Villages) | Construction of a 400-mm water main on the future<br>Inspire Boulevard from 310 metres east of Bramalea Road<br>to Torbram Road.     | 2019               | Brampton     | 6                | Schedule A+ | WDM             |
|                   |                                                                           |                                                                                                                                      |                    |              |                  |             |                 |

Region of Peel – 2020 Water and Wastewater Master Plan for the Lake-Based Systems

| Size/Capacity | Length<br>(m) | Total Estimated Cost<br>(\$2020) |
|---------------|---------------|----------------------------------|
| 400 mm        | 1440          | \$ 3,647,200                     |
| 400 mm        | 690           | \$ 1,702,400                     |
| 600 mm        | 1360          | \$ 3,701,200                     |
| 400 mm        | 750           | \$ 1,365,000                     |
| 400 mm        | 1380          | \$ 2,809,200                     |
| 400 mm        | 1470          | \$ 2,954,100                     |
| 400 mm        | 1460          | \$ 4,892,100                     |
| 600 mm        | 500           | \$ 2,092,300                     |
| 600 mm        | 1240          | \$ 3,230,100                     |
| 400 mm        | 1400          | \$ 2,513,700                     |
| 400 mm        | 880           | \$ 1,153,800                     |
| 400 mm        | 1480          | \$ 2,609,600                     |
| 400 mm        | 1780          | \$ 3,451,700                     |
| 400mm         | 750           | \$ 2,500,000                     |
| 600 mm        | 1640          | \$ 4,656,100                     |
| 400 mm        | 700           | \$ 1,568,360                     |
| 400 mm        | 1100          | \$ 1,868,220                     |



| Master Plan<br>ID | Project Name                                                          | Project Description                                                                                                                         | Year in<br>Service | Municipality        | Pressure<br>Zone | Class EA    | Project<br>Type | Size/Capacity | Length<br>(m) | Total Est<br>(\$2 | imated Cost<br>2020) |
|-------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|------------------|-------------|-----------------|---------------|---------------|-------------------|----------------------|
| W-D-027           | 400-mm Water Main - Highway 50                                        | Construction of a 400-mm water main on Highway 50 from<br>Castlemore Road to Coleraine Drive.                                               | 2018               | Brampton            | 5                | Schedule A+ | WDM             | 400 mm        | 1970          | \$                | 3,524,390            |
| W-D-028           | 400-mm Water Main - Queen Street<br>East                              | Construction of a 400-mm water main on Queen Street<br>East from Kennedy Road to Highway 410.                                               | 2031               | Brampton            | 5                | Schedule A+ | WDM             | 400 mm        | 1220          | \$                | 2,472,200            |
| W-D-029           | 400-mm Water Main - Derry Road<br>West (Ninth Line Lands)             | Construction of a 400-mm water main on Derry Road West from Tenth Line West to Ninth Line.                                                  | 2024               | Mississauga         | 5                | Schedule A+ | WDM             | 400 mm        | 1370          | \$                | 2,794,400            |
| W-D-030           | 400-mm Water Main - Ninth Line<br>(Ninth Line Lands)                  | Construction of a 400-mm water main on Ninth Line from Derry Road West to Terragar Boulevard.                                               | 2024               | Mississauga         | 5                | Schedule A+ | WDM             | 400 mm        | 880           | \$                | 2,473,800            |
| W-D-031           | 400-mm Water Main - Future Clark<br>Boulevard                         | Construction of a 400-mm water main on future extension of Clark Boulevard from Rutherford Road to Hansen Road South.                       | 2022               | Brampton            | 5                | Schedule A+ | WDM             | 400 mm        | 440           | \$                | 886,700              |
| W-D-032           | 600-mm Water Main - Hurontario<br>Street                              | Construction of a 600-mm water main on Hurontario<br>Street from Dougall Avenue to the future east-west road in<br>Mayfield West Phase 2.   | 2021               | Caledon             | 7                | Schedule A+ | WDM             | 600 mm        | 1740          | \$                | 5,894,900            |
| W-D-033           | 600-mm Water Main - Hurontario<br>Street                              | Construction of a 600-mm water main on Hurontario<br>Street from Mayfield Road to the future east-west road in<br>Mayfield West Phase 2.    | 2021               | Brampton<br>Caledon | 7                | Schedule A+ | WDM             | 600 mm        | 1050          | \$                | 4,944,500            |
| W-D-034           | 400-mm Water Main - Future East-<br>West Road (Mayfield West Phase 2) | Construction of a 400-mm water main on the future east-<br>west road in Mayfield West Phase 2 from Hurontario<br>Street to McLaughlin Road. | 2019               | Caledon             | 7                | Schedule A+ | WDM             | 400 mm        | 1500          | \$                | 2,520,000            |
| W-D-035           | 400-mm Water Main - Future East-<br>West Road (Mayfield West Phase 2) | Construction of a 400-mm water main on the future east-<br>west road in Mayfield West Phase 2 from McLaughlin Road<br>to Chinguacousy Road. | 2019               | Caledon             | 7                | Schedule A+ | WDM             | 400 mm        | 1360          | \$                | 1,960,000            |
| W-D-036           | 600-mm Water Main -<br>Chinguacousy Road (Mayfield West<br>Phase 2)   | Construction of a 600-mm water main on Chinguacousy<br>Road from Mayfield Road to the future east-west road in<br>Mayfield West Phase 2.    | 2019               | Caledon             | 7                | Schedule A+ | WDM             | 600 mm        | 950           | \$                | 2,755,000            |
| W-D-037           | 400-mm Water Main - McVean<br>Drive                                   | Construction of a 400-mm water main on McVean Drive from Countryside Drive to Mayfield Road.                                                | 2017               | Brampton            | 5                | Schedule A+ | WDM             | 400 mm        | 1240          | \$                | 3,425,200            |
| W-D-038           | 400-mm Water Main - Coleraine<br>Drive (Highway 427 Industrial)       | Construction of a 400-mm water main on Coleraine Drive from the future east-west road to Countryside Drive.                                 | 2023               | Brampton            | 5                | Schedule A+ | WDM             | 400 mm        | 1860          | \$                | 3,100,200            |
| W-D-039           | 400-mm Water Main - Coleraine<br>Drive (Highway 427 Industrial)       | Construction of a 400-mm water main on Coleraine Drive from Countryside Drive to Mayfield Road.                                             | 2023               | Brampton            | 5                | Schedule A+ | WDM             | 400 mm        | 1250          | \$                | 2,121,900            |
| W-D-040           | 400-mm Water Main - Winston<br>Churchill Boulevard                    | Construction of a 400-mm water main on Winston<br>Churchill Boulevard from Mayfield Road to Wanless Drive.                                  | 2036               | Brampton            | 6                | Schedule A+ | WDM             | 400 mm        | 1210          | \$                | 1,882,000            |
| W-D-041           | 400-mm Water Main - Future Street<br>(Heritage Heights)               | Construction of a 400-mm water main on a future street<br>(Heritage Heights) from Bovaird Drive northerly to a future<br>street.            | 2030               | Brampton            | 6                | Schedule A+ | WDM             | 400 mm        | 1310          | \$                | 2,038,300            |
| W-D-044           | Growth-Related Water Mains in the Mississauga City Centre             | Construction of several growth-related water mains in the Mississauga City Centre.                                                          | 2019               | Mississauga         | 3                | Schedule A+ | WDM             | 400 mm        | 460           | \$                | 5,000,000            |
| W-D-045           | Growth-Related Water Mains in the Mississauga City Centre             | Construction of several growth-related water mains in the Mississauga City Centre.                                                          | 2019               | Mississauga         | 3                | Schedule A+ | WDM             | 400 mm        | 430           | \$                | 5,000,000            |
| W-D-046           | Growth-Related Water Mains in the Mississauga City Centre             | Construction of several growth-related water mains in the Mississauga City Centre.                                                          | 2019               | Mississauga         | 3                | Schedule A+ | WDM             | 400 mm        | 220           | \$                | 5,000,000            |
|                   |                                                                       |                                                                                                                                             |                    |                     |                  |             |                 |               |               |                   |                      |



| Master Plan<br>ID | Project Name                                                     | Project Description                                                                                                                                | Year in<br>Service | Municipality | Pressure<br>Zone | Class EA                | Project<br>Type |
|-------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------|------------------|-------------------------|-----------------|
| W-D-047           | Growth-Related Water Mains in the<br>Mississauga City Centre     | Construction of several growth-related water mains in the Mississauga City Centre.                                                                 | 2019               | Mississauga  | 3                | Schedule A+             | WDM             |
| W-D-048           | 400-mm Water Main - Hurontario<br>Street                         | Construction of a 400-mm water main on Hurontario<br>Street from Matheson Boulevard to Britannia Road. In<br>coordination with the Hurontario LRT. | 2021               | Mississauga  | 4                | Schedule A+             | WDM             |
| W-D-049           | 400-mm Water Main - Mississauga<br>Road (Mount Pleasant West)    | Construction of a 400-mm water main on Mississauga<br>Road from Mayfield Road southerly to a future street.                                        | 2032               | Brampton     | 7                | Schedule A+             | WDM             |
| W-D-051           | 400-mm Water Main - Mayfield<br>Road (Mount Pleasant West)       | Construction of a 400-mm water main on Mayfield Road from Heritage Road to Winston Churchill Boulevard.                                            | 2038               | Caledon      | 7                | Schedule A+             | WDM             |
| W-D-052           | 600-mm Water Main - Mayfield<br>Road (Mount Pleasant West)       | Construction of a 600-mm water main on Mayfield Road from Mississauga Road to Heritage Road.                                                       | 2038               | Brampton     | 7                | Schedule A+             | WDM             |
| W-P-061           | West Brampton Pumping Station -<br>Capacity Expansion            | Installation of additional low-lift pumping capacity at the West Brampton Pumping Station.                                                         | 2028               | Brampton     | 5                | Schedule A              | PS              |
| W-S-062           | West Brampton Reservoir<br>Expansion                             | Expansion of the West Brampton Reservoir with the construction of a third 20-ML reservoir cell.                                                    | 2031               | Brampton     | 4                | Schedule A              | RES             |
| W-P-064           | Beckett Sproule Transfer Pumping<br>Station - Capacity Expansion | Installation of additional transfer pumping capacity at the Beckett Sproule Pumping Station.                                                       | 2023               | Brampton     | 3                | Schedule A              | PS              |
| W-S-073           | Victoria Reservoir                                               | Construction of a new 40-ML reservoir in the vicinity of<br>King Street and Hurontario Street to provide storage for<br>Pressure Zone 6.           | 2022               | Caledon      | 6                | Schedule C<br>Completed | RES             |
| W-ST-075          | 750-mm Water Main - Bovaird Drive<br>West (Heritage Heights)     | Construction of a 750-mm water main on Bovaird Drive<br>West from Mississauga Road to Heritage Road.                                               | 2027               | Brampton     | 6                | Schedule A+             | WSTM            |
| W-D-077           | 600-mm Water Main - Heritage<br>Road (Heritage Heights)          | Construction of a 600-mm water main on Heritage Road from Bovaird Drive northerly to a future street.                                              | 2028               | Brampton     | 6                | Schedule A+             | WDM             |
| W-D-078           | 600-mm Water Main - Heritage<br>Road (Mount Pleasant West)       | Construction of a 600-mm water main on Heritage Road from the future extension of Sandalwood Parkway to Wanless Drive.                             | 2034               | Brampton     | 6                | Schedule A+             | WDM             |
| W-ST-080          | 750-mm Water Main - Mayfield<br>Road (Mount Pleasant West)       | Construction of a 750-mm water main on Mayfield Road from Heritage Road to Mississauga Road.                                                       | 2038               | Brampton     | 6                | Schedule A+             | WSTM            |
| W-ST-083          | 750-mm Water Main - Heritage<br>Road (Mount Pleasant West)       | Construction of a 750-mm sub-transmission main on Heritage Road from Wanless Drive to Mayfield Road.                                               | 2035               | Brampton     | 6                | Schedule A+             | WSTM            |
| W-D-084           | 600-mm Water Main - Mayfield<br>Road                             | Construction of a 600-mm water main on Mayfield Road from Goreway Drive to The Gore Road.                                                          | 2019               | Brampton     | 5                | Schedule A+             | WDM             |
| W-D-085           | 600-mm Water Main - Mayfield<br>Road                             | Construction of a 600-mm water main on Mayfield Road from Goreway Drive to The Gore Road.                                                          | 2019               | Brampton     | 5                | Schedule A+             | WDM             |
| W-D-086           | 600-mm Water Main - Mayfield<br>Road                             | Construction of a 600-mm water main on Mayfield Road from The Gore Road to Clarkway Drive.                                                         | 2019               | Brampton     | 5                | Schedule A+             | WDM             |
| W-D-087           | 600-mm Water Main - Mayfield<br>Road                             | Construction of a 600-mm water main on Mayfield Road from Clarkway Drive to Coleraine Drive.                                                       | 2020               | Brampton     | 5                | Schedule A+             | WDM             |
| W-D-088           | 600-mm Water Main - Future<br>Williams Parkway (Bram West)       | Construction of a 600-mm water main on the future extension of Williams Parkway from Heritage Road to Mississauga Road.                            | 2027               | Brampton     | 5                | Schedule A+             | WDM             |

Region of Peel – 2020 Water and Wastewater Master Plan for the Lake-Based Systems

| Size/Capacity | Length<br>(m) | Total Estimated Cost<br>(\$2020) |
|---------------|---------------|----------------------------------|
| 400 mm        | 530           | \$ 5,000,000                     |
| 400 mm        | 1110          | \$ 3,484,942                     |
| 400 mm        | 760           | \$ 2,281,800                     |
| 400 mm        | 1460          | \$ 4,892,100                     |
| 600 mm        | 1380          | \$ 6,768,000                     |
| 45 ML/d       | -             | \$ 1,884,200                     |
| 20 ML         | -             | \$ 36,846,800                    |
| 306 ML/d      | -             | \$ 8,007,500                     |
| 40 ML         | -             | \$ 60,000,000                    |
| 750 mm        | 1400          | \$ 7,274,300                     |
| 600 mm        | 1300          | \$ 3,708,100                     |
| 600 mm        | 1140          | \$ 4,023,000                     |
| 750 mm        | 1380          | \$ 7,716,300                     |
| 750 mm        | 1230          | \$ 4,115,700                     |
| 600 mm        | 1400          | \$ 3,735,980                     |
| 600 mm        | 1370          | \$ 7,126,340                     |
| 600 mm        | 1420          | \$ 7,568,895                     |
| 600 mm        | 1400          | \$ 6,399,210                     |
| 600 mm        | 1140          | \$ 2,772,900                     |



| Master Plan<br>ID | Project Name                                                      | Project Description                                                                                                                                    | Year in<br>Service | Municipality | Pressure<br>Zone | Class EA                | Project<br>Type | Size/Capacity | Length<br>(m) | Total Esti<br>(\$2 | mated Cost<br>2020) |
|-------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------|------------------|-------------------------|-----------------|---------------|---------------|--------------------|---------------------|
| W-D-089           | 600-mm Water Main - Heritage<br>Road (Bram West)                  | Construction of a 600-mm water main on Heritage Road<br>from the future extension of Williams Parkway to the New<br>Road A.                            | 2027               | Brampton     | 5                | Schedule A+             | WDM             | 600 mm        | 1950          | \$                 | 8,306,400           |
| W-D-090           | 600-mm Water Main - Heritage<br>Road (Heritage Heights)           | Construction of a 600-mm water main on Heritage Road from a future street to the future extension of Sandalwood Parkway.                               | 2028               | Brampton     | 6                | Schedule A+             | WDM             | 600 mm        | 690           | \$                 | 3,874,900           |
| W-ST-093          | 750-mm Water Main - Countryside<br>Drive (Highway 427 Industrial) | Construction of a 750-mm water main on Countryside Drive from The Gore Road to Clarkway Drive.                                                         | 2024               | Brampton     | 5                | Schedule A+             | WSTM            | 750 mm        | 1390          | \$                 | 6,582,600           |
| W-ST-094          | 750-mm Water Main - Centre Street                                 | Construction of a 750-mm sub-transmission main on Centre Street from Williams Parkway to John Street.                                                  | 2026               | Brampton     | 5                | Schedule A+             | WSTM            | 750 mm        | 2300          | \$                 | 13,782,200          |
| W-D-096           | 600-mm Water Main - Queen Street<br>East (Bram East)              | Construction of a 600-mm water main on Queen Street<br>East and McVean Drive from Goreway Drive to Ebenezer<br>Road.                                   | 2022               | Brampton     | 4                | Schedule A+             | WDM             | 600 mm        | 1360          | \$                 | 7,486,700           |
| W-D-098           | 600-mm Water Main - Heritage<br>Road (Bram West)                  | Construction of a 600-mm water main on Heritage Road from the Meadowvale North Pumping Station to Steeles Avenue West.                                 | 2018               | Brampton     | 4                | Schedule A+             | WDM             | 600 mm        | 1370          | \$                 | 4,687,760           |
| W-ST-099          | Queensway Sub-Transmission Main<br>Extension                      | Construction of a 900/1050-mm sub-transmission main on<br>Bloor Street and Cawthra Road from the Silverthorn<br>Pumping Station to The Queensway East. | 2026               | Mississauga  | 2                | Schedule B              | WSTM            | 900 mm        | 2480          | \$                 | 64,859,700          |
| W-D-101           | Growth-Related Water Mains in the<br>Mississauga City Centre      | Construction of several growth-related water mains in the Mississauga City Centre.                                                                     | 2019               | Mississauga  | 3                | Schedule A+             | WDM             | 600 mm        | 310           | \$                 | 6,292,000           |
| W-D-102           | 600-mm Water Main - Lakeshore<br>Road                             | Construction of a 600-mm water main on Lakeshore Road<br>from the A.P. Kennedy Water Treatment Plant to Front<br>Street South.                         | 2032               | Mississauga  | 1                | Schedule A+             | WDM             | 600 mm        | 2470          | \$                 | 66,038,500          |
| W-ST-103          | Queensway Sub-Transmission Main<br>Extension                      | Construction of a 900/1050-mm sub-transmission main on<br>Bloor Street and Cawthra Road from the Silverthorn<br>Pumping Station to The Queensway East. | 2026               | Mississauga  | 2                | Schedule B              | WSTM            | 1050 mm       | 580           | \$                 | 6,369,000           |
| W-ST-104          | 900-mm Water Main - Heritage<br>Road (Heritage Heights)           | Construction of a 900-mm sub-transmission main on<br>Heritage Road from the West Brampton Pumping Station<br>to Bovaird Drive.                         | 2028               | Brampton     | 6                | Schedule A+             | WSTM            | 900 mm        | 1720          | \$                 | 8,557,100           |
| W-ST-110          | 750-mm Water Main - Goreway<br>Drive                              | Construction of a 750-mm sub-transmission main on<br>Goreway Drive from Castlemore Road to Countryside<br>Drive.                                       | 2019               | Brampton     | 5                | Schedule A+             | WSTM            | 750 mm        | 3150          | \$                 | 18,818,375          |
| W-ST-112          | 900-mm Sub-Transmission Main -<br>Confederation Parkway           | Construction of a 900-mm sub-transmission main on<br>Confederation Parkway from Burnhamthorpe Road West<br>to Eglinton Avenue West.                    | 2034               | Mississauga  | 3                | Schedule B              | WSTM            | 900 mm        | 2000          | \$                 | 45,261,400          |
| W-ST-113          | Mayfield Road Sub-Transmission<br>Main                            | Construction of a 900-mm sub-transmission main on<br>Mayfield Road from Innis Lake Road to the North<br>Brampton Reservoir.                            | 2037               | Brampton     | 5                | Schedule A+             | WSTM            | 900 mm        | 6640          | \$                 | 30,762,500          |
| W-ST-118          | Williams Parkway Sub-Transmission<br>Main (Phase 1 and Phase 2)   | Construction of a 900-mm sub-transmission main on<br>Williams Parkway from Dixie Road to McLaughlin Road.<br>(Section 1 of 2)                          | 2022               | Brampton     | 5                | Schedule C<br>Completed | WSTM            | 900 mm        | 2800          | \$                 | 22,000,000          |
| W-ST-119          | Williams Parkway Sub-Transmission<br>Main (Phase 1 and Phase 2)   | Construction of a 900-mm sub-transmission main on<br>Williams Parkway from Dixie Road to McLaughlin Road.<br>(Section 2 of 2)                          | 2022               | Brampton     | 5                | Schedule C<br>Completed | WSTM            | 900 mm        | 3050          | \$                 | 51,000,000          |



| Master Plan<br>ID | Project Name                                          | Project Description                                                                                                                                                                                                  | Year in<br>Service | Municipality | Pressure<br>Zone | Class EA                | Project<br>Type | Size/Capacity | Length<br>(m) | Total Estimated Cost<br>(\$2020) |
|-------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------|------------------|-------------------------|-----------------|---------------|---------------|----------------------------------|
| W-ST-120          | Central Brampton Sub-Transmission<br>Main             | Construction of a 1200/1050/900-mm sub-transmission<br>main from the Beckett Sproule Pumping Station to the East<br>Brampton Pumping Station.                                                                        | 2024               | Brampton     | 5                | Schedule C<br>Completed | WSTM            | 1200 mm       | 6070          | \$ 169,373,000                   |
| W-ST-121          | Williams Parkway Sub-Transmission<br>Main (Phase 3)   | Construction of a 900-mm sub-transmission main on<br>Williams Parkway from the West Brampton Pumping<br>Station to McLaughlin Road.                                                                                  | 2024               | Brampton     | 5                | Schedule C<br>Completed | WSTM            | 900 mm        | 5000          | \$ 34,549,800                    |
| W-D-124           | 600/400-mm Water Main -<br>Coleraine Drive (Bolton)   | Construction of a 600-mm water main on Coleraine Drive<br>from the Bolton Elevated Tank to Healey Road and a 400-<br>mm water main on Coleraine Drive from Healey Road to<br>George Bolton Parkway. (Section 1 of 2) | 2019               | Caledon      | 6                | Schedule A+             | WDM             | 400 mm        | 1750          | \$ 6,840,800                     |
| W-ST-128          | 1500-mm Sub-Transmission Main -<br>Burnhamthorpe Road | Construction of a 1500-mm sub-transmission main on<br>Burnhamthorpe Road from Cawthra Road to Grand Park<br>Drive.                                                                                                   | 2021               | Mississauga  | 3                | Schedule B<br>Completed | WSTM            | 1500 mm       | 1750          | \$ 125,570,000                   |
| W-T-130           | East Brampton Transmission Main<br>Twinning           | Construction of a 1500-mm transmission main from the<br>Beckett Sproule Pumping Station to East Brampton<br>Reservoir.                                                                                               | 2024               | Brampton     | 4                | Schedule C<br>Completed | WTM             | 1500 mm       | 6500          | \$ 206,300,000                   |
| W-T-131           | Streetsville Transmission Main                        | Construction of a 2100-mm transmission main on Erin<br>Mills Parkway from the Herridge Pumping Station to the<br>Streetsville Reservoir.                                                                             | 2028               | Mississauga  | 2                | Schedule C              | WTM             | 2100 mm       | 6600          | \$ 199,497,800                   |
| W-T-132           | Victoria Transmission Main                            | Construction a 900-mm transmission main and a 1200-mm<br>sub-transmission main from the North Brampton Pumping<br>Station to the Victoria Reservoir. (Section 1 of 2)                                                | 2022               | Caledon      | 6                | Schedule C<br>Completed | WTM             | 900 mm        | 8750          | \$ 107,123,750                   |
| W-ST-133          | Victoria Transmission Main                            | Construction a 900-mm transmission main and a 1200-mm<br>sub-transmission main from the North Brampton Pumping<br>Station to the Victoria Reservoir. (Section 2 of 2)                                                | 2022               | Caledon      | 6                | Schedule C<br>Completed | WSTM            | 1200 mm       | 8470          | \$ 26,000,000                    |
| W-T-135           | Meadowvale North Transmission<br>Main                 | Construction of an 1800-mm transmission main from the<br>Streetsville Pumping Station to the Meadowvale North<br>Reservoir.                                                                                          | 2031               | Mississauga  | 3                | Schedule C              | WTM             | 1800 mm       | 9300          | \$ 289,088,200                   |
| W-TR-137          | A.P. Kennedy Water Treatment<br>Plant - Standby Power | Construction of additional standby power at the treatment facility.                                                                                                                                                  | 2019               | Mississauga  |                  | Schedule A              | WTP             | -             | -             | \$ 6,500,000                     |
| W-T-150           | West Caledon Transmission Main                        | Construction of a 750-mm transmission main from the Alloa Pumping Station to the West Caledon Elevated Tank.                                                                                                         | 2027               | Caledon      | 7                | Schedule C              | WTM             | 750 mm        | 7500          | \$ 29,926,300                    |
| W-S-151           | West Caledon Elevated Tank                            | Construction of a new 10-ML elevated tank in southwest Caledon.                                                                                                                                                      | 2027               | Caledon      | 7                | Schedule C              | RES             | 10 ML         | -             | \$ 18,422,900                    |
| W-P-152           | West Brampton Pumping Station -<br>Capacity Expansion | Installation of additional low-lift pumping capacity at the West Brampton Pumping Station.                                                                                                                           | 2036               | Brampton     | 5                | Schedule A              | PS              | 45 ML/d       | -             | \$ 433,600                       |
| W-P-154           | Lorne Park Pumping Station -<br>Capacity Expansion    | Installation of additional PZ2W high-lift pumping capacity at the Lorne Park Water Treatment Plant.                                                                                                                  | 2031               | Mississauga  | 2                | Schedule A              | PS              | 150 ML/d      | -             | \$ 1,579,300                     |
| W-S-164           | Silverthorn Reservoir and Pumping Station Expansion   | Construction of major improvements and upgrades at the Silverthorn Reservoir and Pumping Station.                                                                                                                    | 2023               | Mississauga  | 2                | Schedule B<br>Completed | RES             | 25 ML         | -             | \$ 49,090,000                    |
| W-TR-165          | A.P. Kennedy Water Treatment<br>Plant - New Intake    | Construction of a new intake pipe and structure at the A.P.<br>Kennedy Water Treatment Plant.                                                                                                                        | 2041               | Mississauga  |                  | Schedule C              | WTP             | 2400 mm       | 2000          | \$ 100,000,000                   |
| W-P-175           | West Brampton Pumping Station -<br>Capacity Expansion | Installation of additional high-lift pumping capacity at the West Brampton Pumping Station.                                                                                                                          | 2028               | Brampton     | 6                | Schedule A              | PS              | 31 ML/d       | -             | \$ 1,010,400                     |
|                   |                                                       |                                                                                                                                                                                                                      |                    |              |                  |                         |                 |               |               |                                  |



| Master Plan<br>ID | Project Name                                                         | Project Description                                                                                                                                                                        | Year in<br>Service | Municipality | Pressure<br>Zone | Class EA    | Project<br>Type | Size/Capacity | Length<br>(m) | Total Est<br>(\$ | timated Cost<br>2020) |
|-------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------|------------------|-------------|-----------------|---------------|---------------|------------------|-----------------------|
| W-ST-179          | 600-mm Water Main -<br>Chinguacousy Road/Creditview<br>Road          | Construction of a 600-mm sub-transmission main on<br>Chinguacousy Road/Creditview Road from the future West<br>Caledon Elevated Tank to future east-west road in<br>Mayfield West Phase 2. | 2027               | Caledon      | 7                | Schedule C  | WSTM            | 600 mm        | 6500          | \$               | 20,680,000            |
| W-D-180           | 400-mm Water Main - Torbram<br>Road (Tullamore Industrial)           | Construction of a 400-mm water main on Torbram Road from Mayfield Road northerly to a future street.                                                                                       | 2036               | Caledon      | 6                | Schedule A+ | WDM             | 400 mm        | 1300          | \$               | 3,838,200             |
| W-D-181           | 400-mm Water Main - Future Street<br>(Tullamore Industrial)          | Construction of a 400-mm water main on a future street<br>north of Mayfield Road from Torbram Road to Airport<br>Road.                                                                     | 2036               | Caledon      | 6                | Schedule A+ | WDM             | 400 mm        | 1360          | \$               | 2,100,900             |
| W-D-182           | 400-mm Water Main - Airport Road<br>(Tullamore Industrial)           | Construction of a 400-mm water main on Airport Road from Mayfield Road northerly to a future street.                                                                                       | 2036               | Caledon      | 6                | Schedule A+ | WDM             | 400 mm        | 1300          | \$               | 2,202,500             |
| W-D-183           | 400-mm Water Main - Future Street<br>(Tullamore Industrial)          | Construction of a 400-mm water main on a future street<br>north of Mayfield Road from Innis Lake Road to Centreville<br>Creek Road.                                                        | 2036               | Caledon      | 6                | Schedule A+ | WDM             | 400 mm        | 1360          | \$               | 3,235,000             |
| W-D-184           | 400-mm Water Main - Centreville<br>Creek Road (Tullamore Industrial) | Construction of a 400-mm water main on Centerville Creek<br>Road from Mayfield Road to 1300 metres northerly.                                                                              | 2036               | Caledon      | 6                | Schedule A+ | WDM             | 400 mm        | 1300          | \$               | 3,838,200             |
| W-ST-185          | 750-mm Water Main - Innis Lake<br>Road                               | Construction of a 750-mm sub-transmission main on Innis<br>Lake Road from the Tullamore Pumping Station to Healey<br>Road.                                                                 | 2032               | Caledon      | 6                | Schedule A+ | WSTM            | 750 mm        | 3000          | \$               | 8,746,100             |
| W-ST-186          | 600-mm Water Main - Healey Road<br>(Bolton West)                     | Construction of a 600-mm sub-transmission main on Healy<br>Road from Humber Station Road to Coleraine Drive.                                                                               | 2026               | Caledon      | 6                | Schedule A+ | WSTM            | 600 mm        | 1350          | \$               | 3,842,700             |
| W-ST-187          | 600-mm Water Main - Healey Road                                      | Construction of a 600-mm sub-transmission main on Healy<br>Road from Innis Lake Road to Humber Station Road.                                                                               | 2031               | Caledon      | 6                | Schedule A+ | WSTM            | 600 mm        | 4160          | \$               | 14,992,500            |
| W-D-188           | 400-mm Water Main - Future Street<br>(Bolton West)                   | Construction of a 400-mm water main on a future street<br>north of Healey Road from West Bolton Elevated Tank to<br>Humber Station Road.                                                   | 2026               | Caledon      | 6                | Schedule A+ | WDM             | 400 mm        | 810           | \$               | 1,070,200             |
| W-D-189           | 400-mm Water Main - Humber<br>Station Road (Bolton West)             | Construction of a 400-mm water main on Humber Station<br>Road from Healey Road to a future street northerly.                                                                               | 2027               | Caledon      | 6                | Schedule A+ | WDM             | 400 mm        | 1220          | \$               | 2,074,900             |
| W-D-190           | 400-mm Water Main - Humber<br>Station Road (Bolton West)             | Construction of a 400-mm water main on Humber Station<br>Road from a future street north of Healey Road to<br>approximately 1200 metres northerly.                                         | 2028               | Caledon      | 6                | Schedule A+ | WDM             | 400 mm        | 1200          | \$               | 1,867,000             |
| W-D-191           | 400-mm Water Main - Future Street<br>(Bolton West)                   | Construction of a 400-mm water main on a future street<br>north of Mayfield Road from Humber Station Road to<br>Coleraine Drive.                                                           | 2026               | Caledon      | 6                | Schedule A+ | WDM             | 400 mm        | 1350          | \$               | 2,086,300             |
| W-D-192           | 400-mm Water Main - Humber<br>Station Road (Bolton West)             | Construction of a 400-mm water main on Humber Station<br>Road from a future street north of Mayfield Road to<br>Healey Road.                                                               | 2026               | Caledon      | 6                | Schedule A+ | WDM             | 400 mm        | 1650          | \$               | 3,242,500             |
| W-D-200           | 600-mm Water Main - Britannia<br>Road East                           | Construction of a 600-mm water main on Britannia Road<br>East from the Hanlan Pumping Station to Atlantic Drive.                                                                           | 2020               | Mississauga  | 3                | Schedule A+ | WDM             | 600 mm        | 2000          | \$               | 10,357,733            |
| W-D-201           | Growth-Related Water Mains in the<br>Mississauga City Centre         | Construction of several growth-related water mains in the Mississauga City Centre.                                                                                                         | 2019               | Mississauga  | 3                | Schedule A+ | WDM             | 400 mm        | 640           | \$               | 3,900,000             |
| W-D-202           | Growth-Related Water Mains in the<br>Mississauga City Centre         | Construction of several growth-related water mains in the Mississauga City Centre.                                                                                                         | 2019               | Mississauga  | 3                | Schedule A+ | WDM             | 400 mm        | 300           | \$               | 5,000,000             |



| Master Plan<br>ID | Project Name                                                       | Project Description                                                                                                                                                                                                  | Year in<br>Service | Municipality | Pressure<br>Zone | Class EA    | Project<br>Type | Size/Capacity | Length<br>(m) | Total Est<br>(\$ | imated Cost<br>2020) |
|-------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------|------------------|-------------|-----------------|---------------|---------------|------------------|----------------------|
| W-ST-203          | 750-mm Water Main - Hurontario<br>Street (Mississauga City Centre) | Construction of a 750-mm sub-transmission main on<br>Hurontario Street from Burnhamthorpe Road to Rathburn<br>Road.                                                                                                  | 2019               | Mississauga  | 3                | Schedule A+ | WSTM            | 750 mm        | 780           | \$               | 8,161,000            |
| W-D-204           | 400-mm Water Main - The Gore<br>Road                               | Construction of a 400-mm water main on The Gore Road from Mayfield Road to north of Countryside Drive.                                                                                                               | 2018               | Brampton     | 5                | Schedule A+ | WDM             | 400 mm        | 1100          | \$               | 2,687,000            |
| W-D-205           | 400-mm Water Main - McLaughlin<br>Road (Mayfield West Phase 2)     | Construction of a 400-mm water main on McLaughlin Road from Mayfield Road to 1800 metres northerly to the creek.                                                                                                     | 2019               | Caledon      | 7                | Schedule A+ | WDM             | 400 mm        | 1800          | \$               | 2,699,200            |
| W-D-206           | 400-mm Water Main - Kariya Drive<br>(Mississauga City Centre)      | Construction of a 400-mm water main on Kariya Drive from Webb Drive to Elm Drive West.                                                                                                                               | 2024               | Mississauga  | 3                | Schedule A+ | WDM             | 400 mm        | 300           | \$               | 4,444,000            |
| W-D-207           | 400-mm Water Main - Queen Street<br>East (Bram East)               | Construction of a 400-mm water main on Queen Street<br>East from McVean Drive to the Gore Road.                                                                                                                      | 2024               | Brampton     | 4                | Schedule A+ | WDM             | 400 mm        | 1400          | \$               | 4,786,100            |
| W-D-208           | 400-mm Water Main - Camilla Road                                   | Construction of a 400-mm water main on Camilla Road from Dundas Street East to King Street East.                                                                                                                     | 2027               | Mississauga  | 2                | Schedule A+ | WDM             | 400 mm        | 260           | \$               | 628,400              |
| W-D-209           | 400-mm Water Main - Future<br>Square One Drive Extension           | Construction of a 400-mm water main on the future<br>extension of Square One Drive from Rathburn Road West<br>to Confederation Parkway.                                                                              | 2021               | Mississauga  | 3                | Schedule A+ | WDM             | 400 mm        | 320           | \$               | 743,600              |
| W-D-210           | 400-mm Water Main - Centre View<br>Drive (Mississauga City Centre) | Construction of a 400-mm water main on Centre View<br>Drive from Confederation Parkway to Duke of York<br>Boulevard.                                                                                                 | 2028               | Mississauga  | 3                | Schedule A+ | WDM             | 400 mm        | 360           | \$               | 2,575,900            |
| W-D-213           | Growth-Related Water Mains in the<br>Mississauga City Centre       | Construction of several growth-related water mains in the Mississauga City Centre.                                                                                                                                   | 2019               | Mississauga  | 3                | Schedule A+ | WDM             | 600 mm        | 300           | \$               | 5,444,000            |
| W-D-214           | 400-mm Water Main - Queen Street<br>East (Bram East)               | Construction of a 400-mm water main on Queen Street<br>East from The Gore Road to Highway 50.                                                                                                                        | 2028               | Brampton     | 4                | Schedule A+ | WDM             | 400 mm        | 630           | \$               | 1,763,300            |
| W-D-215           | 400-mm Water Main - Future Street<br>(Heritage Heights)            | Construction of a 400-mm water main on a future street from Wanless Drive southeasterly to a future street.                                                                                                          | 2030               | Brampton     | 6                | Schedule A+ | WDM             | 400 mm        | 2170          | \$               | 2,703,500            |
| W-D-216           | 400-mm Water Main - Hydro Road<br>(Inspiration Lakeview)           | Construction of a 400-mm water main on Hydro Road from Lakeshore Road East to the future Street A.                                                                                                                   | 2031               | Mississauga  | 1                | Schedule A+ | WDM             | 400 mm        | 660           | \$               | 969,200              |
| W-D-217           | 400-mm Water Main - Future Street<br>(Inspiration Lakeview)        | Construction of a 400-mm water main on the future Street<br>A from the future Street F to the future Street H.                                                                                                       | 2031               | Mississauga  | 1                | Schedule A+ | WDM             | 400 mm        | 470           | \$               | 718,200              |
| W-D-218           | 400-mm Water Main - Lakefront<br>Promenade (Inspiration Lakeview)  | Construction of a 400-mm water main on Lakefront<br>Promenade from Rangeview Road to the future Street A.                                                                                                            | 2031               | Mississauga  | 1                | Schedule A+ | WDM             | 400 mm        | 570           | \$               | 849,800              |
| W-D-223           | 600/400-mm Water Main -<br>Coleraine Drive (Bolton)                | Construction of a 600-mm water main on Coleraine Drive<br>from the Bolton Elevated Tank to Healey Road and a 400-<br>mm water main on Coleraine Drive from Healey Road to<br>George Bolton Parkway. (Section 2 of 2) | 2019               | Caledon      | 6                | Schedule A+ | WSTM            | 600 mm        | 1540          | \$               | 5,329,000            |
| W-TR-224          | A.P. Kennedy Water Treatment<br>Plant - Reservoir Expansion        | Construction of a new 35-million-litre treated water reservoir at the A.P. Kennedy Water Treatment Plant.                                                                                                            | 2031               | Mississauga  |                  | Schedule A+ | WTP             | 35 ML         | -             | \$               | 68,275,000           |
| W-TR-225          | A.P. Kennedy Water Treatment<br>Plant - Waste Building Expansion   | Expansion of the Waste Building at the A.P. Kennedy Water Treatment Plant.                                                                                                                                           | 2036               | Mississauga  |                  | Schedule A+ | WTP             | -             | -             | \$               | 26,450,000           |
| W-D-226           | 600-mm Water Main - Clarkway<br>Drive                              | Construction of a 600-mm water main on Clarkway Drive from Castlemore Road northerly to the future east-west road.                                                                                                   | 2022               | Brampton     | 5                | Schedule A+ | WDM             | 600 mm        | 1450          | \$               | 3,931,615            |



| Master Plan<br>ID | Project Name                                                   | Project Description                                                                                                                                  | Year in<br>Service | Municipality | Pressure<br>Zone | Class EA    | Project<br>Type |
|-------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------|------------------|-------------|-----------------|
| W-D-227           | 400-mm Water Main - Old School<br>Road (Mayfield West Phase 3) | Construction of a 400-mm water main on Old School Road from Chinguacousy Road to McLaughlin Road.                                                    | 2036               | Caledon      | 7                | Schedule A+ | WDM             |
| W-D-228           | 400-mm Water Main - Old School<br>Road (Mayfield West Phase 3) | Construction of a 400-mm water main on Old School Road from McLaughlin Road to Hurontario Street.                                                    | 2036               | Caledon      | 7                | Schedule A+ | WDM             |
| W-D-229           | 400-mm Water Main - Old School<br>Road (Mayfield West Phase 3) | Construction of a 400-mm water main on Old School Road from Hurontario Street to Heart Lake Road.                                                    | 2036               | Caledon      | 7                | Schedule A+ | WDM             |
| W-D-230           | 400-mm Water Main - Future Street<br>(Mayfield West Phase 4)   | Construction of a 400-mm water main on a future street from Heart Lake Road to Dixie Road, north of Mayfield Road.                                   | 2031               | Caledon      | 7                | Schedule A+ | WDM             |
| W-D-231           | 400-mm Water Main - Future Street<br>(Mayfield West Phase 4)   | Construction of a 400-mm water main on a future street<br>from Dixie Road to Bramalea Road, north of Mayfield<br>Road.                               | 2033               | Caledon      | 7                | Schedule A+ | WDM             |
| W-D-232           | 400-mm Water Main - Dixie Road<br>(Mayfield West Phase 4)      | Construction of a 400-mm water main on Dixie Road from Mayfield Road to 1,340 metres northerly.                                                      | 2031               | Caledon      | 6                | Schedule A+ | WDM             |
| W-D-233           | 400-mm Water Main - Future Street<br>(Tullamore Industrial)    | Construction of a 400-mm water main on a future street from Airport Road to Innis Lake Road, north of Mayfield Road.                                 | 2036               | Caledon      | 6                | Schedule A+ | WDM             |
| W-D-234           | 400-mm Water Main - Future Street<br>(Bolton West)             | Construction of a 400-mm water main on a future street from Healy Road to approximately 1680 metres southerly, east of Humber Station Road.          | 2032               | Caledon      | 6                | Schedule A+ | WDM             |
| W-D-235           | 400-mm Water Main - Future Street<br>(Bolton West)             | Construction of a 400-mm water main on a future street from Humber Station Road to 660 metres westerly.                                              | 2032               | Caledon      | 6                | Schedule A+ | WDM             |
| W-D-236           | 400-mm Water Main - Humber<br>Station Road (Bolton West)       | Construction of a 400-mm water main on Humber Station<br>Road from Mayfield Road to 1450 metres northerly.                                           | 2024               | Caledon      | 6                | Schedule A+ | WDM             |
| W-D-238           | 400-mm Water Main - Future Street<br>(Bolton West)             | Construction of a 400-mm water main on a future street from Healey Road to 1220 metres northerly, west of Humber Station Road.                       | 2036               | Caledon      | 6                | Schedule A+ | WDM             |
| W-D-239           | 400-mm Water Main - Future Street<br>(Bolton West)             | Construction of a 400-mm water main on a future street from Humber Station Road to 680 metres westerly, south of King Street.                        | 2036               | Caledon      | 6                | Schedule A+ | WDM             |
| W-D-240           | 400-mm Water Main - Future Street<br>(Bolton West)             | Construction of a 400-mm water main on a future street from Humber Station Road to 680 metres westerly.                                              | 2036               | Caledon      | 6                | Schedule A+ | WDM             |
| W-D-241           | 400-mm Water Main - Future Street<br>(Bolton West)             | Construction of a 400-mm water main on a future street from future street north of Healey Road to 910 metres northerly, west of Humber Station Road. | 2036               | Caledon      | 6                | Schedule A+ | WDM             |
| W-D-242           | 400-mm Water Main - Bramalea<br>Road (Mayfield West Phase 4)   | Construction of a 400-mm water main on Bramalea Road from north of Mayfield Road to 290 metres northerly.                                            | 2033               | Caledon      | 6                | Schedule A+ | WDM             |
| W-D-243           | 400-mm Water Main - Future Street<br>(Mayfield West Phase 4)   | Construction of a 400-mm water main on a future street from Dixie Road to Bramalea Road.                                                             | 2032               | Caledon      | 6                | Schedule A+ | WDM             |
| W-D-244           | 400-mm Water Main - Dixie Road<br>(Mayfield West Phase 1)      | Construction of a 400-mm water main on Dixie Road from the future Abbotside Way to 720 metres northerly.                                             | 2021               | Caledon      | 7                | Schedule A+ | WDM             |

| Size/Capacity | Length<br>(m) | Total Estir<br>(\$20 | nated Cost<br>020) |
|---------------|---------------|----------------------|--------------------|
| 400 mm        | 1400          | \$                   | 4,786,100          |
| 400 mm        | 1390          | \$                   | 2,826,500          |
| 400 mm        | 2720          | \$                   | 6,863,800          |
| 400 mm        | 1380          | \$                   | 1,754,700          |
| 400 mm        | 1370          | \$                   | 1,742,500          |
| 400 mm        | 1340          | \$                   | 3,690,800          |
| 400 mm        | 1380          | \$                   | 2,122,000          |
| 400 mm        | 1680          | \$                   | 2,482,100          |
| 400 mm        | 660           | \$                   | 3,059,500          |
| 400 mm        | 1450          | \$                   | 6,950,800          |
| 400 mm        | 1220          | \$                   | 1,562,900          |
| 400 mm        | 680           | \$                   | 913,100            |
| 400 mm        | 680           | \$                   | 913,100            |
| 400 mm        | 910           | \$                   | 1,189,500          |
| 400 mm        | 290           | \$                   | 1,410,200          |
| 400 mm        | 1360          | \$                   | 2,098,500          |
| 400 mm        | 720           | \$                   | 1,272,600          |



| Master Plan<br>ID | Project Name                                                           | Project Description                                                                                                                | Year in<br>Service | Municipality | Pressure<br>Zone | Class EA    | Project<br>Type | Size/Capacity | Length<br>(m) | Total Est<br>(\$ | imated Cost<br>2020) |
|-------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------|------------------|-------------|-----------------|---------------|---------------|------------------|----------------------|
| W-D-245           | 400-mm Water Main - Future Street<br>(Mayfield West Phase 4)           | Construction of a 400-mm water main on a future street<br>from Dixie Road to Heart Lake Road, north of Mayfield<br>Road.           | 2031               | Caledon      | 7                | Schedule A+ | WDM             | 400 mm        | 1400          | \$               | 1,779,200            |
| W-D-246           | 600-mm Water Main - Kennedy<br>Road North                              | Construction of a 600-mm water main on Kennedy Road<br>North from Williams Parkway to Vodden Street East.                          | 2021               | Brampton     | 5                | Schedule A+ | WDM             | 600 mm        | 900           | \$               | 3,912,578            |
| W-D-247           | 600-mm Water Main - Atlantic<br>Drive/Creekbank Road                   | Construction of a 600-mm water main on Atlantic Drive<br>and the future Creekbank Road from Britannia Road East<br>to Sismet Road. | 2027               | Mississauga  | 3                | Schedule A+ | WDM             | 600 mm        | 1500          | \$               | 12,452,700           |
| W-D-248           | 400-mm Water Main - Ninth Line<br>(Ninth Line Lands)                   | Construction of a 400-mm water main on Ninth Line from Derry Road West to 620 metres southerly.                                    | 2025               | Mississauga  | 5                | Schedule A+ | WDM             | 400 mm        | 620           | \$               | 2,057,600            |
| W-D-249           | 600-mm Water Main - Lakeshore<br>Road West                             | Construction of a 600-mm water main on Lakeshore Road<br>West from the Lorne Park Water Treatment Plant to Front<br>Street South.  | 2024               | Mississauga  | 1                | Schedule A+ | WDM             | 600 mm        | 2950          | \$               | 12,714,789           |
| W-D-250           | 400-mm Water Main - McLaughlin<br>Road (Mayfield West Phase 3)         | Construction of a 400-mm water main on McLaughlin Road from Old School Road to the south side of the Etobicoke Creek.              | 2036               | Caledon      | 7                | Schedule A+ | WDM             | 400 mm        | 1380          | \$               | 2,809,200            |
| W-P-251           | Beckett Sproule Pumping Station -<br>Surge Suppression System          | Installation of a new surge suppression system at the Beckett Sproule Pumping Station.                                             | 2021               | Brampton     |                  | Schedule A  | PS              | -             | -             | \$               | 10,868,800           |
| W-ST-252          | 600-mm Water Main - Goreway<br>Drive                                   | Construction of a 600-mm water main on Goreway Drive from Intermodal Drive to Steeles Avenue East.                                 | 2026               | Brampton     | 4                | Schedule A+ | WSTM            | 600 mm        | 950           | \$               | 5,609,500            |
| W-P-253           | Beckett Sproule Pumping Station -<br>Improvements and Upgrades         | Construction of improvements and upgrades at the Beckett Sproule and East Brampton Pumping Stations.                               | 2021               | Brampton     |                  | Schedule A  | PS              | n/a           | -             | \$               | 38,589,700           |
| W-D-259           | 600-mm Water Main - Future East-<br>West Road (Highway 427 Industrial) | Construction of a 600-mm water main on the future east-<br>west road from Clarkway Drive to the future north-south<br>road.        | 2025               | Brampton     | 5                | Schedule A  | WDM             | 600 mm        | 500           | \$               | 1,071,200            |
| W-D-260           | 400-mm Water Main - Countryside<br>Drive (Highway 427 Industrial)      | Construction of a 400-mm water main on Countryside<br>Drive from Coleraine Drive to the future north-south road.                   | 2026               | Brampton     | 5                | Schedule A  | WDM             | 400 mm        | 880           | \$               | 1,528,900            |
| W-D-261           | 400-mm Water Main - Future Street<br>(Highway 427 Industrial)          | Construction of a 400-mm water main on a future street from Highway 50 to Coleraine Drive.                                         | 2024               | Brampton     | 5                | Schedule A  | WDM             | 400 mm        | 200           | \$               | 1,228,300            |
| W-D-267           | 400-mm Water Main - Old School<br>Road (Mayfield West Phase 1)         | Construction of a 400-mm water main on Old School Road from Heart Lake Road to Dixie Road.                                         | 2021               | Caledon      | 7                | Schedule A  | WDM             | 400 mm        | 1390          | \$               | 1,949,566            |
| W-D-268           | 400-mm Water Main - Dixie Road<br>(Mayfield West Phase 1)              | Construction of a 400-mm water main on Dixie Road from Old School Road to 2620 metres southerly.                                   | 2021               | Caledon      | 7                | Schedule A  | WDM             | 400 mm        | 1900          | \$               | 3,749,372            |
| W-D-269           | 400-mm Water Main - Future<br>Lagerfeld Drive (Mount Pleasant)         | Construction of a 400-mm water main on the future extension of Lagerfeld Drive from Mississauga Road to Creditview Road.           | 2023               | Brampton     | 6                | Schedule A  | WDM             | 400 mm        | 500           | \$               | 697,800              |
| W-D-270           | 600-mm Water Main - Rangeview<br>Road (Inspiration Lakeview)           | Construction of a 600-mm water main on Rangeview Road from East Avenue to Lakefront Promenade.                                     | 2031               | Mississauga  | 1                | Schedule A+ | WDM             | 600 mm        | 480           | \$               | 1,123,200            |
| W-D-271           | 600-mm Water Main - Dundas<br>Street East                              | Construction of a 600-mm water main on Dundas Street from Cawthra Road to Confederation Parkway.                                   | 2032               | Mississauga  | 2                | Schedule A+ | WDM             | 600 mm        | 2470          | \$               | 10,555,000           |
| W-D-272           | 400-mm Water Main - Eglinton<br>Avenue East                            | Construction of a 400-mm water main on Eglinton Avenue<br>East from Hurontario Street to Sorrento Drive.                           | 2021               | Mississauga  | 4                | Schedule A+ | WDM             | 400 mm        | 350           | \$               | 1,750,600            |
|                   |                                                                        |                                                                                                                                    |                    |              |                  |             |                 |               |               |                  |                      |



| Master Plan<br>ID   | Project Name                                                      | Project Description                                                                                                                                             | Year in<br>Service | Municipality | Pressure<br>Zone | Class EA    | Project<br>Type | Size/Capacity | Length<br>(m) | Total Est<br>(\$ | imated Cost<br>2020) |
|---------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------|------------------|-------------|-----------------|---------------|---------------|------------------|----------------------|
| W-D-273             | 600-mm Water Main - Hurontario<br>Street                          | Construction of a 600-mm water main on Hurontario<br>Street from Steeles Avenue to County Court Boulevard.                                                      | 2039               | Brampton     | 5                | Schedule A+ | WDM             | 600 mm        | 1000          | \$               | 6,229,700            |
| W-D-274             | 600-mm Water Main - County Court<br>Boulevard and Future Street   | Construction of a 600-mm water main on County Court<br>Boulevard and a future street from Hurontario Street to<br>the future alignment of First Gulf Boulevard. | 2039               | Brampton     | 5                | Schedule A+ | WDM             | 600 mm        | 2000          | \$               | 8,441,000            |
| W-D-275             | 600-mm Water Main - Future First<br>Gulf Boulevard                | Construction of a 600-mm water main on the future<br>alignment of First Gulf Boulevard from Steeles Avenue East<br>to a future street.                          | 2039               | Brampton     | 5                | Schedule A+ | WDM             | 600 mm        | 1000          | \$               | 5,744,300            |
| W-D-276             | 600-mm Water Main - Dundas<br>Street East                         | Construction of a 600-mm water main on Dundas Street<br>East from Cawthra Road to Dixie Road.                                                                   | 2032               | Mississauga  | 2                | Schedule A+ | WDM             | 600 mm        | 2300          | \$               | 10,054,900           |
| W-D-277             | 600-mm Water Main - Church<br>Street East                         | Construction of a 600-mm water main on Church Street<br>East from Centre Street North to Main Street.                                                           | 2025               | Brampton     | 5                | Schedule A+ | WDM             | 600 mm        | 650           | \$               | 14,147,500           |
| W-D-278             | 400-mm Water Main - Lakefront<br>Promenade (Inspiration Lakeview) | Construction of a 400-mm water main on Lakefront<br>Promenade from Lakeshore Road East to Rangeview Road.                                                       | 2031               | Mississauga  | 1                | Schedule A+ | WDM             | 400 mm        | 260           | \$               | 471,300              |
| W-TR-279            | A.P. Kennedy Water Treatment<br>Plant - Yard Piping Improvements  | Various yard piping improvements at the A.P. Kennedy<br>Water Treatment Plant to facilitate new infrastructure.                                                 | 2022               | Mississauga  |                  | -           | WTP             | -             | -             | \$               | 8,000,000            |
| Stal Program - 2041 |                                                                   |                                                                                                                                                                 |                    |              |                  |             |                 |               |               |                  |                      |

# 7.0 Implementation and Lifecycle

- 7.1 Capital Program Implementation
- 7.2 Lifecycle Costing

# 7.0 Implementation and Lifecycle

# 7.1 Capital Program Implementation

The 2020 Master Plan sets out to satisfy the Environmental Assessment (EA) Approach 1 requirements according to the Municipal Engineers Association (MEA) Class EA document. The preferred water servicing strategy will support the servicing needs of the Region's lake-based system for future growth to 2041. This strategy will be implemented in accordance with each project's Class EA schedule.

The Class EA requirements for each project have been identified in the capital program. Schedule A and A+ projects may move forward to design and construction, with A+ projects requiring public notification prior to implementation. The 2020 Master Plan was prepared as a broad level assessment and recognizes that further detailed assessment will be required through separate studies to satisfy project specific fulfillment of the MEA Class EA requirements for Schedule B and C projects identified within the master plan.

During the next steps of the implementation program, primarily during detailed design of the projects, the following requirements should be considered:

- Refinement of infrastructure locations and alignments
- Review and confirmation of potential property requirements
- Identification of preferred construction methodologies
- Completion of additional supporting investigations as required (e.g., source water protection, climate change impacts, geotechnical, hydrogeological, etc.)
- Review and mitigation of potential construction related impacts
- Fulfillment of all provincial, municipal and conservation authority approval requirements

With respect to Regional planning and budgeting, this program will be utilized as a high-level baseline estimate for the Region's capital budget. These costs will be further developed and refined during the implementation phases as detailed information becomes available.

The anticipated timing of each project within the preferred strategy has been established based on the projected population and employment growth within the Region of Peel's lake-based system. The water program's project scheduling has also been cross referenced with the wastewater program to ensure project coordination along common alignments where possible.

Given the growth-related nature of the servicing strategies, the water capital program forms the foundation for the water component of the Region of Peel Development Charges (DC) By-Law.

# 7.2 Lifecycle Costing

As the Region has grown, so too has their inventory of linear and vertical water and wastewater assets. This has resulted in growing Operation and Maintenance and State of Good Repair (SOGR) needs to ensure the systems continue to function as originally designed. In response to this need, the Region has developed of proactive maintenance and SOGR programs for all existing water and wastewater assets. This master plan capital program adds a significant amount of new infrastructure into the Region's asset inventory and, as such, will add to their overall system operation and maintenance and lifecycle costs.

It is anticipated that the SOGR costs for new infrastructure that is built to service new growth will be predominantly covered by the water and wastewater rates paid by those new residents or businesses.

For the purposes of this master plan program, the increase in lifecycle costs with the new assets in place was estimated along with the net present value of each project based on the in-service date. The following represent base lifecycle cost percentages applied to each project, which are estimated to include the entire lifecycle cost including operation, maintenance, rehabilitation, and replacement:

- New pumping station: 4 percent
- Pumping station upgrade: 1 percent
- Reservoir: 2 percent
- Treatment expansion: 2 percent
- Linear: 1 percent

An annual rate of 3 percent was used to discount future costs to present value (2020). The estimated lifecycle costing is shown project-by-project within the Capital Program.



# Figure 26 – Approximate annual cost for the operation and maintenance of new water master plan infrastructure.

# 8.0 Intensification and Post-2041 Growth

- 8.1 2041 Intensification
- 8.2 Post-2041 Vision

# 8.0 Intensification and Post-2041 Growth

# 8.1 2041 Intensification

Intensification is currently underway in many parts of the Region of Peel and is captured within the Region's detailed growth projections for the 2041 planning horizon.

There are several locations within the Region that will have focused intensification and infill growth. Through this master plan, these areas were reviewed for their existing servicing capacity, projected 2041 population and employment projections and subsequent water demands. While the 2020 Master Plan Capital Program is focused on servicing the approved 2041 growth, high level impacts of enhanced intensification development beyond 2041 projections were reviewed. It should be noted that these areas may require further detailed analysis to determine precise servicing needs as the detailed growth projections are finalized and the development applications are received.

The following areas that were identified to be key intensification areas include, but are not limited to:

- Mississauga City Centre
- Brampton Queen Street Corridor
- Hurontario Corridor
- Dundas Connects
- Inspiration Lakeview
- Uptown Brampton
- Uptown Mississauga (Hurontario and Eglinton)
- Re-imagining the Mall (several locations throughout Peel)

# 8.3 Post-2041 Vision

The 2020 Master Plan was focused on developing a long-term servicing strategy to meet the needs of future growth to 2041 while supporting the appropriate level of service to existing residents and businesses. While the approved urban boundary and growth targets are to 2041, the Master Plan also considered implications of potential post-2041 growth on the system.

The preferred water and wastewater servicing strategies address the growth needs to 2041 and provide flexibility within the system to implement post-2041 strategies, once the long-term growth forecasts are confirmed and approved.

Post-2041 growth is anticipated at two levels: intensification and greenfield growth. It is expected that post-2041 greenfield growth will most likely occur as extensions further north into Caledon within Pressure Zones 6 and 7 and potentially establishing a new lake-based Pressure Zone 8. Additional extensions to the transmission and distribution network and new facilities will be required to service post-2041 areas. In addition, facility upgrades to move the water north as well as treatment upgrades may be required as growth increases beyond the 2041 targets.

While intensification is presently occurring within Peel and will continue to 2041, potential post-2041 intensification growth was investigated within the major intensification areas outlined in the previous sections. Since the post-2041 growth projections are not finalized at this time, only a high-level servicing investigation of intensification growth was completed. Detailed analysis of water infrastructure capacity and constraints has not yet been undertaken for the intensification areas. However, the 2041 water servicing strategy establishes flexibility within the water distribution system and will support a longer-term post-2041 strategy within the intensification areas.

Figure 27 shows a conceptual representation of post-2041 water servicing.





# References

<sup>1</sup> A Place to Grow, Growth Plan for the Greater Golden Horseshoe, 2019

<sup>2</sup> Design Guidelines for Drinking-Water Systems, 2008

<sup>3</sup> Silverthorn Reservoir and Pumping Station Expansion Class Environmental Assessment. Final Project File
 Report. <u>https://www.peelregion.ca/pw/water/environ-assess/pdf/EA-silverthorn-pumping-station-report.pdf</u>
 <sup>4</sup> Burnhamthorpe Road Watermain Class Environmental Assessment. Project File Report.

https://www.peelregion.ca/pw/water/environ-assess/pdf/burnhamthorpe-rd/burnhamthorpe-projectreport.pdf

<sup>5</sup> East Brampton Watermains Municipal Class Environmental Assessment Study. Environmental Study Report. https://www.peelregion.ca/pw/water/environ-assess/pdf/east-brampton/east-bram-esr-june2014.pdf

<sup>6</sup> West Brampton Watermain (Zone 5 Subtransmission Main) Schedule C Class Environmental Assessment. Environmental Study Report. (<u>https://www.peelregion.ca/pw/water/environ-assess/pdf/west-brampton/West-Brampton-WM-ESR.pdf</u>

<sup>7</sup> Zone 6 Reservoir and Feedermain Class Environmental Assessment. Environmental Study Report. <u>https://www.peelregion.ca/pw/construction/bram/pdf/10-1966-zone-6-res-FM-class-EA.pdf</u>



REGIONAL MUNICIPALITY OF PEEL



| Region<br>of Peel | То:                                                                                                                                                                                                                                                                                                       | Miriam Polga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Date:                                                                                                                                                                                  | 27 March 2018                                                                                                                                                                                                                                               |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| working with you  | From:                                                                                                                                                                                                                                                                                                     | Laura Borowiec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Subject:                                                                                                                                                                               | Water and Wastewater<br>Design Criteria                                                                                                                                                                                                                     |  |  |  |
| Public Works      | CC:                                                                                                                                                                                                                                                                                                       | Imran Motala, Martin<br>Pendlebury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Our File:                                                                                                                                                                              |                                                                                                                                                                                                                                                             |  |  |  |
|                   | This tech<br>recomm<br>to identi<br>Plan and<br>The men<br>1. 1<br>2. 2<br>3. 1                                                                                                                                                                                                                           | <ul> <li>This technical memorandum provides an overview of the derivation of the Region's recommended water and wastewater design criteria. The design criteria will be used to identify water and wastewater infrastructure requirements as part of the Master Plan and will provide input into the next Development Charges Update.</li> <li>The memorandum is structured as follows: <ol> <li>Background</li> <li>Starting Point Methodology</li> <li>Existing Water Design Criteria</li> <li>Area-Based Water Design Criteria</li> <li>Analysis of Water Treatment Flows</li> <li>Non-Revenue Water</li> <li>Discretization of Residential and Non-Residential Water Design Criteria</li> </ol> </li> <li>Existing Wastewater Design Criteria <ul> <li>Analysis of Wastewater Treatment Flows</li> <li>Background Flows</li> <li>Analysis of Wastewater Treatment Flows</li> </ul> </li> </ul> |                                                                                                                                                                                        |                                                                                                                                                                                                                                                             |  |  |  |
|                   | 5. 5<br>This wat<br>undertal<br>involving<br>flow mod<br>These ar<br>of an app<br>of an ap<br>I<br>• 1                                                                                                                                                                                                    | Summary and Recommendation<br>er and wastewater review draw<br>ken since the previous Master<br>g a wide range of information s<br>nitoring, and precipitation reco<br>and other relevant analyses prov<br>propriate water and wastewate<br>Accurately reflects water consu<br>Peel based on historical eviden<br>Is clear and easy to apply across<br>Incorporates a conservative out<br>the nature of growth, climate o                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ns<br>ws from a num<br>Plan that invol<br>uch as water b<br>ords.<br>vided the techn<br>er design criter<br>umption and w<br>ce<br>s all land uses<br>tlook, conside<br>change and ecc | ber of separate related analyses<br>ved detailed data analytics<br>billing, treatment flow, in-sewer<br>nical inputs to the determination<br>ria that strives to:<br>vastewater flow generation in<br>ring potential adjustments due to<br>pnomic activity. |  |  |  |
|                   | <b>BACKGROUND</b><br>The Region of Peel has generally utilized "per capita" design criteria for the estimation of future water demands and wastewater flows. The Region has continued, on a regular basis and through Master Plan updates, to review and assess the water and wastewater design criteria. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                        |                                                                                                                                                                                                                                                             |  |  |  |



Based on a historical analysis of water demands in the South Peel (lake based) system, there is evidence to suggest that the average day per capita water consumption is steadily decreasing due to increased efficiency of water fixtures, increased rainfall patterns (which leads to reduced irrigation), and improved public awareness. It is due to this trend observed over the last five years that the Region has undertaken extensive review to assess the current design criteria.

In an ideal world, a reduction in water consumption should also equate to a reduction in wastewater generation. However, flow analysis at the two wastewater treatment plants and local flow meters throughout the system has indicated that extraneous flow is significant. With wet weather events increasing in intensity and frequency, rainfall derived inflow and infiltration will continue to strain the capacity of the wastewater system.

### STARTING POINT METHODOLOGY

As with the previous Master Plan, the approach will continue to be based on establishing a yearly starting point, calculated from measured water demands and wastewater flows, and projecting growth demands and flows from this starting point forward. Growth flows will be determined by applying the agreed design criteria to the residential population and employment growth forecasts.

It is important to note that the Region's calibrated hydraulic water and wastewater models will continue to be used to provide a more accurate baseline understanding of existing demands/flows and how these vary by pressure zone/drainage area.

### **EXISTING WATER DESIGN CRITERIA**

The 2013 Master Plan utilized an average day water demand of 280 L/cap/d for both residential and non-residential land use. The residential maximum day peaking factor was 2.0, while the non-residential maximum day peaking factor was 1.4. The peak hour factor was 3.0.

For each water pressure zone, water pumping stations must provide local peak hour demands in the immediate serviced zone and have sufficient capacity to transfer maximum day demands for the subsequent zones to the north.

Transmission mains are required to convey the total pumping capacity requirements of the receiving pumping station to the north.

Analysis of treated water flow at the Lakeview and Lorne Park Water Treatment Plants corroborates the decreasing trend in per capita water consumption, averaging 254 L/cap/d over the past 10 years and 244 L/cap/d over the past 5 years. Adding a 10% safety factor results in a per capita of 264 – 280 L/cap/d.

# Area-Based Water Design Criteria

The average day water demand criteria for non-residential users was extensively reviewed as part of a growth management exercise. While the details of this analysis



are not discussed in this document, the findings suggest that area-based design criteria will not make a significant difference in the 2041 water demand projection, overall sizing of facilities and could in fact present more challenges than benefits. It was agreed that further consideration of area-based design criteria will not be pursued, at this time.

### Analysis of Water Treatment Flows

Analysis of water treatment flows from 2011 to 2016 showed a total average daily demand of approximately 250 L/person or employee/day. Maximum day peaking factors have averaged approximately 1.6 at Lakeview and 1.5 at Lorne Park, however higher peaking factors have been observed particularly during the summer months. Details of these historical water flows are provided in Attachment 1 of this memorandum.

# **Analysis of Billing Data**

Water billing records from 2012 to 2016 were reviewed to determine total volume of water billed to Peel residents and businesses. These figures were compared to water production records from the two lake-based treatment plants. The difference between the "billed water" volume and the "treated water" volume was utilized to estimate the annual percentage of non-revenue water for the last five years. The water billing analysis is summarized in Table 1.

| Description                                      | 2012                                                                                                                         | 2013        | 2014        | 2015        | 2016        | 5-YR AVG    |  |  |  |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|-------------|-------------|-------------|--|--|--|
| Residential Billed<br>Volume (m3)                | 115,832,091                                                                                                                  | 109,164,359 | 107,825,427 | 108,221,737 | 113,991,516 | 111,007,026 |  |  |  |
| Employment Billed<br>Volume (m3)                 | 50,562,845                                                                                                                   | 48,184,326  | 47,987,687  | 47,882,815  | 53,050,134  | 49,533,561  |  |  |  |
| Total Billed<br>Volume (m3)                      | 166,394,936                                                                                                                  | 157,348,685 | 155,813,114 | 156,104,552 | 167,041,650 | 160,540,587 |  |  |  |
| Non-Revenue Water <sup>1</sup>                   | 10.9%                                                                                                                        | 14.4%       | 14.1%       | 14.7%       | 14.0%       | 13.6%       |  |  |  |
| Total Lake Based<br>Residential Pop <sup>2</sup> | 1,340,513                                                                                                                    | 1,362,266   | 1,386,385   | 1,406,804   | 1,427,500   | 1,384,694   |  |  |  |
| Total Lake Based<br>Employment Pop <sup>2</sup>  | 650,015                                                                                                                      | 661,668     | 674,119     | 691,010     | 708,515     | 677,065     |  |  |  |
| Total Lake Based<br>Population                   | 1,990,528                                                                                                                    | 2,023,934   | 2,060,504   | 2,097,814   | 2,136,015   | 2,061,759   |  |  |  |
| Residential Use<br>(L/cap/d, incl. NRW)          | 261.89                                                                                                                       | 251.24      | 243.21      | 241.73      | 248.67      | 249.35      |  |  |  |
| Employment Use<br>(L/emp/d, incl. NRW)           | 235.76                                                                                                                       | 228.32      | 222.61      | 217.75      | 233.17      | 227.52      |  |  |  |
| Total (L/cap/d, incl.<br>NRW)                    | 253.36                                                                                                                       | 243.75      | 236.47      | 233.83      | 243.53      | 242.19      |  |  |  |
| <sup>1</sup> Note: Non-revenue wo                | <sup>1</sup> Note: Non-revenue water represents water losses through leakage in the distribution system but can also include |             |             |             |             |             |  |  |  |

#### Table 1. Water Billing Analysis Summary

<sup>1</sup>Note: Non-revenue water represents water losses through leakage in the distribution system but can also include water use due to operations activities, such as flushing, jetting, etc.

<sup>2</sup> Population determined based on interpolation between 2011 Census and 2016 Projected Population.



# Discretization of Residential and Non-Residential Water Design Criteria

As seen in Table 1, analysis of the residential and employment water billing records against residential and employment population provides a breakdown of the per capita consumption by residential and non-residential water users.

**Public Works** 

In addition to the non-revenue water component, an additional 10% was considered a reasonable factor of safety to apply to the water billing data. Application of the 10% factor of safety to the 5-year averages of 249.35 L/cap/d (residential) and 227.52 L/emp/d (employment), equates to 274 L/cap/d and 250 L/emp/d, respectively. This can be rounded to 270 L/cap/d for residential, and 250 L/emp/d for employment, as shown in Table 2.

### Table 2. Proposed Region of Peel Water Design Criteria

| Туре        | Average Day<br>Demand | Maximum Day<br>Peaking Factor | Peak Hour<br>Factor |  |
|-------------|-----------------------|-------------------------------|---------------------|--|
| Residential | 270 L/cap/d           | 1.8                           | 3.0                 |  |
| Employment  | 250 L/cap/d           | 1.4                           | 3.0                 |  |

Application of the 10% to the total flow of 242.19 L/cap/d equates to 266 L/cap/d, which represents a reduction of 5.0% relative to the previous criteria of 280 L/cap/d.

# **EXISTING WASTEWATER DESIGN CRITERIA**

The 2013 Master Plan and current Region of Peel Sanitary Sewer Design Standards outline an average day wastewater flow criteria of 302.8 L/cap/d applied to either residential and non-residential population. The peaking factor was based on the Harmon Formula. The extraneous flow allowance was 0.2 L/s/ha, with provisions in the Design Manual for additional allowances for foundation drainage and/or manhole inflow.

Wastewater sewers and pumping stations are sized to convey peak flow. To calculate the peak dry weather flow, the average day flow is multiplied by the Harmon Peaking Factor for the gross tributary drainage area (minimum of 2, maximum of 4). The Harmon Peaking Factor, M, is calculated as follows:

$$M = 1 + \frac{14}{4 + P^{0.5}}$$

where:

M = Harmon Peaking Factor (ratio of peak flow to average flow)P = tributary equivalent population in thousands

Wastewater treatment plants are sized to treat average daily flows. The 2013 Master Plan utilized an average wastewater flow criteria of 300 L/person or employee/day for projecting future flows at the treatment plants. This review looks at average daily flows over the past 5 and 10 years to assess the previous 300 L/cap/d design criteria.



In 2015, the Region completed, through a consultant, a review of the sanitary sewer design criteria and standards for linear wastewater infrastructure. A key component of this study involved analysis of existing wastewater flow data, survey of other municipalities, and assessment of potential financial and other impacts. Findings from this review together with more recent analyses were utilized to inform recommended changes to the wastewater design criteria presented in this documented.

### Analysis of Wastewater Treatment Flows

Analysis of wastewater treatment plant flows from 2007 to 2016 showed an average daily flow at the two plants of approximately 287 L/cap/day over the last 10 years and 294 L/cap/day over the last 5 years. Historical wastewater flows at the treatment plants are outlined in Attachment 2 of this memorandum.

As it can be observed, there is an increasing flow trend over time as plant flows include dry weather flow, as well as an element of inflow and infiltration. Using a 10-year average aligns with the previous Master Plan methodology. Adding a 10% factor of safety to the 10-year plant flow average of 287 L/cap/d equates to 315 L/cap/d. This will be the design criteria used for projecting future flows at the plants.

Table 3. Proposed Region of Peel Wastewater Design Criteria for Treatment Plants

| Туре        | Average Day Flow |
|-------------|------------------|
| Residential | 315 L/cap/d      |
| Employment  | 315 L/cap/d      |

# **Analysis of Local Sub-Drainage Area Flows**

Since the previous Master Plan, the Region has significantly expanded its wastewater flow metering program to monitor both existing and new development areas. There are currently 212 active flow monitors strategically located throughout the Region, which provide real-time data that is continuously analyze to identify any problem areas. There are 49 rain gauges in the Region which provide further precipitation data that is combined with flow data to characterize and quantify wet weather response in the local collection system.

Local sanitary sewer flow monitoring at a sub-drainage level has showed a wide range in average per capita or employee dry weather flows, at times exceeding the design criteria. However, of primary interest was the extent to which inflow and infiltration exceeded typical design allowances. Based on over 130 flow monitoring stations, the average peak unit I/I rates ranged between 0.35 and 0.78 L/s/ha.

Analysis of historical treatment flows corroborates these findings and its cumulative impact at the plants. Given the abundance of evidence and findings of the municipal survey, the Region proposes to increase the design allowance for extraneous flow from 0.20 to 0.26 L/s/ha.



# Discretization of Residential and Non-Residential Wastewater Design Criteria

The wastewater design criteria review has drawn from previous treatment and subdrainage flow analyses to inform proposed changes to the wastewater design criteria for the collection system. Dry weather flow generation trends in the Region of Peel support the reduction of the average day wastewater design criteria from 302.8 to 285 L/person or employee/day, representing a reduction of 5.9%.

Unlike water, which is metered at the source, wastewater flows cannot be discretized by source (i.e. residential or non-residential). As such, analysis of treatment flow data against total service population is limited to providing an overall per capita wastewater flow generation rate. However, the same proportion used to discretize water can be applied to wastewater. The 285 L/cap/d equates to an average day wastewater flow of 290 L/person/day for residential and 270 L/employee/day for employment, as outlined in Table 4.

| Туре        | Average Flow | Peaking Factor           | Infiltration |
|-------------|--------------|--------------------------|--------------|
| Residential | 290 L/cap/d  | Harmon<br>(min 2, max 4) | 0.26 L/s/ha  |
| Employment  | 270 L/emp/d  | Harmon<br>(min 2, max 4) | 0.26 L/s/ha  |

### Table 4. Proposed Region of Peel Wastewater Design Criteria for Collection System

# SUMMARY AND RECOMMENDATIONS

Recent trends in water consumption in the Region of Peel support the reduction of the average day water design criteria from 280 to 266 L/person or employee/day. This represents a reduction of 5.0%. As part of the Growth Management Initiative, discussions with the development industry led to the decision of discretizing a single design criteria into separate residential from non-residential components based on service population. The Region believes this approach is fair and reasonable to both residents and the employment industry.

The residential average day water demand will be 270 L/person/day, while employment will be 250 L/employee/day. The residential maximum day peaking factor will be reduced from 2.0 to 1.8, while the non-residential maximum day peaking factor will remain unchanged at 1.4. The peak hour factor will also remain unchanged at 3.0.

The findings of the analysis undertaken as part of the water billing analysis do not support the position that changing to an area-based water design criteria for non-residential use is reasonable at this time.

Dry weather wastewater flow generation trends in the Region of Peel support the reduction of the average day wastewater design criteria from 302.8 to 285 L/person or employee/day. This represents a reduction of 5.9%. As with water, this single wastewater design criteria was further discretized into separate residential and non-residential components based on the same proportion as water.



On this basis, the residential average day wastewater flow will be 290 L/person/day, while employment will be 270 L/employee/day. Peak dry weather flow will continue to be calculated using the Harmon formula.

Unlike dry weather flows, however, there is sufficient evidence to support the increase of the extraneous flow allowance of 0.20 L/s/ha. The inflow and infiltration allowance will be 0.26 L/s/ha.

It is important to note that the Region is committed to continuously monitoring, analyzing flows and making adjustments as new and improved information becomes available.



### Attachment 1 - Derivation of Average Day Demand (PRODUCTION DATA)

#### Water Design Criteria Average Day

#### South Peel System

| Year | Residential Population<br>(South Peel) | No. of Employees<br>(South Peel) | Total Population | Average Daily Demand,<br>MLD (excl. York) | Per Capita Demand<br>(L/cap/d) |
|------|----------------------------------------|----------------------------------|------------------|-------------------------------------------|--------------------------------|
| 2007 | 1,205,883                              | 618,216                          | 1,824,099        | 537.62                                    | 294.73                         |
| 2008 | 1,229,012                              | 632,297                          | 1,861,309        | 507.57                                    | 272.69                         |
| 2009 | 1,251,100                              | 646,149                          | 1,897,249        | 487.77                                    | 257.10                         |
| 2010 | 1,275,000                              | 657,858                          | 1,932,858        | 486.68                                    | 251.79                         |
| 2011 | 1,321,101                              | 639,639                          | 1,960,739        | 480.85                                    | 245.24                         |
| 2012 | 1,337,129                              | 651,724                          | 1,988,854        | 504.31                                    | 253.57                         |
| 2013 | 1,353,158                              | 663,810                          | 2,016,968        | 493.32                                    | 244.59                         |
| 2014 | 1,369,187                              | 675,896                          | 2,045,082        | 487.25                                    | 238.26                         |
| 2015 | 1,385,215                              | 687,982                          | 2,073,197        | 490.54                                    | 236.61                         |
| 2016 | 1,400,534                              | 699,267                          | 2,099,801        | 521.61                                    | 248.41                         |
| 2017 |                                        |                                  |                  |                                           |                                |

5 yr average

635.80

244.29 L/cap/d

#### Lakeview

| Year | Average Daily Demand,<br>MLD (excl. York) | Maximum Day Demand,<br>MLD | Maximum Day<br>Peak Factor |
|------|-------------------------------------------|----------------------------|----------------------------|
| 2007 | 376.17                                    | 586.60                     | 1.56                       |
| 2008 | 388.20                                    | 569.30                     | 1.47                       |
| 2009 | 371.48                                    | 597.40                     | 1.61                       |
| 2010 | 397.21                                    | 690.90                     | 1.74                       |
| 2011 | 394.76                                    | 677.70                     | 1.72                       |
| 2012 | 422.80                                    | 675.50                     | 1.60                       |
| 2013 | 418.56                                    | 634.30                     | 1.52                       |
| 2014 | 387.33                                    | 559.50                     | 1.44                       |
| 2015 | 410.21                                    | 637.40                     | 1.55                       |
| 2016 | 415.33                                    | 672.30                     | 1.62                       |
| 2017 |                                           |                            |                            |

410.85

5 yr average

1.55

#### Lorne Park

| Year | Average Daily Demand,<br>MLD (excl. York) | Maximum Day Demand,<br>MLD | Maximum Day<br>Peak Factor |
|------|-------------------------------------------|----------------------------|----------------------------|
| 2007 | 209.83                                    | 292.10                     | 1.39                       |
| 2008 | 191.66                                    | 261.20                     | 1.36                       |
| 2009 | 176.10                                    | 236.40                     | 1.34                       |
| 2010 | 161.58                                    | 224.70                     | 1.39                       |
| 2011 | 174.79                                    | 299.30                     | 1.71                       |
| 2012 | 193.09                                    | 291.70                     | 1.51                       |
| 2013 | 190.35                                    | 267.10                     | 1.40                       |
| 2014 | 208.86                                    | 277.10                     | 1.33                       |
| 2015 | 196.66                                    | 288.10                     | 1.46                       |
| 2016 | 206.01                                    | 317.10                     | 1.54                       |
| 2017 |                                           |                            |                            |

5 yr average

198.99

288.22

1.45



Attachment 2 - Derivation of Average Day Flow (PLANT DATA)

#### Wastewater Design Criteria Average Day

#### South Peel System

| Year | Residential Population<br>(South Peel) | No. of Employees (South<br>Peel) | Total Population | Average Daily Flow, MLD<br>(excl. York & Toronto) | Per Capita Flow<br>(L/cap/d) |
|------|----------------------------------------|----------------------------------|------------------|---------------------------------------------------|------------------------------|
| 2007 | 1,177,517                              | 565,818                          | 1,743,335        | 479.98                                            | 275.32                       |
| 2008 | 1,208,615                              | 586,508                          | 1,795,123        | 521.26                                            | 290.37                       |
| 2009 | 1,226,639                              | 589,475                          | 1,816,114        | 502.83                                            | 276.87                       |
| 2010 | 1,240,559                              | 593,303                          | 1,833,862        | 482.01                                            | 262.84                       |
| 2011 | 1,270,860                              | 597,136                          | 1,867,996        | 537.24                                            | 287.60                       |
| 2012 | 1,301,162                              | 600,970                          | 1,902,131        | 536.07                                            | 281.83                       |
| 2013 | 1,331,463                              | 604,803                          | 1,936,266        | 557.90                                            | 288.13                       |
| 2014 | 1,353,423                              | 619,856                          | 1,973,279        | 590.69                                            | 299.35                       |
| 2015 | 1,375,384                              | 634,909                          | 2,010,293        | 567.66                                            | 282.38                       |
| 2016 | 1,397,344                              | 649,962                          | 2,047,306        | 581.54                                            | 284.05                       |
| 2017 |                                        |                                  |                  |                                                   |                              |

10 yr average 5 yr average 282.87 287.15

#### G.E. Booth

| Year | Residential Population<br>(East) | No. of Employees (East) | Total Population | Average Daily Flow, MLD<br>(excl. York & Toronto) | Per Capita Flow<br>(L/cap/d) |
|------|----------------------------------|-------------------------|------------------|---------------------------------------------------|------------------------------|
| 2007 | 686,815                          | 433,874                 | 1,120,689        | 306.61                                            | 306.61                       |
| 2008 | 707,485                          | 450,328                 | 1,157,813        | 323.41                                            | 323.41                       |
| 2009 | 719,035                          | 449,219                 | 1,168,254        | 324.11                                            | 324.11                       |
| 2010 | 727,504                          | 451,666                 | 1,179,170        | 339.06                                            | 339.06                       |
| 2011 | 755,442                          | 450,395                 | 1,205,836        | 401.66                                            | 376.98                       |
| 2012 | 783,380                          | 449,123                 | 1,232,503        | 395.35                                            | 375.83                       |
| 2013 | 811,318                          | 447,852                 | 1,259,170        | 429.00                                            | 402.65                       |
| 2014 | 820,400                          | 457,530                 | 1,277,930        | 425.13                                            | 425.13                       |
| 2015 | 829,482                          | 467,209                 | 1,296,691        | 378.55                                            | 378.55                       |
| 2016 | 838,564                          | 476,887                 | 1,315,451        | 398.67                                            | 380.10                       |
| 2017 |                                  |                         |                  |                                                   |                              |

<sup>10</sup> yr average 5 yr average

363.24 392.45

#### <u>Clarkson</u>

| Year | Residential Population<br>(West) | No. of Employees (West) | Total Population | Average Daily Flow, MLD<br>(excl. York & Toronto) | Per Capita Flow<br>(L/cap/d) |
|------|----------------------------------|-------------------------|------------------|---------------------------------------------------|------------------------------|
| 2007 | 490,703                          | 131,944                 | 622,647          | 173.24                                            | 278.23                       |
| 2008 | 501,130                          | 136,180                 | 637,310          | 197.80                                            | 310.37                       |
| 2009 | 507,604                          | 140,256                 | 647,860          | 187.47                                            | 289.37                       |
| 2010 | 513,055                          | 141,637                 | 654,692          | 177.27                                            | 270.77                       |
| 2011 | 515,418                          | 146,741                 | 662,160          | 160.25                                            | 242.02                       |
| 2012 | 517,782                          | 151,846                 | 669,628          | 160.24                                            | 239.29                       |
| 2013 | 520,145                          | 156,951                 | 677,096          | 155.24                                            | 229.28                       |
| 2014 | 533,023                          | 162,326                 | 695,349          | 165.56                                            | 238.10                       |
| 2015 | 545,902                          | 167,700                 | 713,602          | 189.11                                            | 265.01                       |
| 2016 | 558,780                          | 173,075                 | 731,855          | 201.44                                            | 275.24                       |
| 2017 |                                  |                         |                  |                                                   |                              |

10 yr average 5 yr average



REGIONAL MUNICIPALITY OF PEEL

# **APPENDIX 3B**

Cost Estimation Framework Memo

# **Cost Estimation Framework**

2020 Water and Wastewater Master Plan

Prepared by: GM BluePlan Engineering for:



The Regional Municipality of Peel

Project No. 715022

May 2020





# **Table of Contents**

| 1 | INTR | ODUCTION                               | 4  |
|---|------|----------------------------------------|----|
| 2 | REGI | ON OF PEEL'S COST ESTIMATION FRAMEWORK | 5  |
|   | 2.1  | Approach and Methodology               | 5  |
|   | 2.2  | Project Type                           | 7  |
|   | 2.3  | Cost Estimate Classification           | 7  |
|   | 2.4  | Project Complexity                     | 8  |
|   | 2.5  | Unit Rates                             | 10 |
|   | 2.6  | Construction Uplift                    | 11 |
|   | 2.7  | Additional Construction Costs          | 11 |
|   | 2.8  | Construction Provisional Allowance     | 11 |
|   | 2.9  | Other Project Costs                    | 12 |
|   | 2.10 | Project Contingency                    | 13 |

# List of Tables

| Table 1. C | Cost Estimation Classes           | 7  |
|------------|-----------------------------------|----|
| Table 2 D  | Project Complexity Descriptions   | 0  |
|            |                                   | 0  |
| Table 3. C | Construction Uplift Descriptions1 | .1 |
| Table 4. A | Additional Cost Components1       | .2 |
| Table 5. P | Project Contingency1              | .3 |

# **List of Figures**

| Figure 1. | Cost Estimation Process Flow Diagram | (Sample – Water)6 |
|-----------|--------------------------------------|-------------------|
|           |                                      | (                 |



# **List of Appendices**

- Appendix A Cost Estimation Spreadsheet Template
- Appendix B Cost Estimate Classes
- Appendix C Data Confidence and Availability for Cost Estimate Classes
- Appendix D Updated Unit Rates



### **1** INTRODUCTION

GM BluePlan Engineering was retained by the Region of Peel (the Region) to undertake the 2020 Water and Wastewater Master Plan. The project scope included development of new frameworks and policies related to long-term planning, cost estimation at the Master Plan level, and updated linear and vertical unit rates. This memorandum presents the new Cost Estimation Framework, including updated unit rates, that will be applied to the Region of Peel's capital projects in the 2020 Water and Wastewater Master Plan, and moving forward in the Region's annual capital budget.

The Region of Peel wishes to formalize and document a Cost Estimation Framework that provides a consistent, transparent, and auditable approach to costing capital projects. This memorandum is intended to help the Region develop and adopt a framework that best fits its unique operational structure.

The primary aims of this task are to:

- Provide a formal cost estimation framework for the Region.
- Provide guidance to Regional staff on the use of the framework.

To achieve the aims, the objectives of the task are to:

- Establish and define different levels or classes of cost estimates appropriate to the information that is available, which will relate to the type of study that is being undertaken.
- Identify key information requirements to generate each level of class estimate.



### 2 REGION OF PEEL'S COST ESTIMATION FRAMEWORK

The proposed Cost Estimation Framework for capital projects at the Master Plan level will follow a similar methodology as the 2013 Water and Wastewater Master Plan based on an overall project unit cost approach. In this approach, project costs are generated from unit rates with added contingency and other additional costs.

The goal of the Cost Estimation Framework is to provide a consistent and traceable approach for estimating capital project costs to minimize the variance between cost estimates and final project budgets. The approach will also improve communication and understanding between stakeholders.

### 2.1 Approach and Methodology

The total length or capacity needs of the required infrastructure is multiplied by a unit rate, applicable to the size or capacity and particular construction type (e.g., 5-metre depth sewer, 10-metre depth sewer, water main, wastewater force main, tunnelling). Additional costs are added to account for creek, road, railway or utility crossings, valves, tunneling requirements, etc., where applicable.

In cases where construction will occur in built up areas, such as intensification areas, a cost escalation factor is applied to the installation cost. This factor provides additional project costs to account for utility coordination/relocation, urban reinstatement, and urban construction impacts.

The sum of the base cost plus additional cost results in the *Base Construction Cost*.

Soft costs such as geotechnical/hydrogeological, property/easements, engineering and design, contract administration and contingency allowances, are added to the Base Construction Cost to arrive at the *Total Project Cost*.

Figure 1 shows the cost estimating process flow diagram. Each of the key components of the diagram is described below, including:

- Project Type
- Cost Estimate Classification
- Project Complexity
- Unit Rates
- Construction Uplift
- Additional Costs
- Construction Provisional Allowance
- Other Project Costs (Geotechnical, Property, Design, In-house costs, etc.)
- Project Contingency

The unit costs and all the above components are contained in excel spreadsheets that include the Region's project sheets and the Water and Wastewater Capital Programs. The spreadsheet is the working tool that brings all the cost components together to create project cost estimates for the capital programs. The template spreadsheet is provided in Appendix A.

The following sections describe the methodology for each cost component.

| Region<br>of Peel<br>king with you |  |
|------------------------------------|--|
| Region<br>of Peel<br>king with you |  |

| Step 1. Define Project Type |                                                                                      |  |  |  |  |
|-----------------------------|--------------------------------------------------------------------------------------|--|--|--|--|
| Project Type                | Project Type Description                                                             |  |  |  |  |
| New infrastructure          | Projects involving construction of new infrastructure, typically<br>funded from DCs. |  |  |  |  |
| Replacement                 | Projects involving replacement, relining, etc. of existing<br>infrastructure (SOGR). |  |  |  |  |
|                             |                                                                                      |  |  |  |  |

#### Step 2. Define Project Classification

| Estimate<br>Class | Estimate Class<br>Description            | End Usage/Major Deliverables                                                                        |
|-------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Class 4           | Infrastructure Planning<br>Cost Estimate | Study to support investment decisions based on<br>sufficient knowledge to identify high-level risk. |
| Class 3           | Conceptual Design Cost<br>Estimate       | Basis for budgeting and approvals.                                                                  |
| Class 2           | Preliminary Design Cost<br>Estimate      | Used for project cost control during design; initial design estimate.                               |
| Class 1           | Detailed Design Cost<br>Estimate         | Final cost review in preparation for construction; tender-ready.                                    |

#### Step 3. Define Project Complexity

| Project Complexity | Complexity Description                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| High complexity    | <ul> <li>Complex project details that, in general, have high uncertainty and may<br/>potentially change in later stages of the project (EA, scoping study, design,<br/>construction)</li> <li>Multiple options and project details for design &amp; construction (alignment,<br/>dimensions, facility layout, construction methodology) that are not yet<br/>confirmed</li> </ul>                                                   |
| Medium complexity  | <ul> <li>Medium complexity projects that have most project details that generally fall<br/>in between High and Low complexity</li> <li>Medium complexity projects may have some elements that fit the High<br/>Complexity category, while some elements falling within Low complexity<br/>category. (e.g. short section of small diameter watermain constructed within<br/>built up area with several utility conflicts)</li> </ul> |
| Low complexity     | <ul> <li>Straightforward project details that, in general have low uncertainty and are<br/>not likely to change in later stages of the project (EA, scoping study, design,<br/>construction)</li> <li>Most options and project details for design &amp; construction (alignment,<br/>dimensions, facility layout, construction methodology) that are generally<br/>confirmed at this stage</li> </ul>                               |

#### Step 4. Define Project Details

| Project Detail              | Detail Description                                                                                                                                     |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Diameter/Capacity           | Nominal diameter of the proposed water main to provide the<br>required level of service, or proposed capacity of the vertical<br>infrastructure.       |
| Length                      | Approximate length of the proposed water main based on the<br>alignment (whether assumed or determine through more<br>rigorous analysis).              |
| Construction<br>Methodology | The method by which the water main will be installed (e.g., open cut, trenchless).                                                                     |
| Construction Depth          | The depth of excavation required to install the water main<br>assuming that open cut construction is chosen (e.g., normal,<br>deep).                   |
| Construction<br>Environment | The general environment within which the water main will be<br>constructed (e.g., greenfield, suburban, urban).                                        |
| Crossings                   | Identification of the type and number of crossings associated<br>with the water main installation (e.g., creeks, roads, railways,<br>major utilities). |
| Appurtenances               | Identification of the type and number of appurtenances<br>required for the proposed water main (e.g., valves, chambers,<br>hydrants, etc.).            |
| Other Considerations        | Coordination with other capital works that could impact schedule and cost.                                                                             |

# Step 5. Calculate Total Construction Cost Step 6. Calculate Soft Costs INSTALLATION COST Basic cost to install the water main and associated appurtenances calculated using various unit rat for pipe, valve and chamber sizes and type of crossings. ncludes: Water main installation (unit rate x length), crossings (count x unit rate for size and type of crossing), valve and chambers (included in unit rate). See unit rates for different pipe sizes. For vertical infrastructure, includes facility construction (unit rate x capacity). 2 CONSTRUCTION UPLIFT **Construction Env** Allowance for the increased cost of constructing in built-up areas, applied to the base constructi reenfield Suburban Urbar rost 10% 20% 0% BASE CONSTRUCTION COST Total cost to construct the actual linear or vertical infrastructure and associated appurtenances, no including tasks such as traffic management, mobilization, inspections, etc. 6 = 0 + 0 4 ADDITIONAL CONSTRUCTION COSTS Additional costs associated with construction ne covered under the base construction cost or the Low Moderate High construction uplift, including mobilization, traffic anagement, inspections, etc. 10% 15% 20% A percentage is applied to the water mai construction cost based on the complexity of the ÷ S PROVISIONAL ALLOWANCE visional allowance for labour and material over and above the water main construction cost, 10% a standard item on construction tenders. A provisional allowance of 10% is applied to al ojects. 6 TOTAL CONSTRUCTION COST Total cost of constructing the water main/facility including all items that make up a constructio 6 = 6+4+6

a) For new infrastructure (i.e., growth-related) GEOTECHNICAL/ HYDROGEOLOGICAL Allowance for geotechnical/hydrogeological investigations during detailed design. Facilit 0.5% 1.0% 2.0% 2.0% ÷ 8 PROPERTY/EASEMENTS Allowance for temporary and permanent ments and for property acquisition 1.0% 1.5% 2.0% 2.0% ÷ ENGINEERING/DESIGN (INTERNAL) Total Cost <\$10m \$10-\$50m >\$50m 8.0% 6.0% 4.0% DESIGN/CONTRACT ADMINISTRATION Total Cost (EXTERNAL) <\$10m \$10-\$50m >\$50m 15.0% 12.0% 10.0% ÷ APPROVALS Total Cost llowance for EA requirements (other than <\$10m \$10-\$50m >\$50m Schedule C), permits and other approvals. TBD TBD TBD 12 TOTAL SOFT COSTS (GROWTH) 12 = 17 + 13 + 19 + 10 + 11 Step 7. Calculate Project Contingency B PROJECT CONTINGENCY An allowance for overall project contingency (construction, design, property, etc) that recognizes both the complexity of the project and the project classification in terms of the certainty regarding scope of work, alignment, construction methodology, property requirements, geotechnical/hydrogeological issues, etc. The contingency wil ome smaller as the project moves closer to implementation. **B** = % x (**G** + **P**) Step 8. Calculate Total Project Cost 1 TOTAL PROJECT COSTS (2) = (3) + (2) + (3) Step 9. Determine Funding Source(s) Determine the funding source or sources based on the key driver(s) of the project. t of By-law (OB DC South Pee DC Regiona R3520 R3530 DC South Pee DC Regiona R3620 R3630 Step 10. Assemble Capital Project in the Database 6 is entered as the CONSTRUCTION component D is entereed as the DESIGN/SOFT COST component

#### Figure 1. Cost Estimation Process Flow Diagram (Sample – Water)

### Regional Municipality of Peel 2020 Water and Wastewater Master Plan Cost Estimation Framework May 2020

| 4%  |
|-----|
|     |
| 4%  |
|     |
| 14% |
|     |
|     |
|     |
|     |

|         | P   | roject Comple> | ity  |
|---------|-----|----------------|------|
|         | Low | Moderate       | High |
| Class 4 | 10% | 15%            | 25%  |
|         | 10% | 15%            | 20%  |
|         | 10% | 10%            | 15%  |
|         | 10% | 10%            | 10%  |

| State of good repair/<br>system improvement |           |        |   | Ex         | ternal source | es          |
|---------------------------------------------|-----------|--------|---|------------|---------------|-------------|
| CFSR                                        | York-Peel | Non-DC |   | York       | Ext. SA       | Other Misc. |
|                                             | CFSR      | Growth | F | Recoveries | Owner's       | Rec.        |
| R0241                                       | R0271     | R1080  |   | 86414      | 86401         | 86299       |


## 2.2 Project Type

#### New Infrastructure

New infrastructure projects involve construction of new linear or vertical infrastructure that is are growth related and typically funded from Development Charges (DCs). The majority of the capital projects identified in the Master Plan fall into this category and their cost will be developed using the new cost estimation framework.

#### **Replacement**

Projects involving replacement, relining and other works on existing infrastructure. These projects are generally not growth related and fall in the State of Good Repair (SoGR) category. The cost of these projects will not be developed based on the new cost estimation framework. A separate cost estimating process is being developed for SoGR projects which will follow a similar process.

#### 2.3 Cost Estimate Classification

The cost estimation approach uses a classification system to categorize cost estimate classes. These classes represent different phases of planning and design and, therefore, different methods of cost estimation and levels of accuracy. This framework complements the generic approach developed by the Association of Advancement in Cost Estimating (AACE) International, and also has similarities to the Government of Canada (GOC) approach.

For the purposes of the 2020 Water and Wastewater Master Plan, the cost estimates that are derived using this methodology will mostly follow a **Class 4** estimate. If this methodology is further used through subsequent phases of the project, the Class can be updated to reflect the higher level of confidence in the estimate and the additional effort used to develop the estimate.

Table 1 provides descriptions of the proposed estimate classes and their end usage or deliverables. Appendix B includes expanded details on each Class, including the basis for the estimate and the associated accuracy range that can be expected based on the project complexity.

| Estimate Class | Estimate Class Description               | End Usage / Major Deliverables                                                                                                                |
|----------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Class 5        | Order of Magnitude<br>Estimate           | Limited or no available information used in the cost estimate. Used at an early stage in absence of better information.                       |
| Class 4        | Infrastructure Planning Cost<br>Estimate | Infrastructure Planning/Master Planning. Justification for project planning funding. Limited available information used in the cost estimate. |
| Class 3        | Conceptual Design Cost<br>Estimate       | Basis for budgeting and approvals.                                                                                                            |
| Class 2        | Preliminary Design Cost<br>Estimate      | Used for project cost control during design. Initial detailed estimate.                                                                       |
| Class 1        | Detailed Design Cost<br>Estimate         | Final cost review in preparation for construction; tender ready.                                                                              |

#### Table 1. Cost Estimation Classes



#### 2.4 Project Complexity

A Master Plan level project can vary widely in scope. Past Master Plans and DC updates have included, for example, small diameter (300 mm) and short length (<100 m) water mains as projects as well as multidisciplinary treatment plant upgrades with construction costs in excess of \$100 million. When developing the cost estimate within a Master Plan context, it should be recognized that not all project costs have the same level of complexity. As part of the new cost estimate. As the anticipated complexity of a project increases from low to high there is a greater risk of unforeseen costs. As such, the contingency and additional cost items are adjusted to reflect the project complexity.

Table 2 provides general definitions of project complexity – high, medium and low – as used in the 2020 Water and Wastewater Master Plan. An estimate of the complexity is made after reviewing the project details that are available at the Master Planning stage. The definitions of high, medium and low complexity are provided to maximize the consistency in complexity selection on a given project and to minimize the subjectivity of the estimate.

The complexity estimate is intended to represent the best assumption of the overall complexity of the project with details available at the time.

| Project Complexity | Complexity Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| High Complexity    | <ul> <li>Large in scale, scope and, ultimately, cost.</li> <li>Uncommon project not frequently constructed.</li> <li>Complex project details that, in general, have high uncertainty and may potentially change in later stages of the project (EA, scoping study, design, construction)</li> <li>Multiple options and project details for design and construction (alignment, dimensions, facility layout, construction methodology) that are not yet confirmed</li> <li>Other anticipated project details that can contribute to consideration as a High Complexity project:         <ul> <li>Existing utility and linear infrastructure conflicts, that may not be known at the Master Planning Stage</li> <li>Unknown subsurface conditions – Soil, rock, groundwater</li> <li>Significant restoration requirements</li> <li>Environmental features that may require additional approvals and/or mitigation during construction duration</li> <li>Linear – Deep sewer/water main, force main</li> <li>Linear – Large Diameter</li> <li>Facility – Deep Wet Well</li> <li>Facility – Large Capacity (Reservoir, Elevated Tank, Pumping Station)</li> </ul> </li> <li>The nature of the project details in a high complexity project (e.g. many unknowns, utility conflicts, large diameter, high base construction costs, etc.) necessitate the inclusion of further additional costs to account for the risk of construction cost increases.</li> </ul> |  |  |  |  |  |  |  |

#### Table 2. Project Complexity Descriptions



| Project Complexity | Complexity Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Medium Complexity  | <ul> <li>Moderate in scale, scope and, ultimately, cost.</li> <li>Medium complexity projects where most project details generally fall in between high and low complexity.</li> <li>Medium complexity projects may have some elements that fit the High Complexity category, while some elements falling within Low complexity category (e.g., short section of small diameter water main constructed within a built-up area with several utility conflicts).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
| Low Complexity     | <ul> <li>Smaller in scale, scope and, ultimately, cost.</li> <li>Common project frequently constructed.</li> <li>Straightforward project details that, in general, have low uncertainty and are not likely to change in later stages of the project (EA, scoping study, design, construction).</li> <li>Most options and project details for design and construction (alignment, dimensions, facility layout, construction methodology) are generally confirmed at this stage.</li> <li>Other anticipated project details that can contribute to consideration as a Low Complexity project         <ul> <li>Few existing utility and linear infrastructure conflicts – generally associated with greenfield/rural construction</li> <li>Subsurface conditions are known or assumed with high level of certainty</li> <li>Minimal restoration required or restoration primarily to be coordinated with road construction/widening</li> <li>Little to no environmental features within project construction area</li> <li>Short anticipated construction duration</li> <li>Linear – Shallow sewer, water main, force main</li> <li>Linear – Small diameter</li> <li>Facility – Shallow wet well</li> <li>Facility – Small Capacity (Reservoir, Elevated Tank, Pumping Station)</li> </ul> </li> </ul> |  |  |  |  |  |  |  |



## 2.5 Unit Rates

Unit rates require periodic updating to ensure they are consistent with current market conditions. GM BluePlan compiled recent tenders for linear and facility projects within the GTA to provide guidance to the update of unit rates. Unit rates are estimated to be high level cost for construction, which is assumed to include General Contractor profit.

The linear unit rate for a given pipe diameter is made up of the following components:

- Excavation (\$/m<sup>3</sup>)
- Bedding (\$/m<sup>3</sup>)
- Pipe Supply (\$/m)
- Pipe Install (\$/m)

- Backfill (\$/m<sup>3</sup>)
- Restoration (\$/m)
- Manhole Allowance (\$/m)
- Valve Allowance (\$/m)

Each component was broken down to a \$/m linear unit rate to generate the total base construction cost for a given diameter of pipe. Unit rates for facilities are not broken down to the same level of detail as linear projects. Facility unit rates are based on \$/L/s or \$/ML.

For the 2020 Water and Wastewater Master Plan, the linear component and facility costs were updated based on the following considerations:

- 2012 cost Used as a baseline starting point to ensure costs remained relatively close to previous estimates
- Current pipe cost from suppliers
- Recent Tenders
- Construction cost indexing (Inflation)

Since every construction project is unique, new unit rates were not directly derived from tenders; rather, tenders were deconstructed and used as guidance and as a check to ensure the unit rates are reasonable.

The new unit rates are provided in Appendix D. They are based on a combination of historical master plan unit rates, supplier material costs, tender analysis and historic project costs from multiple municipalities across southern Ontario. In this recommended approach, the unit rates are the starting point or base for a cost estimate. Many other factors and criteria are applied to the unit rates. Therefore, caution is advised when comparing recommended unit rates in isolation with those used for previous studies. Only full and complete costs estimates should be compared.

Creeks, roads, railways and utility corridor crossings are also identified during the cost estimating process. The costs associated with these crossings, where applicable, are part of the installation cost. The costs of crossings are calculated as follows:

Major Creek / Major Road → 150 m x Tre

 $\rightarrow$ 

- 150 m x Trenchless Unit Rate 60 m x Trenchless Unit Rate
- Minor Road / Utilities Corridor  $\rightarrow$
- 20 m v Trenchless Unit Rate
- Minor Creek
- 20 m x Trenchless Unit Rate

Costs for crossings are considered a premium over and above the installation cost for the project and, as such, the total length of the water main or sanitary sewer is not adjusted to remove the length of the crossing.



## 2.6 Construction Uplift

Construction uplift introduces an allowance for the increased cost of constructing in built-up areas and is applied to the installation cost. This uplift accounts for additional costs related to restoration, utility conflicts, traffic management and additional restoration that are often encountered in an urban or suburban area as opposed to greenfield construction.

Table 3 provides a definition and the construction uplift percentages applicable for the different area conditions in the 2020 Water and Wastewater Master Plan.

| Construction Environment | Environment Description                                                                                      | Construction Cost Uplift % |
|--------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------|
| Greenfield               | Greenfield construction with limited environmental constraints.<br>e.g., Humber Station Road and Healey Road | 0%                         |
| Suburban                 | Developed built-up environment.<br>e.g., Bovaird Drive and Mississauga Road                                  | 10%                        |
| Urban                    | Heavily developed built-up environment (e.g., downtown area).<br>e.g., Mississauga City Centre               | 20%                        |

#### Table 3. Construction Uplift Descriptions

## 2.7 Additional Construction Costs

Additional construction costs account for costs that are incurred but not included in the base construction cost. These costs generally include mobilization and demobilization, pipe inter-connections, inspection, hydrants, signage, traffic management, bonding, insurance, etc.

Additional construction costs are adjusted based on assumed project complexity, as follows:

- Low Complexity → Additional Construction Costs = 10%
- Medium Complexity → Additional Construction Costs = 15%
- High Complexity  $\rightarrow$  Additional Construction Costs = 20%

#### 2.8 Construction Provisional Allowance

A provisional allowance is applied to the base construction cost in the event of increased construction labour or material costs. The provisional allowance remains separate from the primary project cost but must be accounted for budgeting purposes. Regardless of estimate class or project complexity it is recommended that 10 per cent of the base construction cost is applied as a Provisional Allowance.



## 2.9 Other Project Costs

Other costs that can be included within a project in addition to the base construction costs are listed in Table 4. If available, actual quoted costs should be used. In the absence of this information, percentages are applied to the base construction costs. Some of these costs are related to project complexity. Table 4 shows the percentages to be applied for high, medium and low complexity projects.

| Cost Component                                      | High<br>Complexity                                                                                                                                  | Medium<br>Complexity              | Low<br>Complexity            |  |  |  |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------|--|--|--|
| Geotechnical / Hydrogeological / Materials          | 2.0% of construction cost                                                                                                                           | 1.0% of construction cost         | 0.5% of construction<br>cost |  |  |  |
| Property / Easements – (applicable to all projects) | 2.0% of construction cost                                                                                                                           | 2.0% of construction<br>cost cost |                              |  |  |  |
| Engineering / Design (Internal)                     |                                                                                                                                                     |                                   |                              |  |  |  |
| Total Cost < \$10M                                  | 8% of construction cost                                                                                                                             |                                   |                              |  |  |  |
| Total Cost = \$10M - \$50M                          | 6% of construction cost                                                                                                                             |                                   |                              |  |  |  |
| Total Cost > \$50M                                  | 4% of construction cost                                                                                                                             |                                   |                              |  |  |  |
| Design / Contract Administration (External)         |                                                                                                                                                     |                                   |                              |  |  |  |
| Total Cost < \$10M                                  |                                                                                                                                                     | 15% of construction cost          |                              |  |  |  |
| Total Cost = \$10M - \$50M                          | 12% of construction cost                                                                                                                            |                                   |                              |  |  |  |
| Total Cost > \$50M                                  | 10% of construction cost                                                                                                                            |                                   |                              |  |  |  |
| Project Contingency                                 | (See section 2.10)                                                                                                                                  |                                   |                              |  |  |  |
| Non-Refundable HST                                  | <b>1.76%</b> of (construction cost + geotechnical/hydrogeological/materials + property requirements + consultant engineering + project contingency) |                                   |                              |  |  |  |

#### Table 4. Additional Cost Components



#### 2.10 Project Contingency

The associated risk and uncertainty of a project cost estimate is minimized with the addition of a contingency. Contingencies are allowances for risks that are known or anticipated at early stages of the project definition. That is, they represent probable events that are "known unknowns" and, experience has shown, are likely to occur. They cannot be attributed to specific items in the base cost estimate but need to be considered in addition to the base cost. A project contingency does not cover major changes in scope, which would require a re-assessment and re-costing of a project. Project Contingency is applied to all projects that are costed using this methodology.

The Project Contingency for this methodology is adjusted based on the cost estimate classification and project complexity as follows:

|         | Project Complexity |          |      |  |  |  |  |
|---------|--------------------|----------|------|--|--|--|--|
|         | Low                | Moderate | High |  |  |  |  |
| Class 5 |                    | 30%      |      |  |  |  |  |
| Class 4 | 10%                | 15%      | 25%  |  |  |  |  |
| Class 3 | 10%                | 15%      | 20%  |  |  |  |  |
| Class 2 | 10%                | 10%      | 15%  |  |  |  |  |
| Class 1 | 10%                | 10%      | 10%  |  |  |  |  |

Table 5. Project Contingency

Appendix A – Cost Estimation Spreadsheet Template

| Blue Plan                  | REGION OF PEEL<br>WATER AND WASTEWATER MASTER SERVICING PLAN<br>PROJECT TRACKING AND COSTING SHEET |                                                        |                      |                        |                         |             |                | I                    |                                        | F Region of Peel<br>Working for you                                      |  |
|----------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------|------------------------|-------------------------|-------------|----------------|----------------------|----------------------------------------|--------------------------------------------------------------------------|--|
| PROJECT NO .:              |                                                                                                    | WWST001                                                |                      |                        |                         |             |                | CAPITAL BUDGET YEAR: |                                        |                                                                          |  |
| PROJECT NAME:              |                                                                                                    | 375-mm Sanitary                                        | Sewer - Future S     | treet (North of Co     | untryside Drive)        |             |                | VERSION:             |                                        |                                                                          |  |
| PROJECT DESCRIPTIO         | approx. 810m northwest UPDATED BY:                                                                 |                                                        |                      |                        |                         |             |                |                      |                                        |                                                                          |  |
| Class Estimate Type:       |                                                                                                    | Class 4                                                | Class adjusts Constr | uction Contingency and | d expected accuracy     |             |                |                      | = Field has drop d                     | own                                                                      |  |
| Project Complexity         |                                                                                                    | Low                                                    | Complexity adjusts C | onstruction Contingend | cy, and expected accura | асу         |                |                      | = Field must be m                      | anually populated                                                        |  |
| Accuracy Range:            |                                                                                                    | 30%                                                    |                      |                        |                         |             |                |                      | = Field auto-filled                    | based on project details                                                 |  |
| Area Condition:            |                                                                                                    | Rural Area Condition uplifts unit cost and restoration |                      |                        |                         |             |                |                      |                                        |                                                                          |  |
| PROPOSED DIAMETER          | રઃ                                                                                                 | 375 mm                                                 |                      |                        | CLASS EA REQU           | JIREMENTS:  |                | A+                   |                                        |                                                                          |  |
| TOTAL LENGTH:              |                                                                                                    | 810 m                                                  |                      | <b>.</b>               | CONSTRUCTION            | ASSUMPTION: |                | Sewer 10m            | l                                      |                                                                          |  |
| Tunne<br>Open              | Cut                                                                                                | 810 m                                                  | 0%<br>100%           | ]                      |                         |             |                |                      |                                        |                                                                          |  |
| COST ESTIMATION SPE        | READSHEE                                                                                           | т                                                      | RATE                 | RATE                   |                         | ESTIMATED   | 0007 050 11117 |                      |                                        |                                                                          |  |
| CON                        | MPONENT                                                                                            |                                                        | (%)                  | (\$)                   | UNIT                    | QUANTITY    | COST PER UNIT  | SUB-TOTAL            |                                        | COMMENTS                                                                 |  |
| Construction Cost          |                                                                                                    |                                                        |                      |                        |                         |             |                |                      |                                        |                                                                          |  |
| Pipe Construction - Open   | n Cut                                                                                              |                                                        |                      |                        | m                       | 810 m       | \$2,709        | \$2,194,562          | Existing road ROV                      | V                                                                        |  |
| Pipe Construction - Tunne  | eling                                                                                              |                                                        |                      |                        | m                       | 0 m         | \$6,300        | \$0                  |                                        |                                                                          |  |
| Pipe Construction Uplift ( | Based on Ar                                                                                        | ea Conditions)                                         | 0%                   |                        |                         |             |                | \$0                  |                                        |                                                                          |  |
| Minor Creek Crossings      |                                                                                                    |                                                        |                      |                        | ea.                     | 0           | \$166,000      | \$0                  |                                        |                                                                          |  |
| Major Creek Crossings      |                                                                                                    |                                                        |                      |                        | ea.                     | 0           | \$985,000      | \$0                  |                                        |                                                                          |  |
| Road Crossings             |                                                                                                    |                                                        |                      |                        | ea.                     | 0           | \$418,000      | \$0                  |                                        |                                                                          |  |
| Major Road Crossings (H    | lighway)                                                                                           |                                                        |                      |                        | ea.                     | 0           | \$985,000      | \$0                  |                                        |                                                                          |  |
| Utility Crossings          |                                                                                                    |                                                        |                      |                        | ea.                     | 0           | \$418,000      | \$0                  |                                        |                                                                          |  |
|                            |                                                                                                    |                                                        |                      |                        |                         |             |                |                      |                                        |                                                                          |  |
| Additional Construction C  | Costs                                                                                              |                                                        | 10%                  |                        | ea.                     |             |                | \$219,456            | signage, traffic ma                    | nob, connections, inspection, hydrants,<br>anagement, bonding, insurance |  |
| Provisional & Allowance    |                                                                                                    |                                                        | 10%                  |                        | ea.                     |             |                | \$241,402            | Provisional Labou<br>construction cost | r and Materials in addition to base                                      |  |
| Sub-Total Construction     | Base Costs                                                                                         | 5                                                      |                      |                        |                         |             |                | \$2,655,000          |                                        |                                                                          |  |
| Geotechnical / Hydrogeol   | logical / Mate                                                                                     | erials                                                 | 0.5%                 |                        |                         |             |                | \$13,300             |                                        |                                                                          |  |
| Geotechnical Sub-Total     | l Cost                                                                                             |                                                        |                      |                        |                         |             |                | \$13,300             |                                        |                                                                          |  |
| Property Requirements      |                                                                                                    |                                                        | 1.0%                 |                        |                         |             |                | \$ 26,600            |                                        |                                                                          |  |
| Property Requirements      | Sub-Total                                                                                          |                                                        |                      |                        |                         |             |                | \$26,600             |                                        |                                                                          |  |
| Consultant Engineering/D   | Design                                                                                             |                                                        | 15%                  |                        |                         |             |                | \$ 398,300           | includes planning,<br>commissioning    | pre-design, detailed design, training, CA,                               |  |
| Engineering/Design Sut     | b-Total                                                                                            |                                                        |                      |                        |                         |             |                | \$398,300            |                                        |                                                                          |  |
| In House Labour/Enginee    | ering/Wages/                                                                                       | CA                                                     | 8%                   |                        |                         |             |                | \$ 212,400           |                                        |                                                                          |  |
| In-house Labour/Wages      | s Sub-Total                                                                                        |                                                        |                      |                        |                         |             |                | \$212,400            |                                        |                                                                          |  |
| Project Contingency        |                                                                                                    |                                                        | 10%                  |                        |                         |             |                | \$331,000            | Construction Cont<br>Class and Project | ingency is dependent on Cost Estimate<br>Complexity                      |  |
| Project Contingency Su     | ub-Total                                                                                           |                                                        |                      |                        |                         |             |                | \$331,000            |                                        |                                                                          |  |
| Non-Refundable HST         |                                                                                                    |                                                        | 1.76%                |                        |                         |             |                | \$60,300             |                                        |                                                                          |  |
| Non-Refundable HST St      | Non-Refundable HST Sub-Total                                                                       |                                                        |                      | -                      | -                       | -           | -              | \$60,300             |                                        |                                                                          |  |
| Total (2016 Dollars)       |                                                                                                    |                                                        |                      |                        |                         |             |                | \$3,697,000          | Rounded to neare                       | st \$1,000                                                               |  |
| Other Estimate             |                                                                                                    |                                                        |                      |                        |                         |             |                |                      |                                        |                                                                          |  |
| Chosen Estimate            |                                                                                                    |                                                        |                      |                        |                         |             | \$3,697,000    | 2016 Estimate        |                                        |                                                                          |  |
| COST ESTIMATE SUMM         | MARY - FOR                                                                                         | PHASING ESTIM                                          | ATING ONLY           |                        |                         |             |                |                      |                                        |                                                                          |  |
| PROJECT COMPO              | DNENT                                                                                              |                                                        | PROJECT              | COMPONENT DE           | SCRIPTION               |             | PERCENTAGE     | TOTAL                | YEAR                                   | COMMENTS                                                                 |  |
| Study                      |                                                                                                    | Feasibility study, E                                   | A                    |                        |                         |             | 0%             | \$0                  |                                        |                                                                          |  |
| Design                     |                                                                                                    | Design fees, Towr                                      | n fees for design, o | ontract admin          |                         |             | 15%            | \$554,550            |                                        |                                                                          |  |
| Construction               |                                                                                                    | Town fees, base o                                      | costs and project co | ontingency             |                         |             | 85%            | \$3,142,450          |                                        |                                                                          |  |
| TOTAL \$3,697,000          |                                                                                                    |                                                        |                      |                        |                         |             |                |                      |                                        |                                                                          |  |

Appendix B – Cost Estimate Classes

#### **CLASS 5 ESTIMATE: Order of Magnitude Estimate Description: Estimating Methods Used:** Experience and judgement, historical values, Includes high level cost estimate with a longterm project horizon. Desktop level analysis rules of thumb, factor estimating base on based on previous similar projects and among other similar projects, basic engineer's informed approximation formed on calculations. limited available information. **Expected Accuracy Range: Example of Typical Study/Design Level:** Low Complexity High Complexity Master Plan, Infrastructure Plan, Capital +/- 40% +/- 70% Budgeting End Usage: Concept screening and feasibility; used at an early stage in absence of better information.

## **CLASS 4 ESTIMATE: Planning Cost Estimate**

## **Description:**

Includes high level cost estimate with a longterm project horizon. Desktop level analysis based on preliminary investigations, anticipated project needs, and engineer's best judgement based on limited available information.

## **Example of Typical Study/Design Level:**

Master Plan, Infrastructure Plan, Capital Budgeting

## End Usage:

Concept screening; justification for project planning funding. Useful for planning purposes in preparation for project pre-design. Shall be included in Capital Projects List.

## **Estimating Methods Used:**

An approximate method of estimating using an inclusive "all in" unit rates, typically based on historic data. (e.g. sewer cost per meter)

## **Expected Accuracy Range:**

Low Complexity High Complexity +/- 20% 

+/- 40%

| CLASS 3 ESTIMATE: Conc                                                                                                                                                              | ept Design Cost Estimate                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Description:</b><br>Includes detailed costing for budgeting<br>purposes. Includes more detailed knowledge of<br>specific criteria to generate more component<br>related costing. | <b>Estimating Methods Used:</b><br>Uses features from both the unit rate method<br>(for low risk items) and first principles method<br>(for high risk items). |
| <b>Example of Typical Study/Design Level:</b><br>5-Year Business Plan<br>Conceptual Design                                                                                          | Expected Accuracy Range:<br>Low Complexity High Complexity<br>+/- 15% +/- 20%                                                                                 |
| End Usage:<br>Basis for budgeting and approvals.                                                                                                                                    |                                                                                                                                                               |

| CLASS 2 ESTIMATE: Preliminary Design Cost Estimate                                                                                                                                                                                                         |                                                                                                                                                               |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| <b>Description:</b><br>The cost estimate generated from this class can<br>be used as a basis for fund appropriation. Uses<br>more detailed knowledge and more costing<br>components including more field investigations<br>and preliminary design reports. | <b>Estimating Methods Used:</b><br>Uses features from both the unit rate method<br>(for low risk items) and first principles method<br>(for high risk items). |  |  |  |  |  |  |
| Example of Typical Study/Design Level:<br>Preliminary Design                                                                                                                                                                                               | Expected Accuracy Range:<br>Low Complexity High Complexity<br>+/- 10% +/- 15%                                                                                 |  |  |  |  |  |  |
| End Usage:<br>Used for project cost control during design.<br>Initial detailed estimate.                                                                                                                                                                   |                                                                                                                                                               |  |  |  |  |  |  |

#### **CLASS 1 ESTIMATE: Detailed Design Cost Estimate Description: Estimating Methods Used:** Project specific costs based on detailed study This class will generate a cost estimate representing the Engineer's final estimate of work methods, resources and materials. For based on completed plans. The estimated cost example, material costs based on current will reflect current market conditions in the supplier quotes. All project components costed constructing community. The goal of this cost individually. estimate is to match the median bid received during the bidding process. **Expected Accuracy Range:** Low Complexity High Complexity Example of Typical Study/Design Level: +/- 5% +/- 10% Detailed Design End Usage: Final cost review in preparation for construction; tender ready.

Appendix C – Data Confidence and Availability for Cost Estimate Classes

## Linear Projects

| General Project Data                                                             | Class 5 | Class 4             | Class 3             | Class 2 | Class 1 |
|----------------------------------------------------------------------------------|---------|---------------------|---------------------|---------|---------|
| Location                                                                         | Assumed | Assumed             | Preliminary         | Defined | Defined |
| Project Complexity                                                               | Assumed | Assumed             | Preliminary         | Defined | Defined |
| Area Condition                                                                   | Assumed | Assumed             | Assumed Preliminary |         | Defined |
| Diameter/Capacity                                                                | Assumed | Preliminary Defined |                     | Defined | Defined |
| Length                                                                           | Assumed | Preliminary         | Defined             | Defined | Defined |
| Tunnelled / Open Cut                                                             | Assumed | Assumed             | Preliminary         | Defined | Defined |
| Construction Assumption (water main,<br>5m sewer, 10m sewer, force main, tunnel) | Assumed | Preliminary         | Preliminary         | Defined | Defined |
| Crossings (Road, Creek, Utilities)                                               | Assumed | Preliminary         | Defined             | Defined | Defined |
| Hydraulic Requirements (Valves,<br>Chambers)                                     | Assumed | Preliminary         | Preliminary         | Defined | Defined |
| Hydrogeological, Geotechnical                                                    | Assumed | Assumed             | Preliminary         | Defined | Defined |
| Property Requirements                                                            | Assumed | Assumed             | Defined             | Defined | Defined |
| Approval Requirements                                                            | Assumed | Assumed             | Preliminary         | Defined | Defined |

## Vertical Projects

| General Project Data                           | Class 5 | Class 4     | Class 3     | Class 2 | Class 1 |
|------------------------------------------------|---------|-------------|-------------|---------|---------|
| Location                                       | Assumed | Assumed     | Preliminary | Defined | Defined |
| Hydrogeological, Geotechnical                  | Assumed | Assumed     | Preliminary | Defined | Defined |
| Building/Structural Type and<br>Requirements   | Assumed | Assumed     | Preliminary | Defined | Defined |
| Hydraulic Requirements, Equipment<br>Selection | Assumed | Preliminary | Preliminary | Defined | Defined |
| Technology                                     | Assumed | Assumed     | Preliminary | Defined | Defined |
| Building Schematics                            | Assumed | Assumed     | Preliminary | Defined | Defined |
| Property Requirements                          | Assumed | Assumed     | Preliminary | Defined | Defined |
| Approval Requirements                          | Assumed | Assumed     | Preliminary | Defined | Defined |

Appendix D – Updated Unit Rates



## Table D.1 Sanitary sewer unit rates for 5-metre deep open cut construction

| Diameter | Excavation | Granular<br>Bedding | Pipe Supply +<br>Install | Backfill | Subtotal Unit<br>Cost | Restoration | Manhole Allowance | Total Unit Cost |
|----------|------------|---------------------|--------------------------|----------|-----------------------|-------------|-------------------|-----------------|
| (mm)     | (\$/m)     | (\$/m)              | (\$/m)                   | (\$/m)   | (\$/m)                | (\$/m)      | (\$/m)            | (2020\$/m)      |
| 300      | \$160      | \$67                | \$143                    | 56       | \$427                 | \$115       | \$110             | \$651           |
| 375      | \$176      | \$67                | \$165                    | 63       | \$472                 | \$115       | \$110             | \$697           |
| 450      | \$192      | \$74                | \$199                    | 69       | \$534                 | \$116       | \$110             | \$760           |
| 525      | \$208      | \$81                | \$230                    | 75       | \$593                 | \$117       | \$110             | \$820           |
| 600      | \$224      | \$94                | \$288                    | 79       | \$684                 | \$117       | \$250             | \$1,052         |
| 675      | \$272      | \$128               | \$420                    | 93       | \$912                 | \$132       | \$250             | \$1,295         |
| 750      | \$288      | \$134               | \$536                    | 98       | \$1,057               | \$134       | \$250             | \$1,440         |
| 825      | \$304      | \$148               | \$613                    | 103      | \$1,167               | \$135       | \$250             | \$1,552         |
| 900      | \$304      | \$161               | \$723                    | 100      | \$1,289               | \$136       | \$400             | \$1,824         |
| 975      | \$320      | \$168               | \$824                    | 105      | \$1,418               | \$150       | \$400             | \$1,968         |
| 1050     | \$368      | \$208               | \$935                    | 118      | \$1,629               | \$151       | \$400             | \$2,181         |
| 1200     | \$400      | \$228               | \$1,157                  | 128      | \$1,913               | \$153       | \$400             | \$2,467         |
| 1350     | \$432      | \$262               | \$1,477                  | 135      | \$2,306               | \$156       | \$333             | \$2,795         |
| 1500     | \$448      | \$282               | \$1,794                  | 138      | \$2,662               | \$171       | \$333             | \$3,166         |
| 1800     | \$512      | \$343               | \$2,568                  | 153      | \$3,576               | \$176       | \$333             | \$4,085         |
| 2100     | \$560      | \$403               | \$3,393                  | 162      | \$4,517               | \$179       | \$400             | \$5,097         |
| 2400     | \$624      | \$470               | \$4,491                  | 176      | \$5,761               | \$184       | \$400             | \$6,345         |
| 3000     | \$736      | \$605               | \$6,848                  | 197      | \$8,385               | \$192       | \$400             | \$8,977         |



## Table D.2 Sanitary sewer unit rates for 10-metre deep open cut construction

| Diameter | Excavation | Granular<br>Bedding | Pipe Supply +<br>Install | Backfill | Subtotal Unit<br>Cost | Restoration | Manhole Allowance | Total Unit Cost |
|----------|------------|---------------------|--------------------------|----------|-----------------------|-------------|-------------------|-----------------|
| (mm)     | (\$/m)     | (\$/m)              | (\$/m)                   | (\$/m)   | (\$/m)                | (\$/m)      | (\$/m)            | (2020\$/m)      |
| 300      | \$1,575    | \$67                | \$143                    | 478      | \$2,263               | \$211       | \$200             | \$2,674         |
| 375      | \$1,620    | \$67                | \$165                    | 492      | \$2,345               | \$211       | \$200             | \$2,756         |
| 450      | \$1,665    | \$74                | \$199                    | 505      | \$2,443               | \$217       | \$200             | \$2,860         |
| 525      | \$1,710    | \$81                | \$230                    | 517      | \$2,538               | \$217       | \$200             | \$2,955         |
| 600      | \$1,755    | \$94                | \$288                    | 529      | \$2,665               | \$219       | \$350             | \$3,234         |
| 675      | \$1,890    | \$128               | \$420                    | 564      | \$3,001               | \$221       | \$350             | \$3,573         |
| 750      | \$1,935    | \$134               | \$536                    | 576      | \$3,182               | \$225       | \$350             | \$3,757         |
| 825      | \$1,980    | \$148               | \$613                    | 588      | \$3,328               | \$233       | \$350             | \$3,912         |
| 900      | \$1,980    | \$161               | \$723                    | 585      | \$3,450               | \$236       | \$600             | \$4,285         |
| 975      | \$2,025    | \$168               | \$824                    | 598      | \$3,615               | \$238       | \$600             | \$4,453         |
| 1050     | \$2,160    | \$208               | \$935                    | 631      | \$3,935               | \$241       | \$600             | \$4,776         |
| 1200     | \$2,250    | \$228               | \$1,157                  | 655      | \$4,291               | \$244       | \$600             | \$5,134         |
| 1350     | \$2,340    | \$262               | \$1,477                  | 676      | \$4,755               | \$244       | \$567             | \$5,566         |
| 1500     | \$2,385    | \$282               | \$1,794                  | 686      | \$5,147               | \$244       | \$567             | \$5,957         |
| 1800     | \$2,565    | \$343               | \$2,568                  | 730      | \$6,205               | \$252       | \$567             | \$7,024         |
| 2100     | \$2,700    | \$403               | \$3,393                  | 759      | \$7,255               | \$266       | \$733             | \$8,254         |
| 2400     | \$2,880    | \$470               | \$4,491                  | 801      | \$8,643               | \$274       | \$733             | \$9,651         |
| 3000     | \$3,195    | \$605               | \$6,848                  | 872      | \$11,519              | \$295       | \$733             | \$12,548        |



## Table D.3 Water main and force main unit rates for open cut construction

| Diameter | Excavation | Granular Bedding | Pipe Supply +<br>Install | Backfill | Subtotal Unit Cost | Restoration | Total Unit Cost |
|----------|------------|------------------|--------------------------|----------|--------------------|-------------|-----------------|
| (mm)     | (\$/m)     | (\$/m)           | (\$/m)                   | (\$/m)   | (\$/m)             | (\$/m)      | (2016 \$/m)     |
| 400      | \$168      | \$128            | \$414                    | \$47     | \$757              | \$116       | \$873           |
| 450      | \$168      | \$134            | \$500                    | \$46     | \$848              | \$116       | \$964           |
| 500      | \$202      | \$148            | \$612                    | \$58     | \$1,019            | \$117       | \$1,136         |
| 600      | \$202      | \$161            | \$802                    | \$55     | \$1,220            | \$117       | \$1,337         |
| 750      | \$286      | \$168            | \$856                    | \$90     | \$1,399            | \$134       | \$1,533         |
| 900      | \$426      | \$208            | \$909                    | \$143    | \$1,686            | \$136       | \$1,822         |
| 1050     | \$461      | \$228            | \$1,145                  | \$155    | \$1,990            | \$151       | \$2,141         |
| 1200     | \$542      | \$262            | \$1,387                  | \$183    | \$2,374            | \$153       | \$2,528         |
| 1350     | \$660      | \$282            | \$1,747                  | \$231    | \$2,920            | \$156       | \$3,076         |
| 1500     | \$706      | \$207            | \$2,065                  | \$267    | \$3,245            | \$171       | \$3,416         |
| 1650     | \$756      | \$343            | \$2,435                  | \$260    | \$3,794            | \$171       | \$3,966         |
| 1800     | \$882      | \$233            | \$2,790                  | \$339    | \$4,244            | \$176       | \$4,419         |
| 2100     | \$980      | \$403            | \$3,090                  | \$346    | \$4,819            | \$179       | \$4,998         |

| Diameter | Total Unit Cost | Diameter | Total Unit Cost | Diameter | Total Unit Cost |
|----------|-----------------|----------|-----------------|----------|-----------------|
| (mm)     | (\$/m)          | (mm)     | (\$/m)          | (mm)     | (\$/m)          |
| 150      | \$1,300         | 500      | \$6,450         | 1200     | \$10,600        |
| 200      | \$1,350         | 525      | \$6,500         | 1350     | \$11,500        |
| 250      | \$1,400         | 600      | \$8,000         | 1500     | \$12,000        |
| 300      | \$1,450         | 675      | \$8,100         | 1650     | \$12,500        |
| 325      | \$1,500         | 750      | \$8,200         | 1800     | \$13,000        |
| 350      | \$1,550         | 825      | \$9,800         | 2100     | \$14,000        |
| 375      | \$6,300         | 900      | \$10,000        | 2400     | \$14,500        |
| 400      | \$6,350         | 975      | \$10,200        | 3000     | \$16,000        |
| 450      | \$6,400         | 1050     | \$10,400        |          |                 |

#### Table D.4 Trenchless construction unit rates for water mains or sanitary sewers

#### Anticipated trenchless methodology is as follows:

- 1350 mm 3000 mm: Microtunnel or TBM
- 825 mm 1200 mm: Microtunnel, Auger Boring, Guided Auger Boring
- 375 mm 750 mm: Axis Guided Boring, Auger Boring, Guided Auger Boring
- 150 mm 350 mm: Axis Guided Boring, Horizontal Directional Drilling

**Note:** Trenchless Cost estimate table provides estimated high level cost for tunnelling, pipe installation and shafts for ranges of diameter. Tunnelling project costs can vary widely depending on project details that are not fully known at the Master Plan / DC stage (e.g., number of shafts, subsurface conditions, site conditions, contractor preferred tunnelling method, depth, location (urban, greenfield) etc.).

#### **Facilities**

| Facility                                                            | Total Unit Cost | Unit     |
|---------------------------------------------------------------------|-----------------|----------|
| Reservoirs - New Construction                                       | \$900,000       | (\$/ML)  |
| <b>New Water / Sewage Pumping Stations</b> $\leq$ 150L/s            | \$23,000        | (\$/L/s) |
| <b>New Water / Sewage Pumping Stations</b> > 150 L/s $\leq$ 600 L/s | \$13,000        | (\$/L/s) |
| New Water / Sewage Pumping Stations > 600 L/s                       | \$11,000        | (\$/L/s) |

**Notes:** Unit rate is intended to provide the base construction cost for a basic pumping facility. These costs are not assumed to account for force mains (for WWPS) or overflow storage tanks (WWPS) or unique items such as deep wet wells (WWPS), extensive architectural features or extensive site works.



REGIONAL MUNICIPALITY OF PEEL



Lake-based Water Schematics



| ON SYSTEM                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                   | 320.1 m<br>Рорцайол 0<br>Еткроутел 0<br>MDD 0.00 ML/d<br>PHD 0.00 ML/d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Bolton/West Bolton BS6<br>TW. 2972 m<br>Equalization 5.18 ML<br>Fire 8.16 ML<br>BOLTON Regency 3.34 ML<br>Remegency 3.34 ML<br>Capacity 17.06 ML                                                                                                                                                                                                                                                                  | ZONE 8<br>286.6 m<br><u> TOTAL ZONE 7</u><br><u> TOTAL ZONE 7</u><br><u> TOTAL 2015</u><br><u> TOTAL 2015 <u> TOTAL 2015</u><br/><u> TOTAL 2015</u><br/><u> TOTAL 2015 <u> TOTAL 2015</u><br/><u> TOTAL 2015</u><br/><u> TOTAL 2015 <u> TOTAL 2015</u><br/><u> TOTAL 2015 <u> TOTAL 2015</u><br/><u> TOTAL 2015</u><br/><u> TOTAL 2015</u><br/><u> TOT</u></u></u></u></u> |
| BT6 20.7<br>40.1                                                                                                                                                                                                                                                                                                                                                                                                  | ZONE 7<br>299.1 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| LEFE         LEE         LUEB           100%         100%         41.0           streft         0.04         54.8                                                                                                                                                                                                                                                                                                 | TOTAL ZONE 6           Population         452811           Employment         114.881           MDD         20483           MDD         379.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 755 Tuliamore HLP6E<br>oro E54 FRU CARACTY TRUNER LOCA<br>822 ML 1351 8055<br>335 ML                                                                                                                                                                                                                                                                                                                              | 17<br><b>ZONE 6</b><br>228.6 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8.45 ML TULLAMORE<br>8.00 ML 8.2<br>8.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9                                                                                                                                                                                                                                                                                                       | TOTAL ZONE 5           Population         468,003           Employment         221,548           MDD         261,58           PHD         503,17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 172.6<br>004 ES3<br>057 m<br>770 M<br>463 M                                                                                                                                                                                                                                                                                                                                                                       | ZONE 5<br>198.1 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3.79 ML         VORK REGION           5.64 ML         100%           100%         Employment           64.3         MDD           MDD         331.0           Faul color         Integration           Faul color         Integration           Faul color         Integration           Faul color         Integration                                                                                           | TOTAL 20NE 4           Population         386.078           Employment         327.066           MDD         249.78           PHD         505.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 331.0                                                                                                                                                                                                                                                                                                                                                                                                             | ZONE 4<br>167.6 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 041 SCHEMATIC Version 6.6<br>June 2020                                                                                                                                                                                                                                                                                                                                                                            | TOTAL 20NE3           Population         277.430           Employment         182.494           MDD         165.92           MDD         329.74           MLd         PHD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| station system<br>sion system<br>alon system<br>tor pressure zone<br>tor pressure zone<br>system capacity is the station capacity with the largest pump out of<br>service.<br>2. Uriess otherwise noted, transmission main capacity is actual<br>system capacity based on system head curves rather than                                                                                                          | ZONE 3<br>137.1 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| for pressure zone gradients. In gradients. In gradients gradients gradients gradients gradients and gradients gradients. In gradients and gradients gradients are place holder for planned or potential future infrastructure main requirements. In plant 4. The theoretical separation in elevation between each pressure zone boundary is 30.5 metres. The actual separation varies by el zone and by location. | TOTAL ZONE 2           Population         175,457           Employment         55,880           MDD         87.97 ML/d           PHD         167,63 ML/d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| demand     S. Water design criteria for residential development: average day     demand of 280 L/cap.d., a maximum day factor of 2.0 and a peak     hour factor of 3.0.     Water design criteria for ICI development: ADD of 280 L/cap.d, a     MDF of 1.4 and a PHF of 3.0.                                                                                                                                     | ZONE 2<br>106.5 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <ol> <li>Maximum day and peak hour demand for each zone and sub-zone<br/>is calculated using the Starting Point Method rather than a straight<br/>calculation using these water design criteria.</li> </ol>                                                                                                                                                                                                       | TOTAL ZONE 1           Population         69,522           Employment         38,295           MDD         52,55           MDD         100,34           PHD         100,34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                   | ZONE 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Population Na<br>Employment Na<br>MDD 331.00 Mu/d<br>PHD Na MU/d<br>ON SYSTEM                                                                                                                                                                                                                                                                                                                                     | TOTAL PEEL           Population         1,831,533           Employment         963,374           MDD         1084.44 ML/d           PHD         2008.42 ML/d           Population         r/d           Employment         r/d           MDD         1084.44 ML/d           PhD         2008.42 ML/d           MDD         r/d           MDOment         r/d           MDD         1415.44 ML/d           PHD         r/a ML/d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |



REGIONAL MUNICIPALITY OF PEEL

# **APPENDIX 3D**

**Detailed Capacity Assessments** 

# TREATMENT

## LORNE PARK WATER TREATMENT PLANT

| Treatment Facility            | Treatment Facility Treatment Type                      |     |  |  |
|-------------------------------|--------------------------------------------------------|-----|--|--|
| Conventional (Filters 1 to 4) | Conventional Treatment (CVT) - Flocculation, Sedimenta | 120 |  |  |
| OBM                           | Ozone, Biologically Active Carbon (BAC) Contactor, Mem | 380 |  |  |

|      |                                   | 2019 | 2021 | 2026 | 2031 | 2036 | 2041 |
|------|-----------------------------------|------|------|------|------|------|------|
|      | Forecasted Demand (ML/d)          | 294  | 308  | 337  | 367  | 390  | 412  |
|      | Installed Treatment Capacity (ML/ | 500  | 500  | 500  | 500  | 500  | 500  |
| WEST | 95% Plant Utilization (ML/d)      | 475  | 475  | 475  | 475  | 475  | 475  |
|      | 90% Plant Utilization (ML/d)      | 450  | 450  | 450  | 450  | 450  | 450  |
|      |                                   | ok   | ok   | ok   | ok   | ok   | ok   |



# TREATMENT

## LORNE PARK WATER TREATMENT PLANT

| Treatment Facility             | Treatment Capacity<br>(ML/d)                            |     |
|--------------------------------|---------------------------------------------------------|-----|
| Conventional (Filters 1 to 8)  | Conventional Treatment (CVT) - Flocculation, Sedimenta  | 440 |
| Conventional (Filters 9 to 16) | Conventional Treatment (CVT) - Flocculation, Sedimenta  | 440 |
| OBM1                           | Ozone, Biologically Active Carbon (BAC) Contactor, Mem  | 400 |
| OBUM2                          | Ozone, Biologically Active Carbon (BAC) Contactor, UV F | 400 |
| OBUM2 Expansion                | Ozone, Biologically Active Carbon (BAC) Contactor, Mem  | 70  |
| OBM3                           | Ozone, Biologically Active Carbon (BAC) Contactor, Mem  | 400 |

|      |                                   | 2019 | 2021 | 2026 | 2031 | 2036 | 2041 |
|------|-----------------------------------|------|------|------|------|------|------|
|      | Forecasted Demand (ML/d)          | 695  | 734  | 822  | 918  | 960  | 1003 |
|      | Installed Treatment Capacity (ML/ | 1200 | 1200 | 1200 | 1200 | 1200 | 1200 |
| WEST | 95% Plant Utilization (ML/d)      | 1140 | 1140 | 1140 | 1140 | 1140 | 1140 |
|      | 90% Plant Utilization (ML/d)      | 1080 | 1080 | 1080 | 1080 | 1080 | 1080 |
|      |                                   | ok   | ok   | ok   | ok   | ok   | ok   |



130

## WEST TRANSMISSION SYSTEM

| ALLOA to WEST CALEDON |                      |            |                 |                  |                            |                            |                 |
|-----------------------|----------------------|------------|-----------------|------------------|----------------------------|----------------------------|-----------------|
|                       | Transmission Main    | OCWA TM ID | Year in Service | Diameter<br>(mm) | Theor. Capacity*<br>(ML/d) | Actual Capacity*<br>(ML/d) | Actual C-factor |
| WT7                   | West Caledon 750 PZ7 | n/a        | 2026            | 750              | 44                         | 24                         | n/a             |
|                       |                      |            |                 |                  |                            |                            |                 |

| ALLOA to WEST CALEDON |                                     | 2021 | 2026   | 2031 | 2036 | 2041 |
|-----------------------|-------------------------------------|------|--------|------|------|------|
|                       | Forecasted Demand (ML/d)            | 0.0  | 6.2    | 9.2  | 10.9 | 13.3 |
|                       | Total Theoretical Capacity (ML/d)   | 0    | 0      | 44   | 44   | 44   |
| WT7                   | Total Actual System Capacity (ML/d) | 0    | 0      | 24   | 24   | 24   |
|                       |                                     | ok   | not ok | ok   | ok   | ok   |
|                       |                                     |      |        |      |      |      |

#### WEST BRAMPTON to ALLOA

|     | Transmission Main | OCWA TM ID | Year in Service | Diameter<br>(mm) | Theor. Capacity*<br>(ML/d) | Actual Capacity*<br>(ML/d) | Actual C-factor |
|-----|-------------------|------------|-----------------|------------------|----------------------------|----------------------------|-----------------|
| WT5 | Alloa 1200 PZ5    | PRP-5      | 2018            | 1200             | 151                        | 150                        | 129             |
|     |                   |            |                 |                  |                            |                            |                 |

#### MEADOWVALE NORTH to WEST BRAMPTON

|     | Transmission Main      | OCWA TM ID | Year in Service | Diameter<br>(mm) | Theor. Capacity*<br>(ML/d) | Actual Capacity*<br>(ML/d) | Actual C-factor |
|-----|------------------------|------------|-----------------|------------------|----------------------------|----------------------------|-----------------|
| WT4 | West Brampton 1500 PZ4 | 27         | 2011            | 1500             | 271                        | 230                        | 110             |
|     | West Brampton 1200 PZ4 | n/a        | Post-2041       | 1200             | 151                        | 151                        | n/a             |
|     |                        |            |                 |                  |                            |                            |                 |

#### STREETSVILLE to MEADOWVALE NORTH

|     | Transmission Main         | OCWA TM ID | Year in Service | Diameter<br>(mm) | Theor. Capacity*<br>(ML/d) | Actual Capacity*<br>(ML/d) | Actual C-factor |
|-----|---------------------------|------------|-----------------|------------------|----------------------------|----------------------------|-----------------|
| WT3 | Meadowvale North 900 PZ3  | 11         | 1989            | 900              | 71                         | 60                         | 110             |
|     | Meadowvale North 1200 PZ3 | 17         | 2014            | 1200             | 151                        | 151                        | 130             |
|     | Meadowvale North 1500 PZ3 | n/a        | 2029            | 1800             | 438                        | 437                        | 130             |

## HERRIDGE to STREETSVILLE

|     | Transmission Main     | OCWA TM ID | Year in Service | Diameter<br>(mm) | Theor. Capacity*<br>(ML/d) | Actual Capacity*<br>(ML/d) | Actual C-factor |
|-----|-----------------------|------------|-----------------|------------------|----------------------------|----------------------------|-----------------|
| WT2 | Streetsville 1050 PZ2 | 4          | 1971            | 1050             | 106                        | 87                         | 106             |
|     | Streetsville 1500 PZ2 | 14         | 2003            | 1500             | 271                        | 243                        | 117             |
|     | Streetsville 1500 PZ2 | n/a        | 2028            | 2100             | 657                        | 657                        | 130             |

#### LORNE PARK TO HERRIDGE

|      | Transmission Main     | OCWA TM ID | Year in Service | Diameter<br>(mm) | Theor. Capacity*<br>(ML/d) | Actual Capacity*<br>(ML/d) | Actual C-factor |
|------|-----------------------|------------|-----------------|------------------|----------------------------|----------------------------|-----------------|
| WT2S | Streetsville 2100 PZ2 | 19         | 2013            | 2100             | 657                        | 695                        | 138             |

| LORNE PARK to HERRIDGE |                   |            |                 |          |                  |                  |                 |  |
|------------------------|-------------------|------------|-----------------|----------|------------------|------------------|-----------------|--|
|                        | Transmission Main | OCWA TM ID | Year in Service | Diameter | Theor. Capacity* | Actual Capacity* | Actual C-factor |  |
|                        |                   |            |                 | (mm)     | (ML/d)           | (ML/d)           | Actual C-lactor |  |
| WT1                    | Herridge 1500 PZ1 | 9          | 1978            | 1500     | 271              | 181              | 108             |  |
|                        |                   |            |                 |          |                  |                  |                 |  |

#### LORNE PARK INTAKE

|                   | Transmission Main               | OCWA TM ID | Year in Service | Diameter<br>(mm) | Theor. Capacity*<br>(ML/d) | Actual Capacity*<br>(ML/d) | Actual C-factor |
|-------------------|---------------------------------|------------|-----------------|------------------|----------------------------|----------------------------|-----------------|
| Lorne Park Intake | 1800/2400mm Intake (L = 1590 m) | n/a        | 1978            | 1800/2100/2400   | 550                        | 550                        | 77              |
|                   | New Intake                      | n/a        | Post-2041       | ?                | ?                          | ?                          | n/a             |
|                   |                                 |            |                 |                  |                            |                            |                 |

WT5

Forecasted Demand (ML/d)

Total Theoretical Capacity (ML/d)

Total Actual System Capacity (ML/d)

WEST BRAMPTON to ALLOA

| MEADOWVALE NORTH to WEST BRAMPTON |                                     | 2021 | 2026 | 2031  | 2036  | 2041  |
|-----------------------------------|-------------------------------------|------|------|-------|-------|-------|
|                                   | Forecasted Demand (ML/d)            | 78.3 | 92.5 | 119.8 | 133.5 | 146.7 |
|                                   | Total Theoretical Capacity (ML/d)   | 271  | 271  | 271   | 271   | 271   |
| WT4                               | Total Actual System Capacity (ML/d) | 230  | 230  | 230   | 230   | 230   |
|                                   |                                     |      |      |       |       |       |
|                                   |                                     | ok   | ok   | ok    | ok    | ok    |

| STREETSVILLE to MEADOWVALE NORTH |                                     | 2021  | 2026  | 2031  | 2036  | 2041  |
|----------------------------------|-------------------------------------|-------|-------|-------|-------|-------|
|                                  | Forecasted Demand (ML/d)            | 150.6 | 172.9 | 195.4 | 211.9 | 227.5 |
|                                  | Total Theoretical Capacity (ML/d)   | 222   | 222   | 660   | 660   | 660   |
| WT3                              | Total Actual System Capacity (ML/d) | 211   | 211   | 648   | 648   | 648   |
|                                  |                                     | ok    | ok    | ok    | ok    | ok    |

| HERRIDGE to STREETSVILLE |                                     | 2021  | 2026  | 2031  | 2036  | 2041  |
|--------------------------|-------------------------------------|-------|-------|-------|-------|-------|
|                          | Forecasted Demand (ML/d)            | 253.7 | 282.3 | 310.0 | 329.9 | 349.7 |
|                          | Total Theoretical Capacity (ML/d)   | 378   | 378   | 1035  | 1035  | 1035  |
| WT2                      | Total Actual System Capacity (ML/d) | 330   | 330   | 987   | 987   | 987   |
|                          |                                     | ok    | ok    | ok    | ok    | ok    |

| LORNE PARK TO HERRIDGE |                                     | 2021  | 2026  | 2031  | 2036  | 2041  |
|------------------------|-------------------------------------|-------|-------|-------|-------|-------|
|                        | Forecasted Demand (ML/d)            | 180.3 | 209.5 | 227.3 | 250.3 | 274.0 |
|                        | Total Theoretical Capacity (ML/d)   | 657   | 657   | 657   | 657   | 657   |
| WT2S                   | Total Actual System Capacity (ML/d) | 695   | 695   | 695   | 695   | 695   |
|                        |                                     | ok    | ok    | ok    | ok    | ok    |

| LORNE PARK to HERRIDGE |                                     | 2021  | 2026  | 2031  | 2036  | 2041  |
|------------------------|-------------------------------------|-------|-------|-------|-------|-------|
|                        | Forecasted Demand (ML/d)            | 153.1 | 150.3 | 162.0 | 162.0 | 162.0 |
|                        | Total Theoretical Capacity (ML/d)   | 271   | 271   | 271   | 271   | 271   |
| WT1                    | Total Actual System Capacity (ML/d) | 181   | 181   | 181   | 181   | 181   |
|                        |                                     | ok    | ok    | ok    | ok    | ok    |

#### LORN

| IE PARK INTAKE    |                                     | 2021  | 2026  | 2031  | 2036  | 2041  |
|-------------------|-------------------------------------|-------|-------|-------|-------|-------|
| Lorne Park Intake | Forecasted Demand (ML/d)            | 308.4 | 337.4 | 367.0 | 389.6 | 412.4 |
|                   | Total Theoretical Capacity (ML/d)   | 550   | 550   | 550   | 550   | 550   |
|                   | Total Actual System Capacity (ML/d) | 550   | 550   | 550   | 550   | 550   |
|                   | 90% Utilization (ML/d)              | 495   | 495   | 495   | 495   | 495   |
|                   |                                     | ok    | ok    | ok    | ok    | ok    |

\*Based on a HL gradient of 1 m/km

| 2026 | 2031 | 2036 | : |
|------|------|------|---|

| 2021 | 2026 | 2031 | 2036 | 2041 |
|------|------|------|------|------|
| 33.0 | 33.7 | 41.0 | 47.0 | 53.3 |
| 151  | 151  | 151  | 151  | 151  |
| 150  | 150  | 150  | 150  | 150  |
|      |      |      |      |      |
| ok   | ok   | ok   | ok   | ok   |

Actual C-factor

130

## **CENTRAL TRANSMISSION SYSTEM**

| NORTH BRAMPTON to MAYFIELD WEST |                       |            |                 |                  |                            |                            |                 |
|---------------------------------|-----------------------|------------|-----------------|------------------|----------------------------|----------------------------|-----------------|
|                                 | Transmission Main     | OCWA TM ID | Year in Service | Diameter<br>(mm) | Theor. Capacity*<br>(ML/d) | Actual Capacity*<br>(ML/d) | Actual C-factor |
| CT7                             | Mayfield West 600 PZ7 | 25         | 2010            | 600              | 24                         | 26                         | 138             |

Year in Service

2022

Diameter (mm)

900

Theor. Capacity\*

(ML/d)

71

Actual Capacity\*

(ML/d)

71

| NORTH BRAMPTON to MAYFIELD V | VEST                                | 2021   | 2026   | 2031   | 2036   | 2041   |
|------------------------------|-------------------------------------|--------|--------|--------|--------|--------|
|                              | Forecasted Demand (ML/d)            | 11.2   | 27.9   | 33.1   | 42.2   | 47.0   |
|                              | Total Theoretical Capacity (ML/d)   | 24     | 24     | 24     | 24     | 24     |
| CT7                          | Total Actual System Capacity (ML/d) | 26     | 26     | 26     | 26     | 26     |
|                              |                                     | ok     | not ok | not ok | not ok | not ok |
|                              |                                     |        |        |        |        |        |
| NORTH BRAMPTON to VICTORIA   |                                     | 2021   | 2026   | 2031   | 2036   | 2041   |
|                              | Forecasted Demand (ML/d)            | 25.4   | 26.1   | 26.8   | 27.2   | 27.8   |
|                              | Total Theoretical Capacity (ML/d)   | 0      | 71     | 71     | 71     | 71     |
| CT6                          | Total Actual System Capacity (ML/d) | 0      | 71     | 71     | 71     | 71     |
|                              |                                     | not ok | ok     | ok     | ok     | ok     |
|                              |                                     |        |        |        |        |        |
| EAST BRAMPTON to NORTH BRAM  | PTON                                | 2021   | 2026   | 2031   | 2036   | 2041   |
|                              | Forecasted Demand (ML/d)            | 36.6   | 20.5   | 22.3   | 25.0   | 26.6   |
|                              | Total Theoretical Capacity (ML/d)   | 71     | 71     | 71     | 71     | 71     |
| CT5                          | Total Actual System Capacity (ML/d) | 60     | 60     | 60     | 60     | 60     |
|                              |                                     | ok     | ok     | ok     | ok     | ok     |
| BECKETT SPROULE to EAST BRAN | IPTON                               | 2021   | 2026   | 2031   | 2036   | 2041   |
|                              | Forecasted Demand (ML/d)            | 105    | 113    | 120    | 129    | 135    |
|                              | Total Theoretical Capacity (ML/d)   | 106    | 378    | 378    | 378    | 378    |
| CT4                          | Total Actual System Capacity (ML/d) | 89     | 360    | 360    | 360    | 360    |
|                              |                                     | not ok | ok     | ok     | ok     | ok     |
|                              |                                     |        |        |        |        |        |
| HANLAN to BECKETT SPROULE    |                                     | 2021   | 2026   | 2031   | 2036   | 2041   |
|                              | Forecasted Demand (ML/d)            | 528.7  | 625.0  | 709.7  | 738.4  | 766.5  |
|                              | Total Theoretical Capacity (ML/d)   | 1080   | 1080   | 1080   | 1080   | 1080   |
| CT3                          | Total Actual System Capacity (ML/d) | 1069   | 1069   | 1069   | 1069   | 1069   |
|                              |                                     | ok     | ok     | ok     | ok     | ok     |
|                              |                                     |        |        |        |        |        |
| Arthur P. Kennedy to HANLAN  |                                     | 2021   | 2026   | 2031   | 2036   | 2041   |
|                              | Forecasted Demand (ML/d)            | 635.6  | 703.3  | 777.9  | 805.6  | 835.3  |
|                              | Total Theoretical Capacity (ML/d)   | 1372   | 1372   | 1372   | 1372   | 1372   |
| CT2H                         | Total Actual System Capacity (ML/d) | 1311   | 1311   | 1311   | 1311   | 1311   |
|                              |                                     | ok     | ok     | ok     | ok     | ok     |
|                              |                                     |        |        |        |        |        |
| SILVERTHORN to HANLAN        |                                     | 2021   | 2026   | 2031   | 2036   | 2041   |
|                              | Forecasted Demand (ML/d)            | 4.2    | 41.0   | 57.7   | 63.5   | 67.2   |
|                              | Total Theoretical Capacity (ML/d)   | 151    | 151    | 151    | 151    | 151    |
| CT2                          | Total Actual System Capacity (ML/d) | 136    | 136    | 136    | 136    | 136    |

|                             |                                       | LULI   | LOLO   | 2001   | 2000   | 2041   |
|-----------------------------|---------------------------------------|--------|--------|--------|--------|--------|
|                             | Forecasted Demand (ML/d)              | 11.2   | 27.9   | 33.1   | 42.2   | 47.0   |
|                             | Total Theoretical Capacity (ML/d)     | 24     | 24     | 24     | 24     | 24     |
| CT7                         | Total Actual System Capacity (ML/d)   | 26     | 26     | 26     | 26     | 26     |
|                             |                                       | ok     | not ok | not ok | not ok | not ok |
|                             |                                       |        |        |        |        |        |
|                             |                                       | 2024   | 2022   | 2024   | 2022   | 2014   |
| NORTH BRAINFTON 10 VICTORI  | Ecrecepted Demand (ML (d)             | 2021   | 2026   | 2031   | 2036   | 2041   |
|                             | Total Theoretical Capacity (ML/d)     | 0      | 71     | 71     | 71     | 71     |
| СТ6                         | Total Actual System Canacity (ML/d)   | 0      | 71     | 71     | 71     | 71     |
| 010                         | Total Actual System Supporty (MERA)   | Č.     |        |        |        |        |
|                             |                                       | not ok | ok     | ok     | ok     | ok     |
|                             |                                       |        |        |        |        |        |
|                             | AMPTON                                | 2021   | 2026   | 2021   | 2026   | 2041   |
|                             | Enrecasted Demand (ML/d)              | 36.6   | 2020   | 2031   | 2030   | 26.6   |
|                             | Total Theoretical Capacity (ML/d)     | 71     | 71     | 71     | 71     | 71     |
| CT5                         | Total Actual System Canacity (ML/d)   | 60     | 60     | 60     | 60     | 60     |
| 0.0                         | · · · · · · · · · · · · · · · · · · · |        |        |        |        |        |
|                             |                                       | ok     | ok     | ok     | ok     | ok     |
|                             |                                       |        |        |        |        |        |
|                             |                                       |        |        |        |        |        |
|                             | DAMPTON                               |        |        |        |        |        |
| BECKETT SPROULE to EAST B   | RAMPTON                               | 2021   | 2026   | 2031   | 2036   | 2041   |
|                             | Forecasted Demand (ML/d)              | 105    | 279    | 279    | 279    | 135    |
| CT4                         | Total Actual System Canacity (ML/d)   | 106    | 378    | 378    | 378    | 378    |
| 014                         | Total Astal System Suparity (mesa)    |        | 000    | 000    | 000    | 000    |
|                             |                                       | not ok | ok     | ok     | ok     | ok     |
|                             |                                       |        |        |        |        |        |
|                             |                                       |        |        |        |        |        |
| HANLAN to BECKETT SPROULE   | E                                     | 2021   | 2026   | 2031   | 2036   | 2041   |
|                             | Forecasted Demand (ML/d)              | 528.7  | 625.0  | 709.7  | 738.4  | 766.5  |
|                             | Total Theoretical Capacity (ML/d)     | 1080   | 1080   | 1080   | 1080   | 1080   |
| CT3                         | Total Actual System Capacity (ML/d)   | 1069   | 1069   | 1069   | 1069   | 1069   |
|                             |                                       | ok     | ok     | ck     | ck     | ok     |
|                             |                                       | UK     | UK     | UK     | UK     | UK     |
|                             |                                       |        |        |        |        |        |
|                             |                                       |        |        |        |        |        |
| Arthur P. Kennedy to HANLAN |                                       | 2021   | 2026   | 2031   | 2036   | 2041   |
|                             | Forecasted Demand (ML/d)              | 635.6  | 703.3  | 777.9  | 805.6  | 835.3  |
|                             | Total Theoretical Capacity (ML/d)     | 1372   | 1372   | 1372   | 1372   | 1372   |
| CT2H                        | Total Actual System Capacity (ML/d)   | 1311   | 1311   | 1311   | 1311   | 1311   |
|                             |                                       |        |        |        |        |        |
|                             |                                       | ok     | ok     | ok     | ok     | ok     |
|                             |                                       |        |        |        |        |        |
|                             |                                       | 2021   | 2026   | 2031   | 2036   | 2041   |
|                             | Forecasted Demand (ML/d)              | 4.2    | 41.0   | 57.7   | 63.5   | 67.2   |
|                             | Total Theoretical Capacity (ML/d)     | 151    | 151    | 151    | 151    | 151    |
| СТ2                         | Total Actual System Capacity (ML/d)   | 136    | 136    | 136    | 136    | 136    |
|                             | · · · · · · · · · · · · · · · · · · · |        |        |        |        |        |

|                             |                                     | LULI   | LOLO   | 2001   | 7000   | 2041   |
|-----------------------------|-------------------------------------|--------|--------|--------|--------|--------|
|                             | Forecasted Demand (ML/d)            | 11.2   | 27.9   | 33.1   | 42.2   | 47.0   |
|                             | Total Theoretical Capacity (ML/d)   | 24     | 24     | 24     | 24     | 24     |
| CT7                         | Total Actual System Capacity (ML/d) | 26     | 26     | 26     | 26     | 26     |
|                             |                                     | ok     | not ok | not ok | not ok | not ok |
|                             |                                     |        |        |        |        |        |
|                             |                                     | 2024   | 2020   | 2024   | 2022   | 0044   |
| NORTH BRAMPTON to VICTORIA  | Excepted Demand (ML (d)             | 2021   | 2026   | 2031   | 2036   | 2041   |
|                             | Forecasted Demand (ML/d)            | 23.4   | 20.1   | 20.0   | 71     | 21.0   |
| СТА                         | Total Actual System Capacity (ML/d) | 0      | 71     | 71     | 71     | 71     |
| 010                         | Total Actual System Capacity (ML/d) | U      |        | 1      | 1      |        |
|                             |                                     | not ok | ok     | ok     | ok     | ok     |
|                             |                                     |        |        |        |        |        |
| EAST BRAMPTON to NORTH BRA  | MPTON                               | 2021   | 2026   | 2031   | 2036   | 20/1   |
|                             | Encounted Domand (ML (d)            | 36.6   | 2020   | 2031   | 2030   | 26.6   |
|                             | Total Theoretical Capacity (ML/d)   | 71     | 71     | 71     | 71     | 71     |
| CT5                         | Total Actual System Capacity (ML/d) | 60     | 60     | 60     | 60     | 60     |
| 615                         | Total Actual System Capacity (ME/U) | 00     | 00     | 00     | 00     | 00     |
|                             |                                     | ok     | ok     | ok     | ok     | ok     |
|                             |                                     |        |        |        |        |        |
|                             |                                     |        |        |        |        |        |
| BECKETT SPROULE to EAST BRA | AMPTON                              | 2021   | 2026   | 2031   | 2036   | 2041   |
|                             | Forecasted Demand (ML/d)            | 105    | 113    | 120    | 129    | 135    |
|                             | Total Theoretical Capacity (ML/d)   | 106    | 378    | 378    | 378    | 378    |
| CT4                         | Total Actual System Capacity (ML/d) | 89     | 360    | 360    | 360    | 360    |
|                             |                                     | not ok | ok     | ok     | ok     | ok     |
|                             |                                     |        |        |        |        |        |
|                             |                                     |        |        |        |        |        |
| HANLAN to BECKETT SPROULE   |                                     | 2021   | 2026   | 2031   | 2036   | 2041   |
|                             | Forecasted Demand (ML/d)            | 528.7  | 625.0  | 709.7  | 738.4  | 766.5  |
|                             | Total Theoretical Capacity (ML/d)   | 1080   | 1080   | 1080   | 1080   | 1080   |
| CT3                         | Total Actual System Capacity (ML/d) | 1069   | 1069   | 1069   | 1069   | 1069   |
|                             |                                     | ok     | ok     | ok     | ok     | ok     |
|                             |                                     |        |        |        |        |        |
|                             |                                     |        |        |        |        |        |
| Arthur P. Kennedy to HANLAN |                                     | 2021   | 2026   | 2031   | 2036   | 2041   |
| •                           | Forecasted Demand (ML/d)            | 635.6  | 703.3  | 777.9  | 805.6  | 835.3  |
|                             | Total Theoretical Capacity (ML/d)   | 1372   | 1372   | 1372   | 1372   | 1372   |
| CT2H                        | Total Actual System Capacity (ML/d) | 1311   | 1311   | 1311   | 1311   | 1311   |
|                             |                                     | ok     | ok     | ok     | ok     | ok     |
|                             |                                     | UK UK  | UN     | UN     | UN     | UK.    |
|                             |                                     |        |        |        |        |        |
| SILVERTHORN to HANLAN       |                                     | 2021   | 2026   | 2031   | 2036   | 2041   |
|                             | Forecasted Demand (ML/d)            | 4.2    | 41.0   | 57.7   | 63.5   | 67.2   |
|                             | Total Theoretical Capacity (ML/d)   | 151    | 151    | 151    | 151    | 151    |
| CT2                         | Total Actual System Capacity (ML/d) | 136    | 136    | 136    | 136    | 136    |
|                             |                                     |        |        |        |        |        |

|                            |                                      | 2021   | LOLO   | 2001   | 2000   | 2041   |
|----------------------------|--------------------------------------|--------|--------|--------|--------|--------|
|                            | Forecasted Demand (ML/d)             | 11.2   | 27.9   | 33.1   | 42.2   | 47.0   |
|                            | Total Theoretical Capacity (ML/d)    | 24     | 24     | 24     | 24     | 24     |
| CT7                        | Total Actual System Capacity (ML/d)  | 26     | 26     | 26     | 26     | 26     |
|                            |                                      |        |        |        |        |        |
|                            |                                      | OK     | not ok | not ok | not ok | not ok |
|                            |                                      |        |        |        |        |        |
|                            |                                      |        |        |        |        |        |
| ORTH BRAMPTON to VICTORI   | Α                                    | 2021   | 2026   | 2031   | 2036   | 2041   |
|                            | Forecasted Demand (ML/d)             | 25.4   | 26.1   | 26.8   | 27.2   | 27.8   |
| 070                        | Total Theoretical Capacity (ML/d)    | 0      | 71     | 71     | 71     | 71     |
| C16                        | Total Actual System Capacity (ML/d)  | 0      | 71     | 71     | 71     | 71     |
|                            |                                      | not ok | ok     | ok     | ok     | ok     |
|                            |                                      | not or | ÖK     | ÖK     | UK UK  | ÖK     |
|                            |                                      |        |        |        |        |        |
|                            |                                      |        |        |        |        |        |
| AST BRAMPTON to NORTH BR   | RAMPTON                              | 2021   | 2026   | 2031   | 2036   | 2041   |
|                            | Forecasted Demand (ML/d)             | 30.0   | 20.5   | 22.3   | 25.0   | 20.0   |
| CT5                        | Total Theoretical Capacity (ML/d)    | 71     | 71     | 71     | 71     | 71     |
| 015                        | Total Actual System Capacity (ML/d)  | 00     | 00     | 00     | 00     | 00     |
|                            |                                      | ok     | ok     | ok     | ok     | ok     |
|                            |                                      |        |        |        |        |        |
|                            |                                      |        |        |        |        |        |
|                            |                                      |        |        |        |        |        |
| ECKETT SPROULE to EAST BI  | RAMPTON                              | 2021   | 2026   | 2031   | 2036   | 2041   |
|                            | Forecasted Demand (ML/d)             | 105    | 113    | 120    | 129    | 135    |
| CT4                        | Total Theoretical Capacity (ML/d)    | 106    | 378    | 378    | 378    | 378    |
| 614                        | Total Actual System Capacity (ML/d)  | 09     | 300    | 300    | 300    | 300    |
|                            |                                      | not ok | ok     | ok     | ok     | ok     |
|                            |                                      |        |        |        |        |        |
|                            |                                      |        |        |        |        |        |
|                            | _                                    |        |        |        |        |        |
| ANLAN to BECKETT SPROULE   |                                      | 2021   | 2026   | 2031   | 2036   | 2041   |
|                            | Forecasted Demand (ML/d)             | 528.7  | 625.0  | /09./  | / 38.4 | /66.5  |
| СТЭ                        | Total Theoretical Capacity (ML/d)    | 1080   | 1080   | 1080   | 1080   | 1080   |
| 013                        | Total Actual System Capacity (ML/d)  | 1009   | 1009   | 1009   | 1009   | 1009   |
|                            |                                      | ok     | ok     | ok     | ok     | ok     |
|                            |                                      |        |        |        |        |        |
|                            |                                      |        |        |        |        |        |
|                            |                                      |        |        |        |        |        |
| rulur P. Kennedy to HANLAN | Environmental Demonstrat (ML (d))    | 2021   | 2026   | 2031   | 2036   | 2041   |
|                            | Forecasted Demand (ML/d)             | 033.0  | 103.3  | 111.9  | 603.0  | 635.3  |
| стры                       | Total Actual System Capacity (ML/d)  | 1372   | 1372   | 1372   | 1372   | 1372   |
| CI2H                       | Total Actual System Capacity (ML/d)  | 1311   | 1311   | 1311   | 1311   | 1311   |
|                            |                                      | ok     | ok     | ok     | ok     | ok     |
|                            |                                      |        |        |        |        |        |
|                            |                                      |        |        |        |        |        |
|                            |                                      | 0004   |        | 0004   |        |        |
| ILVER I HORN to HANLAN     |                                      | 2021   | 2026   | 2031   | 2036   | 2041   |
|                            | Forecasted Demand (ML/d)             | 4.2    | 41.0   | 57.7   | 63.5   | 67.2   |
| CT2                        | Total Theoretical Capacity (ML/d)    | 151    | 151    | 151    | 151    | 151    |
|                            | I otal Actual System Capacity (ML/d) | 136    | 136    | 136    | 136    | 136    |

|                        |                                     | LULI   | LULU   | 2001   | 2000   | 2041   |
|------------------------|-------------------------------------|--------|--------|--------|--------|--------|
|                        | Forecasted Demand (ML/d)            | 11.2   | 27.9   | 33.1   | 42.2   | 47.0   |
|                        | Total Theoretical Capacity (ML/d)   | 24     | 24     | 24     | 24     | 24     |
| CT7                    | Total Actual System Capacity (ML/d) | 26     | 26     | 26     | 26     | 26     |
|                        |                                     | ok     | not ok | not ok | not ok | not ok |
|                        |                                     |        |        |        |        |        |
|                        |                                     | 2021   | 2026   | 2031   | 2036   | 2041   |
|                        | Forecasted Demand (ML/d)            | 25.4   | 26.1   | 26.8   | 27.2   | 27.8   |
|                        | Total Theoretical Capacity (ML/d)   | 0      | 71     | 71     | 71     | 71     |
| CT6                    | Total Actual System Capacity (ML/d) | 0      | 71     | 71     | 71     | 71     |
|                        |                                     | not ok | ok     | ok     | ok     | ok     |
|                        |                                     |        |        |        |        |        |
| BRAMPTON to NORTH BRA  | МРТОЛ                               | 2021   | 2026   | 2031   | 2036   | 2041   |
|                        | Forecasted Demand (ML/d)            | 36.6   | 20.5   | 22.3   | 25.0   | 26.6   |
|                        | Total Theoretical Capacity (ML/d)   | 71     | 71     | 71     | 71     | 71     |
| CT5                    | Total Actual System Capacity (ML/d) | 60     | 60     | 60     | 60     | 60     |
|                        |                                     | ok     | ok     | ok     | ok     | ok     |
|                        |                                     |        |        |        |        |        |
| T SPROULE to EAST BRA  | MPTON                               | 2021   | 2026   | 2031   | 2036   | 2041   |
|                        | Forecasted Demand (ML/d)            | 105    | 113    | 120    | 129    | 135    |
|                        | Total Theoretical Capacity (ML/d)   | 106    | 378    | 378    | 378    | 378    |
| CT4                    | Total Actual System Capacity (ML/d) | 89     | 360    | 360    | 360    | 360    |
|                        |                                     | not ok | ok     | ok     | ok     | ok     |
|                        |                                     |        |        |        |        |        |
| AN to BECKETT SPROULE  |                                     | 2021   | 2026   | 2031   | 2036   | 2041   |
|                        | Forecasted Demand (ML/d)            | 528.7  | 625.0  | 709.7  | 738.4  | 766.5  |
|                        | Total Theoretical Capacity (ML/d)   | 1080   | 1080   | 1080   | 1080   | 1080   |
| CT3                    | Total Actual System Capacity (ML/d) | 1069   | 1069   | 1069   | 1069   | 1069   |
|                        |                                     | ok     | ok     | ok     | ok     | ok     |
|                        |                                     |        |        |        |        |        |
| r P. Kennedy to HANLAN |                                     | 2021   | 2026   | 2031   | 2036   | 2041   |
|                        | Forecasted Demand (ML/d)            | 635.6  | 703.3  | 777.9  | 805.6  | 835.3  |
| 07011                  | Total Theoretical Capacity (ML/d)   | 1372   | 1372   | 1372   | 1372   | 1372   |
| СТ2Н                   | Total Actual System Capacity (ML/d) | 1311   | 1311   | 1311   | 1311   | 1311   |
|                        |                                     | ok     | ok     | ok     | ok     | ok     |
|                        |                                     |        |        |        |        |        |
| RTHORN to HANLAN       |                                     | 2021   | 2026   | 2031   | 2036   | 2041   |
|                        | Forecasted Demand (ML/d)            | 4.2    | 41.0   | 57.7   | 63.5   | 67.2   |
|                        | Total Theoretical Capacity (ML/d)   | 151    | 151    | 151    | 151    | 151    |
| CT2                    | Total Actual System Capacity (ML/d) | 136    | 136    | 136    | 136    | 136    |
|                        |                                     | ok     | ok     | ok     | ok     | ok     |

#### Arthur P. Kennedy to SILVERTHORN Forecasted Demand (ML/d) \_\_\_\_\_ Total Theoretical Capacity (ML/d) Total Actual System Capacity (ML/d)

| Arthur P. Kennedy INTAKE |                                     | 2021  | 2026  | 2031  | 2036  | 2041   |
|--------------------------|-------------------------------------|-------|-------|-------|-------|--------|
|                          | Forecasted Demand (ML/d)            | 733.3 | 821.3 | 917.6 | 959.1 | 1001.9 |
|                          | Total Theoretical Capacity (ML/d)   | 1095  | 1095  | 1095  | 1095  | 2029   |
| Arthur P. Konnody Intoko | Total Actual System Capacity (ML/d) | 1150  | 1150  | 1150  | 1150  | 2084   |
| Annul F. Kennedy Intake  | 90% Utilization (ML/d)              | 1035  | 1035  | 1035  | 1035  | 1876   |
|                          |                                     |       |       |       |       |        |
|                          |                                     | ok    | ok    | ok    | ok    | ok     |

| EAST BRAMPTON to NORTH BRAMPTO | N                      |           | Vernin Ormier   | Diameter | Theor. Capacity* | Actual Capacity* | Astrol O fastar |
|--------------------------------|------------------------|-----------|-----------------|----------|------------------|------------------|-----------------|
|                                | I ransmission Main     | OCWA IMID | Year in Service | (mm)     | (ML/d)           | (ML/d)           | Actual C-factor |
| CT5                            | North Brampton 900 PZ5 | 10        | 1983            | 900      | 71               | 60               | 110             |

OCWA TM ID

n/a

#### BECKETT SPROULE to EAST BRAMPTON

NORTH BRAMPTON to VICTORIA

CT6

|     | Transmission Main      | OCWA TM ID | Year in Service | Diameter<br>(mm) | Theor. Capacity*<br>(ML/d) | Actual Capacity*<br>(ML/d) | Actual C-factor |
|-----|------------------------|------------|-----------------|------------------|----------------------------|----------------------------|-----------------|
| CT4 | East Brampton 1050 PZ4 | 8          | 1983            | 1050             | 106                        | 89                         | 109             |
|     | East Brampton 1500 PZ4 | n/a        | 2022            | 1500             | 271                        | 271                        | 130             |
|     |                        |            |                 |                  |                            |                            |                 |

| IANLAN to BECKETT SPROULE |                   |            |
|---------------------------|-------------------|------------|
|                           | Transmission Main | OCWA TM ID |

Transmission Main

Victoria 900 PZ6

|     | Transmission Main        | OCWA TM ID | Year in Service | Diameter<br>(mm) | Theor. Capacity*<br>(ML/d) | Actual Capacity*<br>(ML/d) | Actual C-factor |
|-----|--------------------------|------------|-----------------|------------------|----------------------------|----------------------------|-----------------|
| CT3 | Beckett Sproule 1200 PZ3 | 6          | 1969            | 1200             | 151                        | 151                        | 130             |
|     | Beckett Sproule 1500 PZ3 | 16         | 1992            | 1500             | 271                        | 261                        | 125             |
|     | Beckett Sproule 2100 PZ3 | 26         | 2013            | 2100             | 657                        | 657                        | 130             |

| rthur P. Kennedy to HANLAN |                      |    |                  |          |                  |                  |                 |
|----------------------------|----------------------|----|------------------|----------|------------------|------------------|-----------------|
|                            | Transmission Main    |    | Vear in Service  | Diameter | Theor. Capacity* | Actual Capacity* | Actual C-factor |
|                            |                      |    | Teal III Gervice | (mm)     | (ML/d)           | (ML/d)           | Actual 0-lactor |
| CT2H                       | Hanlan 2100/1800 PZ2 | 12 | 1996             | 1800     | 438              | 378              | 112             |
|                            | Hanlan 2400 PZ2      | 29 | 2018             | 2400     | 934              | 934              | 130             |

| SILVERTHORN to HANLAN |                      |            |                 |                       |                  |                  |                 |  |  |  |
|-----------------------|----------------------|------------|-----------------|-----------------------|------------------|------------------|-----------------|--|--|--|
|                       | Transmission Main    | OCWA TM ID | Year in Service | Diameter              | Theor. Capacity* | Actual Capacity* | Actual C-factor |  |  |  |
| CT2                   | Hanlan 1500/1200 PZ2 | 5          | 1971            | ( <b>mm</b> )<br>1200 | (ML/d)<br>151    | 136              | 117             |  |  |  |
|                       |                      |            |                 |                       |                  |                  |                 |  |  |  |

| Arthur P. Kennedy to SILVERTHORN |                      |            |                 |          |                  |                  |                 |
|----------------------------------|----------------------|------------|-----------------|----------|------------------|------------------|-----------------|
|                                  | Transmission Main    | OCWA TM ID | Year in Service | Diameter | Theor. Capacity* | Actual Capacity* | Actual C-factor |
|                                  |                      |            |                 | (mm)     | (ML/d)           | (ML/d)           |                 |
| CT1                              | Silverthorn 900 PZ1  | 1          | 1964            | 900      | 71               | 57               | 105             |
|                                  | Silverthorn 1500 PZ1 | 2          | 1970            | 1500     | 271              | 221              | 106             |

| Arthur P. Kennedy INTAKE |                                 |            |                 |          |                  |                  |                 |
|--------------------------|---------------------------------|------------|-----------------|----------|------------------|------------------|-----------------|
|                          | Transmission Main               | OCWA TM ID | Vear in Service | Diameter | Theor. Capacity* | Actual Capacity* | Actual C-factor |
| Arthur P. Kennedy Intake |                                 |            |                 | (mm)     | (ML/d)           | (ML/d)           | Actual C-lactor |
|                          | 760mm Intake (L = 850 metres)   | n/a        | Decommiss. 1962 | 760      | 0                | n/a              | n/a             |
|                          | 1676mm Intake (L = 1030 metres) | n/a        | Decommiss. 1991 | 1676     | 0                | n/a              | n/a             |
|                          | 2550mm Intake (L = 1950 metres) | n/a        | 1991            | 2550     | 1095             | 1150             | 137             |
|                          | New Intake                      | n/a        | 2041            | 2400     | 934              | 934              | ?               |

| 2021 | 2026 | 2031  | 2036  | 2041  |
|------|------|-------|-------|-------|
| 72.1 | 91.6 | 109.8 | 121.1 | 131.9 |
| 342  | 342  | 342   | 342   | 342   |
| 279  | 279  | 279   | 279   | 279   |
| ok   | ok   | ok    | ok    | ok    |

Actual C-factor

130

## EAST TRANSMISSION SYSTEM

Transmission Main

North Brampton 900 PZ5

| TULLAMORE to BOLTON |                   |            |                 |                  |                            |                            |                 |  |  |  |
|---------------------|-------------------|------------|-----------------|------------------|----------------------------|----------------------------|-----------------|--|--|--|
|                     | Transmission Main | OCWA TM ID | Year in Service | Diameter<br>(mm) | Theor. Capacity*<br>(ML/d) | Actual Capacity*<br>(ML/d) | Actual C-factor |  |  |  |
| BT6                 | Bolton 750 PZ6    | 24         | 2002            | 750              | 44                         | 40                         | 119             |  |  |  |
|                     | Bolton 600 PZ6    | n/a        | Post-2041       | 600              | 24                         | 24                         | n/a             |  |  |  |
|                     |                   |            |                 |                  |                            |                            |                 |  |  |  |

Year in Service

2026

| TULLAMORE to BOLTON         |                                     | 2021 | 2026 | 2031 | 2036 | 2041 |
|-----------------------------|-------------------------------------|------|------|------|------|------|
|                             | Forecasted Demand (ML/d)            | 16.5 | 17.4 | 18.2 | 19.4 | 20.7 |
|                             | Total Theoretical Capacity (ML/d)   | 44   | 44   | 44   | 44   | 44   |
| BT6                         | Total Actual System Capacity (ML/d) | 40   | 40   | 40   | 40   | 40   |
|                             |                                     | ok   | ok   | ok   | ok   | ok   |
|                             |                                     |      |      |      |      |      |
| TULLAMORE to NORTH BRAMPTON |                                     | 2021 | 2026 | 2031 | 2036 | 2041 |
|                             | Forecasted Demand (ML/d)            | 0.0  | 20.5 | 22.3 | 25.0 | 26.6 |
|                             | Total Theoretical Capacity (ML/d)   | 0    | 71   | 71   | 71   | 71   |
| ECT5                        | Total Actual System Capacity (ML/d) | 0    | 71   | 71   | 71   | 71   |
|                             |                                     | ok   | ok   | ok   | ok   | ok   |
|                             |                                     |      |      |      |      |      |
| AIRPORT ROAD to TULLAMORE   |                                     | 2021 | 2026 | 2031 | 2036 | 2041 |
|                             | Enrecasted Demand (ML/d)            | 38.6 | 50.9 | 60.5 | 69.7 | 81 7 |

ET4

Total Theoretical Capacity (ML/d)

otal Actual System Capacity (ML/d)

| DELANORE TO BOET ON               |                                     | 2021 | 2020 | 2031 | 2030 | 2041 |   |
|-----------------------------------|-------------------------------------|------|------|------|------|------|---|
|                                   | Forecasted Demand (ML/d)            | 16.5 | 17.4 | 18.2 | 19.4 | 20.7 | Î |
|                                   | Total Theoretical Capacity (ML/d)   | 44   | 44   | 44   | 44   | 44   | Î |
| BT6                               | Total Actual System Capacity (ML/d) | 40   | 40   | 40   | 40   | 40   | Ĩ |
|                                   |                                     |      |      |      |      |      |   |
|                                   |                                     | ok   | ok   | ok   | ok   | ok   | _ |
|                                   |                                     |      |      |      |      |      |   |
|                                   |                                     |      |      |      |      |      |   |
|                                   |                                     |      |      |      |      |      |   |
| <b>ULLAMORE to NORTH BRAMPTON</b> |                                     | 2021 | 2026 | 2031 | 2036 | 2041 |   |
|                                   | Forecasted Demand (ML/d)            | 0.0  | 20.5 | 22.3 | 25.0 | 26.6 |   |
|                                   | Total Theoretical Capacity (ML/d)   | 0    | 71   | 71   | 71   | 71   | Ì |
| ECT5                              | Total Actual System Capacity (ML/d) | 0    | 71   | 71   | 71   | 71   | Î |
|                                   |                                     |      |      |      |      |      |   |
|                                   |                                     | ok   | ok   | ok   | ok   | ok   |   |
|                                   |                                     |      |      |      |      |      |   |
|                                   |                                     |      |      |      |      |      |   |
|                                   |                                     |      |      |      |      |      |   |
| AIRPORT ROAD to TULLAMORE         |                                     | 2021 | 2026 | 2031 | 2036 | 2041 |   |
|                                   | Ecrocasted Demand (ML/d)            | 38.6 | 50.9 | 60.5 | 69.7 | 81 7 |   |

#### AIRPORT ROAD to TULLAMORE

TULLAMORE to NORTH BRAMPTON

|     | Transmission Main  | OCWA TM ID | Year in Service | Diameter<br>(mm) | Theor. Capacity*<br>(ML/d) | Actual Capacity*<br>(ML/d) | Actual C-factor |
|-----|--------------------|------------|-----------------|------------------|----------------------------|----------------------------|-----------------|
| ET4 | Tullamore 1050 PZ4 | PRP-4      | 2013            | 1050             | 106                        | 106                        | 130             |
|     | Tullamore 1200 PZ4 | n/a        | Post-2041       | 1200             | 151                        | 151                        | n/a             |
|     |                    |            |                 |                  |                            |                            |                 |

OCWA TM ID

n/a

#### AIRPORT ROAD to YORK REGION

|               | Transmission Main  | OCWA TM ID | Year in Service | Diameter<br>(mm) | Theor. Capacity*<br>(ML/d) | Actual Capacity*<br>(ML/d) | Actual C-factor |
|---------------|--------------------|------------|-----------------|------------------|----------------------------|----------------------------|-----------------|
| ET5Y Transfer | York 1800 Transfer | 23         | 2005            | 1800             | 438                        | 421                        | 125             |

#### AIRPORT ROAD to YORK REGION Forecasted Demand (ML/d) Total Theoretical Capacity (ML/d) Total Actual System Capacity (ML/d) ET5Y

Theor. Capacity\* (ML/d)

71

Diameter (mm)

900

Actual Capacity\* (ML/d)

71

| BECKETT SPROULE to AIRPORT ROAD |                            |            |                 |                  |                            |                            |                 |  |  |  |
|---------------------------------|----------------------------|------------|-----------------|------------------|----------------------------|----------------------------|-----------------|--|--|--|
|                                 | Transmission Main          | OCWA TM ID | Year in Service | Diameter<br>(mm) | Theor. Capacity*<br>(ML/d) | Actual Capacity*<br>(ML/d) | Actual C-factor |  |  |  |
| ET3A Transfer                   | Airport Road 2100 Transfer | 13         | 2004            | 2100             | 657                        | 612                        | 121             |  |  |  |

| BECKETT SPROULE to AIRPORT ROAD |                                     | 2021  | 2026  | 2031  | 2036  | 2041  |
|---------------------------------|-------------------------------------|-------|-------|-------|-------|-------|
|                                 | Forecasted Demand (ML/d)            | 325.4 | 407.8 | 479.2 | 494.3 | 510.2 |
|                                 | Total Theoretical Capacity (ML/d)   | 657   | 657   | 657   | 657   | 657   |
| ET3A                            | Total Actual System Capacity (ML/d) | 612   | 612   | 612   | 612   | 612   |
|                                 |                                     |       |       |       |       |       |
|                                 |                                     | ok    | ok    | ok    | ok    | ok    |

| 30.0 | 50.9 | 60.5 | 69.7 | 81.7 |
|------|------|------|------|------|
| 106  | 106  | 106  | 106  | 106  |
| 106  | 106  | 106  | 106  | 106  |
|      |      |      |      |      |
| ok   | ok   | ok   | ok   | ok   |

| 2021  | 2026  | 2031  | 2036  | 2041  |
|-------|-------|-------|-------|-------|
| 231.8 | 276.7 | 331.0 | 331.0 | 331.0 |
| 438   | 438   | 438   | 438   | 438   |
| 421   | 421   | 421   | 421   | 421   |
| ok    | ok    | ok    | ok    | ok    |

## WEST TRANSMISSION SYSTEM

#### PRESSURE ZONE 7W

| Proposed construction:<br>2029 | W/97 | Facility                   | Facility No. | Year in Service | Total Volume (ML) |
|--------------------------------|------|----------------------------|--------------|-----------------|-------------------|
|                                | VV3/ | West Caledon Elevated Tank | n/a          | 2027            | 10.0              |
|                                |      | TOTAL                      |              |                 | 10.0              |

| PRESSURE ZONE | 7W                           |                     | 2021 | 2026 | 2031 | 2036 | 2041 |
|---------------|------------------------------|---------------------|------|------|------|------|------|
|               | Emergency storage            | WS7 Emergency       | 0.0  | 0.0  | 0.8  | 0.8  | 1.2  |
|               | Fire storage (PZ7W)          | WS7 Fire 7W         | 0.0  | 0.0  | 3.1  | 3.1  | 4.9  |
|               | Equalization storage (PZ7W)  | WS7 Equalization 7W | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| VV3/          | Total Required Storage (ML)  | WS7 Total           | 0.0  | 0.0  | 3.8  | 3.8  | 6.1  |
|               | Total Available Storage (ML) |                     | 0.0  | 0.0  | 10.0 | 10.0 | 10.0 |
|               |                              |                     | OK   | OK   | OK   | OK   | OK   |

#### PRESSURE ZONE 6W

| Initially constructed:    |      | E 194 .                 | E. Mitta M.  | X               | T. (               |
|---------------------------|------|-------------------------|--------------|-----------------|--------------------|
| 1976                      | MSE  | Facility                | Facility No. | Year in Service | i otal volume (ML) |
| Proposed decommissioning: | VV30 | Snelgrove Elevated Tank | P526001      | 1976            | 3.8                |
| 2022                      |      | TOTAL                   |              |                 | 3.8                |

\* To be decommissioned in 2022 after the Victoria Reservoir is in service.

| PRESSURE ZONE 5W       |      |                        |              |                  |                   |
|------------------------|------|------------------------|--------------|------------------|-------------------|
| Initially constructed: |      | Facility               | Essility No  | Veer in Service  | Total Valuma (ML) |
| 2018                   |      | Facility               | Facility NO. | real III Service |                   |
| Proposed expansion:    | WSE  | Alloa Reservoir Cell 1 | RSV22810     | 2018             | 17.5              |
| Post-2041              | VV35 | Alloa Reservoir Cell 2 | RSV22820     | 2018             | 17.5              |
|                        |      | Alloa Reservoir Cell 3 | RSV22830     | Post-2041        | 17.5              |
|                        |      | TOTAL                  |              |                  | 35.0              |

| PRESSURE ZONE 6 | W                            |               | 2021 | 2026 | 2031 | 2036 | 2041 |
|-----------------|------------------------------|---------------|------|------|------|------|------|
|                 | Emergency storage            | WS6 Emergency | 0.6  | 0.0  | 0.0  | 0.0  | 0.0  |
|                 | Fire storage (PZ6W)          | WS6 Fire 6W   | 2.4  | 0.0  | 0.0  | 0.0  | 0.0  |
| WS6             | Total Required Storage (ML)  | WS6 Total     | 3.1  | 0.0  | 0.0  | 0.0  | 0.0  |
|                 | Total Available Storage (ML) |               | 3.8  | 0.0  | 0.0  | 0.0  | 0.0  |
|                 |                              |               | OK   |      |      |      |      |
|                 |                              |               |      |      |      |      |      |

| PRESSURE ZONE | 5W                           |                     | 2021 | 2026 | 2031 | 2036 | 2041 |
|---------------|------------------------------|---------------------|------|------|------|------|------|
|               | Emergency storage            | WS5 Emergency       | 4.5  | 5.8  | 4.9  | 5.3  | 5.8  |
|               | Fire storage (PZ7W)          | WS5 Fire 7W         | 1.7  | 2.4  | 0.5  | 0.5  | 0.9  |
|               | Fire storage (PZ6W)          | WS5 Fire 6W         | 0.0  | 4.1  | 4.1  | 4.1  | 4.1  |
|               | Fire storage (PZ5W)          | WS5 Fire 5W         | 8.2  | 8.2  | 4.9  | 4.9  | 4.9  |
| WS5           | Equalization storage (PZ7W)  | WS5 Equalization 7W | 0.7  | 1.6  | 2.3  | 2.7  | 3.3  |
|               | Equalization storage (PZ6W)  | WS5 Equalization 6W | 7.5  | 6.9  | 8.0  | 9.0  | 10.0 |
|               | Total Required Storage (ML)  | WS5 Total           | 22.7 | 28.8 | 24.7 | 26.6 | 29.0 |
|               | Total Available Storage (ML) |                     | 35.0 | 35.0 | 35.0 | 35.0 | 35.0 |
|               |                              |                     | ОК   | OK   | OK   | OK   | OK   |

#### PRESSURE ZONE 4W

| Initially constructed:<br>2011 |      | Facility                       | Facility No. | Year in Service | Total Volume (ML) |
|--------------------------------|------|--------------------------------|--------------|-----------------|-------------------|
| Proposed expansion:            |      | West Brampton Reservoir Cell 1 | P523001      | 2011            | 20.0              |
| 2028                           | VV34 | West Brampton Reservoir Cell 2 | P523001      | 2011            | 20.0              |
|                                |      | West Brampton Reservoir Cell 3 | P523001      | 2028            | 20.0              |
|                                |      | TOTAL                          |              |                 | 40.0              |

#### PRESSURE ZONE 3W

| Initially constructed:<br>1989 |     | Facility                          | Facility No. | Year in Service | Total Volume (ML) |
|--------------------------------|-----|-----------------------------------|--------------|-----------------|-------------------|
| Expanded:                      |     | Meadowvale North Reservoir Cell 1 | P513001      | 1989            | 12.5              |
| 2002                           | WS3 | Meadowvale North Reservoir Cell 2 | P513001      | 1989            | 12.5              |
|                                |     | Meadowvale North Reservoir Cell 3 | P513001      | 2002            | 15.0              |
|                                |     | Meadowvale North Reservoir Cell 4 | P513001      | 2002            | 15.0              |
|                                |     | TOTAL                             |              |                 | 55.0              |

#### PRESSURE ZONE 2W

| Initially constructed: |      | E 194 .                       | E. Mitta Ma  | X               | T ( ) ( ) ( )      |
|------------------------|------|-------------------------------|--------------|-----------------|--------------------|
| 1989                   |      | Facility                      | Facility No. | Year in Service | i otal volume (ML) |
| Expanded:              | W/S2 | Streetsville Reservoir Cell 1 | P512001      | 1971            | 23.0               |
| 2011                   | VV32 | Streetsville Reservoir Cell 2 | P512001      | 2011            | 25.0               |
| Proposed expansion:    |      | Streetsville Reservoir Cell 3 | n/a          | Post-2041       | 20.0               |
| Post-2041              |      | TOTAL                         |              |                 | 48.0               |

| PRESSURE ZONE 1W       |     |                          |              |                  |                   |  |  |  |  |
|------------------------|-----|--------------------------|--------------|------------------|-------------------|--|--|--|--|
| Initially constructed: |     | Facility                 | Eacility No. | Vear in Service  | Total Volume (ML) |  |  |  |  |
| 1965                   |     | i aciiity                | r acinty No. | real III Service | rotar volume (mE) |  |  |  |  |
| Expanded:              | WS1 | Herridge South Reservoir | P511001      | 1972             | 32.0              |  |  |  |  |
| 1989                   |     | Herridge North Reservoir | P511001      | 1989             | 15.0              |  |  |  |  |
|                        |     | TOTAL                    |              |                  | 47.0              |  |  |  |  |

| PRESSURE ZONE 4W |                              |                     | 2021 | 2026 | 2031 | 2036 | 2041 |
|------------------|------------------------------|---------------------|------|------|------|------|------|
|                  | Emergency storage            | WS4 Emergency       | 6.3  | 6.7  | 8.8  | 9.3  | 9.7  |
|                  | Fire storage (PZ6W)          | WS4 Fire 6W         | 5.7  | 4.1  | 4.1  | 4.1  | 4.1  |
|                  | Fire storage (PZ5W)          | WS4 Fire 5W         | 0.0  | 0.0  | 3.3  | 3.3  | 3.3  |
|                  | Fire storage (PZ4W)          | WS4 Fire 4W         | 8.2  | 8.2  | 8.2  | 8.2  | 8.2  |
| WS4              | Equalization storage (PZ6W)  | WS4 Equalization 6W | 7.5  | 10.3 | 11.9 | 13.5 | 15.0 |
|                  | Equalization storage (PZ5W)  | WS4 Equalization 5W | 3.8  | 4.4  | 7.8  | 8.1  | 8.3  |
|                  | Total Required Storage (ML)  | WS4 Total           | 31.5 | 33.7 | 44.0 | 46.4 | 48.6 |
|                  | Total Available Storage (ML) |                     | 40.0 | 40.0 | 60.0 | 60.0 | 60.0 |
|                  |                              |                     | OK   | OK   | OK   | OK   | OK   |

| PRESSURE ZONE 3W |                              |                     | 2021 | 2026 | 2031 | 2036 | 2041 |
|------------------|------------------------------|---------------------|------|------|------|------|------|
|                  | Emergency storage            | WS3 Emergency       | 6.6  | 7.1  | 6.8  | 6.9  | 7.1  |
|                  | Fire storage (PZ5W)          | WS3 Fire 5W         | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
|                  | Fire storage (PZ3W)          | WS3 Fire 3W         | 8.2  | 8.2  | 8.2  | 8.2  | 8.2  |
| W/S3             | Equalization storage (PZ5W)  | WS3 Equalization 5W | 11.5 |      |      |      |      |
| VV35             | Equalization storage (PZ4W)  | WS3 Equalization 4W | 6.6  | 6.9  | 7.3  | 7.5  | 7.7  |
|                  | Total Required Storage (ML)  | WS3 Total           | 32.8 | 35.3 | 33.8 | 34.7 | 35.4 |
|                  | Total Available Storage (ML) |                     | 55.0 | 55.0 | 55.0 | 55.0 | 55.0 |
|                  |                              |                     | OK   | OK   | OK   | OK   | OK   |

| PRESSURE ZONE 2W |                              |                     | 2021 | 2026 | 2031 | 2036 | 2041 |
|------------------|------------------------------|---------------------|------|------|------|------|------|
|                  | Emergency storage            | WS2 Emergency       | 6.4  | 6.8  | 7.2  | 7.4  | 7.6  |
|                  | Fire storage (PZ2W)          | WS2 Fire 2W         | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
|                  | Equalization storage (PZ4W)  | WS2 Equalization 4W | 19.9 | 20.8 | 21.8 | 22.5 | 23.1 |
| WS2              | Equalization storage (PZ3W)  | WS2 Equalization 3W | 5.9  | 6.5  | 6.8  | 7.0  | 7.4  |
|                  | Total Required Storage (ML)  | WS2 Total           | 32.2 | 34.2 | 35.8 | 36.9 | 38.2 |
|                  | Total Available Storage (ML) |                     | 48.0 | 48.0 | 48.0 | 48.0 | 48.0 |
|                  |                              |                     | OK   | OK   | OK   | OK   | OK   |

| PRESSURE ZONE 1W |                              |                     | 2021 | 2026 | 2031 | 2036 | 2041 |
|------------------|------------------------------|---------------------|------|------|------|------|------|
|                  | Emergency storage            | WS1 Emergency       | 6.2  | 6.6  | 6.6  | 6.7  | 6.9  |
|                  | Fire storage (PZ2W)          | WS1 Fire 2W         | 8.2  | 8.2  | 8.2  | 8.2  | 8.2  |
|                  | Fire storage (PZ1W)          | WS1 Fire 1W         | 6.3  | 8.2  | 8.2  | 8.2  | 8.2  |
| WC1              | Equalization storage (PZ3W)  | WS1 Equalization 3W | 2.5  | 2.2  | 2.3  | 2.3  | 2.5  |
| VV SI            | Equalization storage (PZ2W)  | WS1 Equalization 2W | 7.7  | 7.8  | 7.9  | 8.3  | 8.7  |
|                  | Total Required Storage (ML)  | WS1 Total           | 30.9 | 32.9 | 33.2 | 33.7 | 34.4 |
|                  | Total Available Storage (ML) |                     | 47.0 | 47.0 | 47.0 | 47.0 | 47.0 |
|                  |                              |                     | OK   | OK   | OK   | OK   | OK   |

## **CENTRAL TRANSMISSION SYSTEM**

#### PRESSURE ZONE 7C

| Initially constructed:<br>2010 | <b>CS</b> 7 | Facility                    | Facility No. | Year in Service | Total Volume (ML) |
|--------------------------------|-------------|-----------------------------|--------------|-----------------|-------------------|
|                                | 631         | Mayfield West Elevated Tank | P580001      | 2010            | 9.2               |
|                                |             | TOTAL                       |              |                 | 9.2               |

| PRESSURE ZONE 7C |                              | 2021                | 2026   | 2031   | 2036   | 2041   |        |
|------------------|------------------------------|---------------------|--------|--------|--------|--------|--------|
|                  | Emergency storage            | CS7 Emergency       | 2.1    | 2.5    | 3.1    | 3.5    | 3.6    |
|                  | Fire storage (PZ7C)          | CS7 Fire 7C         | 5.7    | 6.3    | 8.2    | 8.2    | 8.2    |
| <b>CS</b> 7      | Equalization storage (PZ7C)  | CS7 Equalization 7C | 2.8    | 3.7    | 4.4    | 5.7    | 6.4    |
| 001              | Total Required Storage (ML)  | CS7 Total           | 10.7   | 12.5   | 15.7   | 17.3   | 18.2   |
|                  | Total Available Storage (ML) |                     | 9.2    | 9.2    | 9.2    | 9.2    | 9.2    |
|                  |                              |                     | NOT OK |

#### PRESSURE ZONE 6C

| Proposed construction:<br>2021 | ed construction: |                           | Facility No. | Year in Service | Total Volume (ML) |
|--------------------------------|------------------|---------------------------|--------------|-----------------|-------------------|
|                                | CS6              | Victoria Reservoir Cell 1 | n/a          | 2022            | 20.0              |
|                                |                  | Victoria Reservoir Cell 2 | n/a          | 2022            | 20.0              |
|                                |                  | TOTAL                     |              |                 | 40.0              |

| PRESSURE ZONE 6C |                              |                     | 2021   | 2026 | 2031 | 2036 | 2041 |
|------------------|------------------------------|---------------------|--------|------|------|------|------|
|                  | Emergency storage            | CS6 Emergency       | 3.6    | 3.7  | 3.7  | 3.7  | 3.8  |
|                  | Fire storage (PZ6C)          | CS6 Fire 6C         | 8.2    | 8.2  | 8.2  | 8.2  | 8.2  |
| 000              | Equalization storage (PZ6C)  | CS6 Equalization 6C | 6.4    | 6.5  | 6.7  | 6.8  | 6.9  |
| 630              | Total Required Storage (ML)  | CS6 Total           | 18.1   | 18.4 | 18.6 | 18.7 | 18.9 |
|                  | Total Available Storage (ML) |                     | 0.0    | 40.0 | 40.0 | 40.0 | 40.0 |
|                  |                              |                     | NOT OK | OK   | OK   | OK   | OK   |

| PRESSURE ZONE 5C |                              |                     | 2021 | 2026 | 2031 | 2036 | 2041 |
|------------------|------------------------------|---------------------|------|------|------|------|------|
|                  | Emergency storage            | CS5 Emergency       | 2.0  | 5.0  | 5.2  | 5.5  | 5.7  |
|                  | Fire storage (PZ7C)          | CS5 Fire 7C         | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
|                  | Fire storage (PZ6C)          | CS5 Fire 6C         | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
|                  | Fire storage (PZ5C)          | CS5 Fire 5C         | 8.2  | 8.2  | 8.2  | 8.2  | 8.2  |
| C 9 5            | Fire storage (PZ5E)          | CS5 Fire 5E         | 0.0  | 8.2  | 8.2  | 8.2  | 8.2  |
| 035              | Equalization storage (PZ7C)  | CS5 Equalization 7C | 0.0  | 3.7  | 4.4  | 5.7  | 6.4  |
|                  | Equalization storage (PZ6C)  | CS5 Equalization 6C | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
|                  | Total Required Storage (ML)  | CS5 Total           | 10.2 | 25.0 | 25.9 | 27.5 | 28.4 |
|                  | Total Available Storage (ML) |                     | 52.8 | 52.8 | 52.8 | 52.8 | 52.8 |
|                  |                              |                     | ОК   | OK   | OK   | OK   | OK   |

#### PRESSURE ZONE 4C **2021** 3.9 0.0 CS4 Emergency CS4 Fire 6C mergency storage Fire storage (PZ6C) Fire storage (PZ4C) CS4 Fire 4C 8.2 CS4 Equaliz CS4 on storage Total Required Storage (ML) CS4 Total Total Available Storage (ML) 19.7 39.0 OK

| PRESSURE ZONE 3C |                              |                     | 2021 | 2026 | 2031 | 2036 | 2041 |
|------------------|------------------------------|---------------------|------|------|------|------|------|
|                  | York Region                  | CS3 York Region     | 9.7  | 11.5 | 13.8 | 13.8 | 13.8 |
|                  | Emergency storage            | CS3 Emergency       | 8.2  | 8.6  | 8.9  | 9.3  | 9.6  |
|                  | Fire storage (PZ3C)          | CS3 Fire 3C         | 8.2  | 8.2  | 8.2  | 8.2  | 8.2  |
| <b>CC2</b>       | Equalization storage (PZ5C)  | CS3 Equalization 5C | 14.2 |      |      |      | 18.6 |
| 633              | Equalization storage (PZ4C)  | CS3 Equalization 4C | 10.4 | 10.7 | 11.1 | 11.4 | 11.8 |
|                  | Total Required Storage (ML)  | CS3 Total           | 50.5 | 54.3 | 58.5 | 60.1 | 61.9 |
|                  | Total Available Storage (ML) |                     | 93.0 | 93.0 | 93.0 | 93.0 | 93.0 |
|                  |                              |                     | OK   | OK   | OK   | OK   | OK   |

| PRESSURE ZONE 2C |                              |                     | 2021 | 2026 | 2031 | 2036 | 2041 |
|------------------|------------------------------|---------------------|------|------|------|------|------|
|                  | York Region                  | CS2 York Region     | 9.7  | 11.5 | 13.8 | 13.8 | 13.8 |
|                  | Emergency storage            | CS2 Emergency       | 9.0  | 7.5  | 7.9  | 8.2  | 8.5  |
|                  | Fire storage (PZ2C)          | CS2 Fire 2C         | 8.2  | 0.0  | 0.0  | 0.0  | 0.0  |
| <b>CC2</b>       | Equalization storage (PZ4C)  | CS2 Equalization 4C | 10.4 | 10.7 | 11.1 | 11.4 | 11.8 |
| 0.52             | Equalization storage (PZ3C)  | CS2 Equalization 3C | 17.4 | 19.1 | 20.4 | 21.3 | 22.3 |
|                  | Total Required Storage (ML)  | CS2 Total           | 54.6 | 48.8 | 53.2 | 54.6 | 56.3 |
|                  | Total Available Storage (ML) |                     | 74.0 | 74.0 | 74.0 | 74.0 | 74.0 |
|                  |                              |                     | OK   | OK   | OK   | OK   | OK   |

| PRESSURE ZONE 1C |                              | 2021                | 2026 | 2031 | 2036 | 2041 |      |
|------------------|------------------------------|---------------------|------|------|------|------|------|
|                  | Emergency storage            | CS1 Emergency       | 6.3  | 8.5  | 8.7  | 9.2  | 9.8  |
|                  | Fire storage (PZ2C)          | CS1 Fire 2C         | 0.0  | 8.2  | 8.2  | 8.2  | 8.2  |
|                  | Fire storage (PZ1C)          | CS1 Fire 1C         | 8.2  | 8.2  | 8.2  | 8.2  | 8.2  |
| 001              | Equalization storage (PZ3C)  | CS1 Equalization 3C | 7.5  | 8.2  | 8.8  | 9.1  | 9.5  |
| 001              | Equalization storage (PZ2C)  | CS1 Equalization 2C | 9.5  | 9.6  | 9.8  | 11.5 | 13.3 |
|                  | Total Required Storage (ML)  | CS1 Total           | 31.4 | 42.6 | 43.6 | 46.2 | 48.9 |
|                  | Total Available Storage (ML) |                     | 45.5 | 70.5 | 70.5 | 70.5 | 70.5 |
|                  |                              |                     | OK   | OK   | OK   | OK   | OK   |

| 2021 |     |                           |     |      | 1    |
|------|-----|---------------------------|-----|------|------|
|      | CS6 | Victoria Reservoir Cell 1 | n/a | 2022 | 20.0 |
|      |     | Victoria Reservoir Cell 2 | n/a | 2022 | 20.0 |
|      |     | TOTAL                     |     |      | 40.0 |
|      |     |                           |     |      |      |
|      |     |                           |     |      |      |
|      |     |                           |     |      |      |
|      |     |                           |     |      |      |

| PRESSURE ZONE 5C       |     |                                 |              |                  |                   |
|------------------------|-----|---------------------------------|--------------|------------------|-------------------|
| Initially constructed: |     | Escility                        | Essility No. | Veer in Service  | Total Valuma (ML) |
| 1983                   |     | Facility                        | Facility NO. | real III Service |                   |
| Expanded:              |     | North Brampton Reservoir Cell 1 | P517001      | 1983             | 11.4              |
| 1992                   | CS5 | North Brampton Reservoir Cell 2 | P517001      | 1983             | 11.4              |
|                        |     | North Brampton Reservoir Cell 3 | P517001      | 1992             | 15.0              |
|                        |     | North Brampton Reservoir Cell 4 | P517001      | 1992             | 15.0              |
|                        |     | TOTAL                           |              |                  | 52.8              |

#### Initially constructed: 1973 Facility Facility No. Year in Service Total Volume (ML) Expanded: 1989 East Brampton Reservoir Cell 1 P510001 1973 9.5 CS4 East Brampton Reservoir Cell 2 P510001 1973 9.5 P510001 1989 East Brampton Reservoir Cell 3 10.0 P510001 East Brampton Reservoir Cell 4 1989 10.0 TOTAL 39.0

#### PRESSURE ZONE 3C

PRESSURE ZONE 4C

| Initially constructed:<br>1966 |     | Facility                         | Facility No. | Year in Service | Total Volume (ML) |
|--------------------------------|-----|----------------------------------|--------------|-----------------|-------------------|
| Expanded:                      |     | Beckett Sproule Reservoir Cell 1 | P516001      | 1966            | 22.5              |
| 2010                           | CS3 | Beckett Sproule Reservoir Cell 2 | P516001      | 1966            | 22.5              |
|                                |     | Beckett Sproule Reservoir Cell 3 | P516001      | 2010            | 24.0              |
|                                |     | Beckett Sproule Reservoir Cell 4 | P516001      | 2010            | 24.0              |
|                                |     | TOTAL                            |              |                 | 93.0              |

#### PRESSURE ZONE 2C

| Initially constructed: |            | Facility                     | Eacility No. | Vear in Service  | Total Volume (ML) |
|------------------------|------------|------------------------------|--------------|------------------|-------------------|
| 1969                   |            | T activity                   | r acinty No. | real III Service |                   |
| Expanded:              |            | Hanlan South Reservoir       | P515001      | 1966             | 45.0              |
| 2004, 2012             | <b>CC2</b> | Hanlan North Reservoir       | P515001      | 2004             | 25.0              |
|                        | 0.52       | Balancing Reservoir          | P515001      | 2004             | 4.0               |
|                        |            | Hanlan West Reservoir Cell 1 | n/a          | Post-2041        | 20.0              |
|                        |            | Hanlan West Reservoir Cell 2 | n/a          | Post-2041        | 20.0              |
|                        |            | TOTAL                        |              |                  | 74.0              |

| PRESSURE ZONE 1C       |       |                                    |              |                 |                   |
|------------------------|-------|------------------------------------|--------------|-----------------|-------------------|
| Initially constructed: |       | Facility                           | Facility No  | Vear in Service | Total Volume (ML) |
| 1964                   |       | 1 domty                            | r donity No. |                 |                   |
| Proposed expansion:    | C C 1 | Silverthorn Reservoir (Old) Cell 1 | P514001      | 1964            | 22.7              |
| 2022                   | 001   | Silverthorn Reservoir (Old) Cell 2 | P514001      | 1964            | 22.7              |
|                        |       | Silverthorn Reservoir (New)        | n/a          | 2023            | 25.0              |
|                        |       | TOTAL                              |              |                 | 45.5              |

| I | 2026 | 2031 | 2036 | 2041 |
|---|------|------|------|------|
|   | 4.1  | 4.3  | 4.4  | 4.5  |
|   | 0.0  | 0.0  | 0.0  | 0.0  |
|   | 8.2  | 8.2  | 8.2  | 8.2  |
|   | 0.0  | 0.0  | 0.0  | 0.0  |
|   | 8.3  | 8.9  | 9.4  | 10.0 |
|   | 20.5 | 21.3 | 22.0 | 22.7 |
|   | 39.0 | 39.0 | 39.0 | 39.0 |
|   | OK   | OK   | OK   | OK   |

## EAST TRANSMISSION SYSTEM

#### PRESSURE ZONE 7B

PRESSURE ZONE 7E
Proposed construction:

Post-2041

| Proposed construction:<br>2030, 2036 |     | Facility                   | Facility No. | Year in Service | Total Volume (ML) |
|--------------------------------------|-----|----------------------------|--------------|-----------------|-------------------|
|                                      | BS7 | North Bolton Elevated Tank | n/a          | Post-2041       | 10.0              |
|                                      |     | Castlederg Elevated Tank   | n/a          | Post-2041       | 10.0              |
|                                      |     | TOTAL                      |              |                 | 20.0              |

Facility

East Caledon Elevated Tank

TOTAL

Facility No.

n/a

Facility No.

n/a

n/a

n/a

n/a

Year in Service

Post-2041

Year in Service

Post-2041

Post-2041

Post-2041

Post-2041

Total Volume (ML)

10.0

10.0

Total Volume (ML)

15.0

15.0

15.0

15.0

60.0

# BS7 Emergency storage BS7 Emergency 0.0 Fire storage (PZ7B) BS7 Fire 7B 0.0 Equalization storage (PZ7B) BS7 Equalization 7B 0.0 Total Required Storage (ML) BS7 Total 0.0 Total Available Storage (ML) BS7 Total 0.0 OK OK OK

#### 7E 20

| PRESSURE ZONE 7E |                              | 2021                | 2026 | 2031 | 2036 | 2041 |     |
|------------------|------------------------------|---------------------|------|------|------|------|-----|
|                  | Emergency storage            | ES7 Emergency       | 0.0  | 0.0  | 0.0  | 0.0  | 0.0 |
|                  | Fire storage (PZ8E)          | ES7 Fire 8E         | 0.0  | 0.0  | 0.0  | 0.0  | 0.0 |
| EQ7              | Fire storage (PZ7E)          | ES7 Fire 7E         | 0.0  | 0.0  | 0.0  | 0.0  | 0.0 |
|                  | Equalization storage (PZ8E)  | ES7 Equalization 8E | 0.0  | 0.0  | 0.0  | 0.0  | 0.0 |
| LOI              | Equalization storage (PZ7E)  | ES7 Equalization 7E | 0.0  | 0.0  | 0.0  | 0.0  | 0.0 |
|                  | Total Required Storage (ML)  | ES7 Total           | 0.0  | 0.0  | 0.0  | 0.0  | 0.0 |
|                  | Total Available Storage (ML) |                     | 0.0  | 0.0  | 0.0  | 0.0  | 0.0 |
|                  |                              |                     | OK   | OK   | OK   | OK   | OK  |

#### B 17

| PRESSURE ZONE 6B          |                                                                                           | 2026                                                                                                                                                                                                                         | 2031                                                                                                                                                                                                                                                                                                  | 2036                                                                                                                                                                                                                                                                                                                                                                           | 2041                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BS6 Emergency             | 3.1                                                                                       | 3.1                                                                                                                                                                                                                          | 3.2                                                                                                                                                                                                                                                                                                   | 3.3                                                                                                                                                                                                                                                                                                                                                                            | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| BS6 Fire 6B               | 8.2                                                                                       | 8.2                                                                                                                                                                                                                          | 8.2                                                                                                                                                                                                                                                                                                   | 8.2                                                                                                                                                                                                                                                                                                                                                                            | 8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| PZ6B) BS6 Equalization 6B | 4.1                                                                                       | 4.3                                                                                                                                                                                                                          | 4.5                                                                                                                                                                                                                                                                                                   | 4.8                                                                                                                                                                                                                                                                                                                                                                            | 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ge (ML)   BS6 Total       | 15.4                                                                                      | 15.6                                                                                                                                                                                                                         | 15.9                                                                                                                                                                                                                                                                                                  | 16.3                                                                                                                                                                                                                                                                                                                                                                           | 16.7                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ge (ML)                   | 17.1                                                                                      | 17.1                                                                                                                                                                                                                         | 17.1                                                                                                                                                                                                                                                                                                  | 17.1                                                                                                                                                                                                                                                                                                                                                                           | 17.1                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                           | OK                                                                                        | OK                                                                                                                                                                                                                           | OK                                                                                                                                                                                                                                                                                                    | OK                                                                                                                                                                                                                                                                                                                                                                             | OK                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                           | BS6 Emergency<br>BS6 Fire 6B<br>PZ6B) BS6 Equalization 6B<br>ge (ML) BS6 Total<br>ge (ML) | 2021           BS6 Emergency         3.1           BS6 Fire 6B         8.2           PZ6B)         BS6 Equalization 6B         4.1           ge (ML)         BS6 Total         15.4           ige (ML)         0K         0K | 2021         2026           BS6 Emergency         3.1         3.1           BS6 Fire 6B         8.2         8.2           PZ6B)         BS6 Equalization 6B         4.1         4.3           ge (ML)         BS6 Total         15.4         15.6           ige (ML)         OK         OK         OK | 2021         2026         2031           BS6 Emergency         3.1         3.1         3.2           BS6 Fire 6B         8.2         8.2         8.2           PZ6B)         BS6 Equalization 6B         4.1         4.3         4.5           ge (ML)         BS6 Total         15.4         15.6         15.9           ige (ML)         OK         OK         OK         OK | 2021         2026         2031         2036           BS6 Emergency         3.1         3.1         3.2         3.3           BS6 Fire 6B         8.2         8.2         8.2         8.2           PZ6B)         BS6 Equalization 6B         4.1         4.3         4.5         4.8           ge (ML)         BS6 Total         15.4         15.6         15.9         16.3           ge (ML)         OK         OK         OK         OK         OK |

13

| PRESSURE ZONE | 5E                           |                     | 2021 | 2026 | 2031 | 2036 | 2041 |
|---------------|------------------------------|---------------------|------|------|------|------|------|
|               | Emergency storage            | ES5 Emergency       | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
|               | Fire storage (PZ8E)          | ES5 Fire 8E         | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
|               | Fire storage (PZ7E)          | ES5 Fire 7E         | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
|               | Fire storage (PZ6E)          | ES5 Fire 6E         | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
|               | Fire storage (PZ5E)          | ES5 Fire 5E         | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| ES5           | Equalization storage (PZ8E)  | ES5 Equalization 8E | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
|               | Equalization storage (PZ7E)  | ES5 Equalization 7E | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
|               | Equalization storage (PZ6E)  | ES5 Equalization 6E | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
|               | Total Required Storage (ML)  | ES5 Total           | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
|               | Total Available Storage (ML) |                     | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
|               |                              |                     | OK   | OK   | OK   | OK   | OK   |
|               |                              |                     |      |      |      |      |      |

#### PRESSURE ZONE 4E

PRESSURE ZONE 5E

Post-2041

| Initially constructed:<br>2013 |     | Facility                   | Facility No. | Year in Service | Total Volume (ML) |
|--------------------------------|-----|----------------------------|--------------|-----------------|-------------------|
|                                | ES4 | Tullamore Reservoir Cell 1 | P527001      | 2013            | 24.0              |
|                                |     | Tullamore Reservoir Cell 2 | P527001      | 2013            | 24.0              |
|                                |     | TOTAL                      |              |                 | 48.0              |

| PRESSURE ZONE 3E       |     |                                |               |                 |                   |
|------------------------|-----|--------------------------------|---------------|-----------------|-------------------|
| Initially constructed: |     | Eilit.                         | Consiliate Ma | Veen in Comise  | Tetel Valuma (ML) |
| 2003                   |     | Facility                       | Facility No.  | fear in Service | iotal volume (ML) |
| Expanded:              |     | Airport Road Reservoir Cell 1A | P518001       | 2003            | 8.5               |
| 2014                   | ES2 | Airport Road Reservoir Cell 1B | P518001       | 2003            | 8.5               |
|                        | ESS | Airport Road Reservoir Cell 2A | P518001       | 2003            | 8.5               |
|                        |     | Airport Road Reservoir Cell 2B | P518001       | 2003            | 8.5               |
|                        |     | Airport Road Reservoir Cell 3A | P518001       | 2014            | 20                |
|                        |     | TOTAL                          |               |                 | 54.0              |

| 7.9  |
|------|
| 8.2  |
| 0.0  |
| 8.2  |
| 8.8  |
| 6.4  |
| 39.5 |
| 48.0 |
| OK   |
|      |

| PRESSURE ZONE | 3E                           |                     | 2021 | 2026 | 2031 | 2036 | 2041 |
|---------------|------------------------------|---------------------|------|------|------|------|------|
|               | York Region                  | ES3 York Region     | 9.7  | 11.5 | 13.8 | 13.8 | 13.8 |
|               | Emergency storage            | ES3 Emergency       | 4.8  | 3.7  | 4.1  | 4.3  | 4.4  |
|               | Fire storage (PZ5E)          | ES3 Fire 5E         | 5.3  | 0.0  | 0.0  | 0.0  | 0.0  |
| ES2           | Equalization storage (PZ5E)  | ES3 Equalization 5E | 6.4  |      | 8.5  | 9.2  |      |
| ESS           | Equalization storage (PZ4E)  | ES3 Equalization 4E | 7.4  | 7.7  | 7.9  | 8.0  | 8.1  |
|               | Total Required Storage (ML)  | ES3 Total           | 33.5 | 30.2 | 34.3 | 35.2 | 35.9 |
|               | Total Available Storage (ML) |                     | 54.0 | 54.0 | 54.0 | 54.0 | 54.0 |
|               |                              |                     | OK   | OK   | OK   | OK   | OK   |

# PRESSURE ZONE 6B Initially constructed:

ES7

ES5

| Initially constructed:<br>1986 |     | Facility                  | Facility No. | Year in Service | Total Volume (ML) |
|--------------------------------|-----|---------------------------|--------------|-----------------|-------------------|
| Initially constructed:         |     | Bolton Elevated Tank      | P517001      | 1986            | 4.5               |
| 2014                           | BS6 | West Bolton Elevated Tank | P53001       | 2014            | 9.1               |
|                                |     | Bolton Standpipe No. 1    | ?            | ?               | 4.5               |
|                                |     | Bolton Standpipe No. 2    | ?            | ?               | 0.6               |
|                                |     | TOTAL                     |              |                 | 18.8              |

Facility

Sandhill Reservoir Cell 1

Sandhill Reservoir Cell 2

Sandhill Reservoir Cell 3

Sandhill Reservoir Cell 4

TOTAL

|  |       | 1 02/001 | 2010 |      |
|--|-------|----------|------|------|
|  | TOTAL |          |      | 48.0 |
|  |       |          |      |      |
|  |       |          |      |      |
|  |       |          |      |      |
|  |       |          |      |      |
|  |       |          |      |      |
|  |       |          |      |      |
|  |       |          |      |      |
|  |       |          |      |      |

| 2026 | 2031 | 2036 | 2041 |
|------|------|------|------|
| 0.0  | 0.0  | 0.0  | 0.0  |
| 0.0  | 0.0  | 0.0  | 0.0  |
| 0.0  | 0.0  | 0.0  | 0.0  |
| 0.0  | 0.0  | 0.0  | 0.0  |
| 0.0  | 0.0  | 0.0  | 0.0  |
| OK   | OK   | OK   | OK   |

## WEST TRANSMISSION SYSTEM

| ALLOA PU | MPING STATION              |          |          |          |          |        |                                   | 2019 | 2021 | 2026 | 2031 | 2036 | 20 |
|----------|----------------------------|----------|----------|----------|----------|--------|-----------------------------------|------|------|------|------|------|----|
|          | Pump No.                   | 5        | 6        | 7        | 8        |        | Forecasted Demand (ML/d)          | 3.7  | 5.4  | 6.2  | 9.2  | 10.9 | 1: |
|          | Tag No.                    | HLP12910 | HLP12920 | HLP12930 | HLP12940 |        | Installed Station Capacity (ML/d) | 45   | 45   | 45   | 45   | 45   |    |
|          | Year in Service            | 2018     | 2018     | 2018     | Future   | HI D7V | Theoretical Firm Capacity (ML/d)  | 30   | 30   | 30   | 30   | 30   |    |
|          | Year to be Decommissioned  | 9999     | 9999     | 9999     | 9999     |        | Actual Firm Capacity (ML/d)       | 27   | 27   | 28   | 32   | 34   | 3  |
|          | Load (HP)                  | 300      | 300      | 300      | 300      |        |                                   |      |      |      |      |      |    |
|          | Pump Rated Capacity (ML/d) | 15       | 15       | 15       | 15       |        |                                   | ОК   | OK   | OK   | OK   | OK   | O  |
|          |                            |          |          |          |          |        |                                   |      |      |      |      |      |    |
|          | Pump No.                   | 1        | 2        | 3        | 4        |        | Forecasted Demand (ML/d)          | 52.3 | 56.5 | 51.2 | 58.8 | 66.3 | 73 |
|          | Tag No.                    | LLP12810 | LLP12820 | LLP12830 | LLP12840 |        | Installed Station Capacity (ML/d) | 126  | 126  | 126  | 126  | 126  | 12 |
|          | Year in Service            | 2018     | 2018     | 2018     | 2099     |        | Theoretical Firm Capacity (ML/d)  | 84   | 84   | 84   | 84   | 84   | 84 |
| LLFUW    | Year to be Decommissioned  | 9999     | 9999     | 9999     | 9999     | LLFOW  | Actual Firm Capacity (ML/d)       | 80   | 80   | 80   | 81   | 82   | 82 |
|          | Load (HLP)                 | 350      | 350      | 350      | 350      |        |                                   |      |      |      |      |      |    |
|          |                            |          |          |          |          |        |                                   | 1    |      |      |      |      |    |

| WEST BRA | AMPTON PUMPING STATIO      | N        |          | _        |          |          |          |          |                                                                    |        |                                   | 2019   | 2021 | 2026 | 2031 | 2036  | 2041  |
|----------|----------------------------|----------|----------|----------|----------|----------|----------|----------|--------------------------------------------------------------------|--------|-----------------------------------|--------|------|------|------|-------|-------|
|          | Pump No.                   | 1        | 2        | 3        | 4        | 5        | 6        |          |                                                                    |        | Forecasted Demand (ML/d)          | 52.3   | 56.5 | 76.8 | 88.2 | 99.4  | 110.0 |
|          | Tag No.                    | HLP10610 | HLP10620 | HLP10630 | HLP10640 | HLP10650 | HLP10660 |          |                                                                    |        | Installed Station Capacity (ML/d) | 93     | 93   | 93   | 124  | 124   | 124   |
|          | Year in Service            | 2011     | 2011     | 2028     | 9999     | 2011     | 2011     | Pot      | for W-D-175 to D3: no montioing of second Canacity Expansion at D4 |        | Theoretical Firm Capacity (ML/d)  | 62     | 62   | 62   | 93   | 93    | 93    |
|          | Year to be Decommissioned  | 9999     | 9999     | 9999     | 9999     | 9999     | 9999     |          | er w-r-175 to F5, no mentioning of second capacity Expansion at F4 |        | Actual Firm Capacity (ML/d)       | 93     | 87   | 87   | 121  | 126   | 129   |
|          | Load (HP)                  | 500      | 500      | 500      | 500      | 300      | 300      |          |                                                                    |        |                                   |        |      |      |      |       |       |
|          | Pump Rated Capacity (ML/d) | 31       | 31       | 31       | 31       | 16       | 16       |          |                                                                    |        |                                   | ОК     | OK   | OK   | OK   | OK    | OK    |
|          |                            |          |          |          |          |          |          |          |                                                                    |        |                                   |        |      |      |      |       |       |
|          | Pump No.                   | 1        | 2        | 3        | 4*       | 5*       | 4*       | 5*       |                                                                    |        | Forecasted Demand (ML/d)          | 62.3   | 62.2 | 66.9 | 99.2 | 107.5 | 115.7 |
|          | Tag No.                    | LLP10510 | LLP10520 | LLP10530 | LLP10540 | LLP10550 | LLP10540 | LLP10550 |                                                                    |        | Installed Station Capacity (ML/d) | 90     | 90   | 90   | 135  | 165   | 165   |
|          | Year in Service            | 2011     | 2011     | 2028     | 2011     | 2011     | 2036     | 2099     | Refer W-P-061 for P3                                               |        | Theoretical Firm Capacity (ML/d)  | 60     | 60   | 60   | 90   | 120   | 120   |
|          | Year to be Decommissioned  | 9999     | 9999     | 9999     | 2035     | 2098     | 9999     | 9999     | Refer W-P-152 for P4: no mentioning of P4 Replacement              | LLFJVV | Actual Firm Capacity (ML/d)       | 40     | 74   | 74   | 103  | 131   | 132   |
|          | Load (HP)                  | 250      | 250      | 250      | 125      | 125      | ?        | ?        | , <b>5</b> 1                                                       |        |                                   |        |      |      |      |       |       |
|          | Pump Rated Capacity (ML/d) | 30       | 30       | 45       | 15       | 15       | 45       | 45       |                                                                    |        |                                   | NOT OK | OK   | OK   | OK   | OK    | OK    |

| OWVALE NORTH      | PUMPING STATIO | N       |          |          |          |          |          |       |                                   | 2019  | 2021  | 2026  | 2031  |  |
|-------------------|----------------|---------|----------|----------|----------|----------|----------|-------|-----------------------------------|-------|-------|-------|-------|--|
| ump No.           |                | 1       | 2        | 3        | 10       | 11       | 12       |       | Forecasted Demand (ML/d)          | 76.5  | 87.7  | 99.5  | 87.3  |  |
| Tag No.           | HL             | LP10110 | HLP10210 | HLP10310 | HLP11010 | HLP11110 | HLP11210 |       | Installed Station Capacity (ML/d) | 143   | 143   | 143   | 143   |  |
| Year in Service   |                | 1989    | 1989     | 1989     | 2002     | 2002     | 2010     |       | Theoretical Firm Capacity (ML/d)  | 116   | 116   | 116   | 116   |  |
| Year to be Decomm | nissioned      | 9999    | 9999     | 9999     | 9999     | 9999     | 9999     | HLP3W | Actual Firm Capacity (ML/d)       | 97    | 106   | 106   | 107   |  |
| Load (HP)         |                | 200     | 400      | 400      | 350      | 300      | 500      |       |                                   |       |       |       |       |  |
| Pump Rated Capac  | city (ML/d)    | 14      | 27       | 27       | 25       | 25       | 25       |       |                                   | ОК    | OK    | OK    | OK    |  |
|                   |                |         |          |          |          |          |          |       | •                                 |       |       |       |       |  |
| Pump No.          |                | 4       | 5        | 6        | 7        | 8        | 9        |       | Forecasted Demand (ML/d)          | 135.5 | 130.5 | 147.1 | 176.8 |  |
| Tag No.           | LL             | LP10410 | LLP10510 | LLP10610 | LLP10710 | LLP10810 | LLP10910 |       | Installed Station Capacity (ML/d) | 346   | 346   | 346   | 346   |  |
| Year in Service   |                | 1989    | 1989     | 1989     | 2002     | 2010     | 2010     |       | Theoretical Firm Capacity (ML/d)  | 276   | 276   | 276   | 276   |  |
| Year to be Decomm | nissioned      | 9999    | 9999     | 9999     | 9999     | 9999     | 9999     |       | Actual Firm Capacity (ML/d)       | 226   | 230   | 229   | 229   |  |
| Load (HP)         |                | 500     | 450      | 450      | 400      | 600      | 600      |       |                                   |       |       |       |       |  |
|                   |                |         |          |          |          |          |          |       |                                   |       |       |       |       |  |

| STREETS\ | /ILLE PUMPING STATION                                                                                          |                                            |                                            |                                            |                                                   |                                                   |                                                  |                                                  |                                             |                                              |       |                                                                                                                                  | 2019                                     | 2021                                     | 2026                             | 2031                             | 2036                                     | 2041                             |
|----------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|---------------------------------------------------|---------------------------------------------------|--------------------------------------------------|--------------------------------------------------|---------------------------------------------|----------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------|----------------------------------|----------------------------------|------------------------------------------|----------------------------------|
|          | Pump No.                                                                                                       | 2                                          | 3                                          | 4                                          | 9                                                 | 10                                                | 11                                               | 12                                               | 13                                          |                                              |       | Forecasted Demand (ML/d)                                                                                                         | 143.2                                    | 156.6                                    | 163.8                            | 170.9                            | 175.6                                    | 180.5                            |
|          | Tag No.                                                                                                        | HLP10020                                   | HLP10030                                   | HLP10040                                   | HLP10090                                          | HLP10410                                          | HLP10420                                         | HLP10430                                         | HLP10440                                    |                                              |       | Installed Station Capacity (ML/d)                                                                                                | 272                                      | 272                                      | 272                              | 272                              | 272                                      | 272                              |
|          | Year in Service                                                                                                | 1979                                       | 1979                                       | 1979                                       | 2004                                              | Future                                            | 2014                                             | Future                                           | 2014                                        |                                              |       | Theoretical Firm Capacity (ML/d)                                                                                                 | 204                                      | 204                                      | 204                              | 204                              | 204                                      | 204                              |
|          | Year to be Decommissioned                                                                                      | 9999                                       | 9999                                       | 2014                                       | 9999                                              | 9999                                              | 9999                                             | 9999                                             | 9999                                        |                                              |       | Actual Firm Capacity (ML/d)                                                                                                      | 179                                      | 204                                      | 206                              | 213                              | 215                                      | 218                              |
|          | Load (HP)                                                                                                      | 400                                        | 600                                        | 9999                                       | 1050                                              | 9999                                              | 1000                                             | 9999                                             | 1000                                        |                                              |       |                                                                                                                                  |                                          |                                          |                                  |                                  |                                          |                                  |
|          | Pump Rated Capacity (ML/d)                                                                                     | 23                                         | 45                                         | 9999                                       | 68                                                | 9999                                              | 68                                               | 9999                                             | 68                                          |                                              |       |                                                                                                                                  | ОК                                       | OK                                       | OK                               | OK                               | OK                                       | OK                               |
|          |                                                                                                                |                                            |                                            |                                            |                                                   |                                                   |                                                  |                                                  |                                             |                                              |       |                                                                                                                                  |                                          |                                          |                                  |                                  |                                          |                                  |
|          |                                                                                                                |                                            |                                            |                                            |                                                   |                                                   | -                                                |                                                  |                                             |                                              |       |                                                                                                                                  |                                          |                                          |                                  |                                  |                                          |                                  |
|          | Pump No.                                                                                                       | 1                                          | 5                                          | 6                                          | 7                                                 | 8                                                 | 14                                               | 15                                               | 16                                          | 17                                           |       | Forecasted Demand (ML/d)                                                                                                         | 190.6                                    | 196.8                                    | 223.8                            | 248.4                            | 266.4                                    | 284.8                            |
|          | <b>Pump No.</b><br>Tag No.                                                                                     | <b>1</b><br>LLP10010                       | <b>5</b><br>LLP10050                       | <b>6</b><br>LLP10060                       | <b>7</b><br>LLP10070                              | <b>8</b><br>LLP10080                              | <b>14</b><br>LLP10450                            | <b>15</b><br>LLP10460                            | <b>16</b><br>LLP10470                       | 17<br>LLP10480                               |       | Forecasted Demand (ML/d)<br>Installed Station Capacity (ML/d)                                                                    | <b>190.6</b><br>379                      | <b>196.8</b><br>379                      | <b>223.8</b><br>379              | <b>248.4</b><br>379              | <b>266.4</b><br>379                      | <b>284.8</b><br>379              |
| 11 D3W   | <b>Pump No.</b><br>Tag No.<br>Year in Service                                                                  | 1<br>LLP10010<br>2004                      | <b>5</b><br>LLP10050<br>1990               | <b>6</b><br>LLP10060<br>1990               | 7<br>LLP10070<br>1996                             | <b>8</b><br>LLP10080<br>1996                      | 14<br>LLP10450<br>Future                         | 15<br>LLP10460<br>Future                         | 16<br>LLP10470<br>2099                      | 17<br>LLP10480<br>2014                       |       | Forecasted Demand (ML/d)<br>Installed Station Capacity (ML/d)<br>Theoretical Firm Capacity (ML/d)                                | <b>190.6</b><br>379<br>289               | <b>196.8</b><br>379<br>289               | <b>223.8</b><br>379<br>289       | <b>248.4</b><br>379<br>289       | <b>266.4</b><br>379<br>289               | <b>284.8</b><br>379<br>289       |
| LLP3W    | Pump No.<br>Tag No.<br>Year in Service<br>Year to be Decommissioned                                            | 1<br>LLP10010<br>2004<br>9999              | 5<br>LLP10050<br>1990<br>9999              | 6<br>LLP10060<br>1990<br>9999              | 7<br>LLP10070<br>1996<br>9999                     | <b>8</b><br>LLP10080<br>1996<br>9999              | 14<br>LLP10450<br>Future<br>9999                 | 15<br>LLP10460<br>Future<br>9999                 | 16<br>LLP10470<br>2099<br>9999              | 17<br>LLP10480<br>2014<br>9999               | LLP3W | Forecasted Demand (ML/d)<br>Installed Station Capacity (ML/d)<br>Theoretical Firm Capacity (ML/d)<br>Actual Firm Capacity (ML/d) | <b>190.6</b><br>379<br>289<br><b>250</b> | <b>196.8</b><br>379<br>289<br><b>237</b> | 223.8<br>379<br>289<br>243       | 248.4<br>379<br>289<br>328       | <b>266.4</b><br>379<br>289<br><b>328</b> | 284.8<br>379<br>289<br>328       |
| LLP3W    | Pump No.<br>Tag No.<br>Year in Service<br>Year to be Decommissioned<br>Load (HP)                               | 1<br>LLP10010<br>2004<br>9999<br>335       | 5<br>LLP10050<br>1990<br>9999<br>250       | 6<br>LLP10060<br>1990<br>9999<br>400       | 7<br>LLP10070<br>1996<br>9999<br>700              | 8<br>LLP10080<br>1996<br>9999<br>700              | 14<br>LLP10450<br>Future<br>9999<br>9999         | 15<br>LLP10460<br>Future<br>9999<br>9999         | 16<br>LLP10470<br>2099<br>9999<br>700       | 17<br>LLP10480<br>2014<br>9999<br>1000       | LLP3W | Forecasted Demand (ML/d)<br>Installed Station Capacity (ML/d)<br>Theoretical Firm Capacity (ML/d)<br>Actual Firm Capacity (ML/d) | <b>190.6</b><br>379<br>289<br><b>250</b> | <b>196.8</b><br>379<br>289<br><b>237</b> | 223.8<br>379<br>289<br>243       | 248.4<br>379<br>289<br>328       | 266.4<br>379<br>289<br>328               | 284.8<br>379<br>289<br>328       |
| LLP3W    | Pump No.<br>Tag No.<br>Year in Service<br>Year to be Decommissioned<br>Load (HP)<br>Pump Rated Capacity (ML/d) | 1<br>LLP10010<br>2004<br>9999<br>335<br>36 | 5<br>LLP10050<br>1990<br>9999<br>250<br>36 | 6<br>LLP10060<br>1990<br>9999<br>400<br>55 | 7<br>LLP10070<br>1996<br>9999<br>700<br><b>90</b> | 8<br>LLP10080<br>1996<br>9999<br>700<br><b>90</b> | 14<br>LLP10450<br>Future<br>9999<br>9999<br>9999 | 15<br>LLP10460<br>Future<br>9999<br>9999<br>9999 | 16<br>LLP10470<br>2099<br>9999<br>700<br>90 | 17<br>LLP10480<br>2014<br>9999<br>1000<br>72 | LLP3W | Forecasted Demand (ML/d)<br>Installed Station Capacity (ML/d)<br>Theoretical Firm Capacity (ML/d)<br>Actual Firm Capacity (ML/d) | 190.6<br>379<br>289<br>250<br>ОК         | 196.8<br>379<br>289<br>237<br>ОК         | 223.8<br>379<br>289<br>243<br>ОК | 248.4<br>379<br>289<br>328<br>OK | 266.4<br>379<br>289<br>328<br>ОК         | 284.8<br>379<br>289<br>328<br>OK |

# PUMPING tables of available vs. required capacity

| HERRIDGE | E PUMPING STATION          |          |          |          |          | _        |          |          |          |          |          |          |         |                                   | 2019  | 2021  | 2026  | 2031  | 2036  | 2041  |
|----------|----------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|---------|-----------------------------------|-------|-------|-------|-------|-------|-------|
|          | Pump No.                   | 1        | 2        | 3        | 4        |          |          |          |          |          |          |          |         | Forecasted Demand (ML/d)          | 19.5  | 19.8  | 17.0  | 17.7  | 18.2  | 19.1  |
|          | Tag No.                    | HLP11101 | HLP11102 | HLP11103 | HLP11104 |          |          |          |          |          |          |          |         | Installed Station Capacity (ML/d) | 100   | 100   | 100   | 100   | 100   | 100   |
|          | Year in Service            | 1972     | 1972     | 1972     | 1972     |          |          |          |          |          |          |          |         | Theoretical Firm Capacity (ML/d)  | 68    | 68    | 68    | 68    | 68    | 68    |
|          | Year to be Decommissioned  | 9999     | 9999     | 9999     | 9999     |          |          |          |          |          |          |          | IILI SW | Actual Firm Capacity (ML/d)       | 48    | 44    | 44    | 47    | 47    | 47    |
|          | Load (HP)                  | 400      | 600      | 400      | 300      |          |          |          |          |          |          |          |         |                                   |       |       |       |       |       |       |
|          | Pump Rated Capacity (ML/d) | 22       | 32       | 23       | 23       |          |          |          |          |          |          |          |         |                                   | ок    | ОК    | OK    | OK    | ОК    | ОК    |
|          |                            |          |          |          |          |          |          |          |          |          |          |          |         |                                   |       |       |       |       |       |       |
|          | Pump No.                   | 5        | 6        | 7        | 8        | 9        | 10       | 11       | 12       | 13       | 14       | 15       |         | Forecasted Demand (ML/d)          | 134.7 | 133.3 | 133.3 | 144.3 | 143.8 | 142.9 |
|          | Tag No.                    | LLP11105 | LLP11106 | LLP11107 | LLP11108 | LLP11109 | LLP11110 | LLP11111 | LLP11112 | LLP11113 | LLP11114 | LLP11115 |         | Installed Station Capacity (ML/d) | 408   | 408   | 408   | 408   | 408   | 408   |
|          | Year in Service            | 1972     | 1987     | 1972     | 1972     | 1972     | 1972     | 1989     | 2004     | Future   | Future   | Future   |         | Theoretical Firm Capacity (ML/d)  | 340   | 340   | 340   | 340   | 340   | 340   |
|          | Year to be Decommissioned  | 9999     | 9999     | 9999     | 9999     | 9999     | 9999     | 9999     | 9999     | 9999     | 9999     | 9999     |         | Actual Firm Capacity (ML/d)       | 309   | 309   | 308   | 322   | 322   | 322   |
|          | Load (HP)                  | 600      | 550      | 200      | 250      | 350      | 350      | 775      | 600      | 9999     | 9999     | 9999     |         |                                   |       |       |       |       |       |       |
|          | Pump Rated Capacity (ML/d) | 68       | 68       | 27       | 36       | 36       | 36       | 68       | 68       | 9999     | 9999     | 9999     |         |                                   | ок    | OK    | OK    | OK    | OK    | ОК    |

| LORNE PA | ARK PUMPING STATION                                                                                       |                                               |                                              |                                       |                                               |                                               |                                                                                                                                      |                                                       |        |                                                                                                      | 2019                           | 2021                    | 2026                    | 2031                    | 2036                    | 2041                           |
|----------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------|---------------------------------------|-----------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------|------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|--------------------------------|
|          | Pump No.                                                                                                  | 8                                             | 9                                            | 10                                    | 11                                            |                                               |                                                                                                                                      |                                                       |        | Forecasted Demand (ML/d)                                                                             | 165.5                          | 180.3                   | 209.5                   | 227.3                   | 250.3                   | 274.0                          |
|          | Tag No.                                                                                                   | HLP87400                                      | HLP87410                                     | HLP87420                              | HLP87430                                      |                                               |                                                                                                                                      |                                                       |        | Installed Station Capacity (ML/d)                                                                    | 300                            | 300                     | 300                     | 450                     | 450                     | 450                            |
|          | Year in Service                                                                                           | 2013                                          | 2013                                         | 2031                                  | 2099                                          |                                               | Pofor W D 154 to D1                                                                                                                  | u High Lift Zono 2 information not about an aphamatic |        | Theoretical Firm Capacity (ML/d)                                                                     | 150                            | 150                     | 150                     | 300                     | 300                     | 300                            |
| TLF2VV   | Year to be Decommissioned                                                                                 | 9999                                          | 9999                                         | 9999                                  | 9999                                          |                                               | Relei W-F-154 to FT                                                                                                                  | , High Lift Zone 2 mormation not shown on schematic   | TLP2VV | Actual Firm Capacity (ML/d)                                                                          | 152                            | 152                     | 152                     | 298                     | 299                     | 299                            |
|          | Load (HP)                                                                                                 | 4250                                          | 4250                                         | 4250                                  | 4250                                          |                                               |                                                                                                                                      |                                                       |        |                                                                                                      |                                |                         |                         |                         |                         |                                |
|          | Pump Rated Capacity (ML/d)                                                                                | 150                                           | 150                                          | 150                                   | 150                                           |                                               |                                                                                                                                      |                                                       |        |                                                                                                      | NOT OK                         | NOT OK                  | NOT OK                  | ОК                      | OK                      | OK                             |
|          | •                                                                                                         |                                               |                                              |                                       |                                               |                                               |                                                                                                                                      |                                                       |        | •                                                                                                    |                                |                         |                         |                         | -                       | -                              |
|          | Pump No.                                                                                                  | 1                                             | 2                                            | 3                                     | 4                                             | 5                                             | 6 7                                                                                                                                  |                                                       |        | Forecasted Demand (ML/d)                                                                             | 179.6                          | 190.0                   | 190.0                   | 102.1                   | 104.9                   | 196.2                          |
|          |                                                                                                           |                                               |                                              | -                                     |                                               | -                                             |                                                                                                                                      |                                                       |        |                                                                                                      | 110.0                          | 100.0                   | 100.0                   | 195.1                   | 194.0                   |                                |
|          | Tag No.                                                                                                   | HLP87100                                      | HLP87110                                     | HLP87120                              | HLP87130                                      | HLP87140                                      | HLP87150 HLP87160                                                                                                                    |                                                       |        | Installed Station Capacity (ML/d)                                                                    | 541                            | 541                     | 541                     | 541                     | 541                     | 541                            |
|          | Tag No.<br>Year in Service                                                                                | HLP87100<br>1978                              | HLP87110<br>2011                             | HLP87120<br>1978                      | HLP87130<br>1978                              | HLP87140<br>1978                              | HLP87150HLP8716020002000                                                                                                             |                                                       |        | Installed Station Capacity (ML/d)<br>Theoretical Firm Capacity (ML/d)                                | 541<br>450                     | 541<br>450              | 541<br>450              | 541<br>450              | 541<br>450              | 541<br>450                     |
| HLP1W    | Tag No.<br>Year in Service<br>Year to be Decommissioned                                                   | HLP87100<br>1978<br>9999                      | HLP87110<br>2011<br>9999                     | HLP87120<br>1978<br>9999              | HLP87130<br>1978<br>9999                      | HLP87140<br>1978<br>9999                      | HLP87150         HLP87160           2000         2000           9999         9999                                                    |                                                       | HLP1W  | Installed Station Capacity (ML/d)<br>Theoretical Firm Capacity (ML/d)<br>Actual Firm Capacity (ML/d) | 541<br>450<br>336              | 541<br>450<br>344       | 541<br>450<br>344       | 541<br>450<br>344       | 541<br>450<br>344       | 541<br>450<br><b>345</b>       |
| HLP1W    | Tag No.<br>Year in Service<br>Year to be Decommissioned<br>Load (HP)                                      | HLP87100<br>1978<br>9999<br>1100              | HLP87110<br>2011<br>9999<br>900              | HLP87120<br>1978<br>9999<br>850       | HLP87130<br>1978<br>9999<br>1100              | HLP87140<br>1978<br>9999<br>1300              | HLP87150         HLP87160           2000         2000           9999         9999           1100         600                         |                                                       | HLP1W  | Installed Station Capacity (ML/d)<br>Theoretical Firm Capacity (ML/d)<br>Actual Firm Capacity (ML/d) | 541<br>450<br>336              | 541<br>450<br>344       | 541<br>450<br>344       | 541<br>450<br>344       | 541<br>450<br>344       | 541<br>450<br>345              |
| HLP1W    | Tag No.<br>Year in Service<br>Year to be Decommissioned<br>Load (HP)<br>Pump Rated Capacity (ML/d)        | HLP87100<br>1978<br>9999<br>1100<br><b>91</b> | HLP87110<br>2011<br>9999<br>900<br><b>64</b> | HLP87120<br>1978<br>9999<br>850<br>68 | HLP87130<br>1978<br>9999<br>1100<br><b>91</b> | HLP87140<br>1978<br>9999<br>1300<br><b>91</b> | HLP87150         HLP87160           2000         2000           9999         9999           1100         600           91         46 |                                                       | HLP1W  | Installed Station Capacity (ML/d)<br>Theoretical Firm Capacity (ML/d)<br>Actual Firm Capacity (ML/d) | 541<br>450<br><b>336</b><br>ОК | 541<br>450<br>344<br>ОК | 541<br>450<br>344<br>ОК | 541<br>450<br>344<br>ОК | 541<br>450<br>344<br>ОК | 541<br>450<br><b>345</b><br>ОК |
| HLP1W    | Tag No.<br>Year in Service<br>Year to be Decommissioned<br>Load (HP)<br><b>Pump Rated Capacity (ML/d)</b> | HLP87100<br>1978<br>9999<br>1100<br><b>91</b> | HLP87110<br>2011<br>9999<br>900<br><b>64</b> | HLP87120<br>1978<br>9999<br>850<br>68 | HLP87130<br>1978<br>9999<br>1100<br><b>91</b> | HLP87140<br>1978<br>9999<br>1300<br><b>91</b> | HLP87150         HLP87160           2000         2000           9999         9999           1100         600           91         46 |                                                       | HLP1W  | Installed Station Capacity (ML/d)<br>Theoretical Firm Capacity (ML/d)<br>Actual Firm Capacity (ML/d) | 541<br>450<br><b>336</b><br>OK | 541<br>450<br>344<br>OK | 541<br>450<br>344<br>OK | 541<br>450<br>344<br>OK | 541<br>450<br>344<br>OK | 541<br>450<br>345<br>OK        |

# **CENTRAL TRANSMISSION SYSTEM**

| VICTORIA | PUMPING STATION            |  |                                   | 2019 | 2021 | 2026 | 2031 | 2036 | 2041 |
|----------|----------------------------|--|-----------------------------------|------|------|------|------|------|------|
|          | Pump No.                   |  | Forecasted Demand (ML/d)          | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
|          | Tag No.                    |  | Installed Station Capacity (ML/d) | 0    | 0    | 0    | 0    | 0    | 0    |
|          | Year in Service            |  | Theoretical Firm Capacity (ML/d)  | 0    | 0    | 0    | 0    | 0    | 0    |
|          | Year to be Decommissioned  |  | Actual Firm Capacity (ML/d)       | 0    | 0    | 0    | 0    | 0    | 0    |
|          | Load (HP)                  |  |                                   |      |      |      |      |      |      |
|          | Pump Rated Capacity (ML/d) |  |                                   | OK   | OK   | OK   | OK   | OK   | OK   |

| ORTH B | RAMPTON PUMPING STATI                                                | ON                                   |                                      |                                         |                                      | _                                    |                                          |
|--------|----------------------------------------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------------|--------------------------------------|--------------------------------------|------------------------------------------|
|        | Pump No.                                                             | 1                                    | 2                                    | 3*                                      | 4*                                   | 3*                                   | 4*                                       |
|        | Tag No.                                                              | HLP11710                             | HLP11720                             | HLP11730                                | HLP11740                             | HLP11730                             | HLP11740                                 |
|        | Year in Service                                                      | 1992                                 | 2003                                 | 1992                                    | 2003                                 | 2099                                 | 2099                                     |
|        | Year to be Decommissioned                                            | 9999                                 | 9999                                 | 2098                                    | 2098                                 | 9999                                 | 9999                                     |
|        | Load (HP)                                                            | 150                                  | 150                                  | 150                                     | 150                                  | 100                                  | 100                                      |
|        | Pump Rated Capacity (ML/d)                                           | 10                                   | 10                                   | 8                                       | 8                                    | 15                                   | 15                                       |
|        |                                                                      |                                      |                                      |                                         |                                      | _                                    |                                          |
|        | Pump No                                                              | -                                    |                                      |                                         |                                      |                                      |                                          |
|        | i amp ito.                                                           | 5                                    | 6                                    | 7                                       | 8                                    | 9                                    | 10                                       |
|        | Tag No.                                                              | 5<br>LLP11750                        | <b>6</b><br>LLP11760                 | <b>7</b><br>LLP11770                    | <b>8</b><br>LLP11780                 | <b>9</b><br>LLP11790                 | <b>10</b><br>LLP11800                    |
|        | Tag No.<br>Year in Service                                           | 5<br>LLP11750<br>2003                | 6<br>LLP11760<br>2003                | 7<br>LLP11770<br>Future                 | 8<br>LLP11780<br>2003                | 9<br>LLP11790<br>2003                | 10<br>LLP11800<br>Future                 |
| LLP6C  | Tag No.<br>Year in Service<br>Year to be Decommissioned              | 5<br>LLP11750<br>2003<br>9999        | 6<br>LLP11760<br>2003<br>9999        | 7<br>LLP11770<br>Future<br>9999         | 8<br>LLP11780<br>2003<br>9999        | 9<br>LLP11790<br>2003<br>9999        | 10<br>LLP11800<br>Future<br>9999         |
| LLP6C  | Tag No.<br>Year in Service<br>Year to be Decommissioned<br>Load (HP) | 5<br>LLP11750<br>2003<br>9999<br>250 | 6<br>LLP11760<br>2003<br>9999<br>250 | 7<br>LLP11770<br>Future<br>9999<br>9999 | 8<br>LLP11780<br>2003<br>9999<br>300 | 9<br>LLP11790<br>2003<br>9999<br>300 | 10<br>LLP11800<br>Future<br>9999<br>9999 |

| EAST BRA | AMPTON PUMPING STATIO      | N        |          | _        |          |        |                                   | 2019 | 2021 | 2026 | 2031 | 2036 | 20 |
|----------|----------------------------|----------|----------|----------|----------|--------|-----------------------------------|------|------|------|------|------|----|
|          | Pump No.                   | 5        | 6        | 7        | 8        |        | Forecasted Demand (ML/d)          | 70.7 | 72.2 | 74.1 | 76.0 | 77.2 | -  |
|          | Tag No.                    | HLP11050 | HLP11060 | HLP11070 | HLP11080 |        | Installed Station Capacity (ML/d) | 205  | 205  | 205  | 205  | 205  | 1  |
|          | Year in Service            | 1989     | 1978     | 1978     | 1992     |        | Theoretical Firm Capacity (ML/d)  | 140  | 140  | 140  | 140  | 140  |    |
| IILF 00  | Year to be Decommissioned  | 9999     | 9999     | 9999     | 9999     | TILFUC | Actual Firm Capacity (ML/d)       | 109  | 114  | 112  | 112  | 113  | 1  |
|          | Load (HP)                  | 400      | 900      | 1000     | 800      |        |                                   |      |      |      |      |      |    |
|          | Pump Rated Capacity (ML/d) | 27       | 58       | 65       | 55       |        |                                   | OK   | OK   | OK   | OK   | OK   | C  |
|          |                            |          | -        |          |          |        |                                   |      |      |      |      |      |    |
|          | Pump No.                   | 1        | 2        | 3        | 4        |        | Forecasted Demand (ML/d)          | 85.4 | 98.1 | 86.7 | 93.0 | 99.6 | 10 |
|          | Tag No.                    | LLP11010 | LLP11020 | LLP11030 | LLP11040 |        | Installed Station Capacity (ML/d) | 177  | 177  | 177  | 177  | 177  | 17 |
|          | Year in Service            | 1989     | 1978     | 1978     | 1978     |        | Theoretical Firm Capacity (ML/d)  | 117  | 117  | 117  | 117  | 117  | 11 |
|          | Year to be Decommissioned  | 9999     | 9999     | 2042     | 9999     | LEP JC | Actual Firm Capacity (ML/d)       | 100  | 109  | 109  | 109  | 109  | 10 |
|          | Load (HP)                  | 500      | 350      | 200      | 350      |        |                                   |      |      |      |      |      |    |
|          | Pump Rated Capacity (ML/d) | 60       | 45       | 27       | 45       |        |                                   | OK   | OK   | OK   | OK   | OK   | O  |

#### BECKETT SPROULE PUMPING STATION

| BECKETT | SPROULE PUMPING STATI                                                            | ON                                   |                                      |                                             |                                      |                                              |                                          |                                          |                                              | _                                               |                                          |        |                                                                                                                                  |
|---------|----------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------------|--------------------------------------|----------------------------------------------|------------------------------------------|------------------------------------------|----------------------------------------------|-------------------------------------------------|------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------|
|         | Pump No.                                                                         | 1                                    | 2                                    | 3                                           | 8                                    | 9                                            | 10                                       | 17                                       | 18                                           | 19                                              | 20                                       |        | Forecasted Demand (ML/d)                                                                                                         |
|         | Tag No.                                                                          | HLP30110                             | HLP30210                             | HLP30310                                    | HLP30810                             | HLP30910                                     | HLP31010                                 | HLP31710                                 | HLP31810                                     | HLP31910                                        | HLP32010                                 |        | Installed Station Capacity (ML/d)                                                                                                |
| HI P5C  | Year in Service                                                                  | 1972                                 | Future                               | 1987                                        | Future                               | 1972                                         | 1972                                     | 2004                                     | 2004                                         | Future                                          | Future                                   | HI P5C | Theoretical Firm Capacity (ML/d)                                                                                                 |
|         | Year to be Decommissioned                                                        | 9999                                 | 9999                                 | 9999                                        | 9999                                 | 9999                                         | 9999                                     | 9999                                     | 9999                                         | 9999                                            | 9999                                     |        | Actual Firm Capacity (ML/d)                                                                                                      |
|         | Load (HP)                                                                        | 350                                  | 9999                                 | 600                                         | 9999                                 | 600                                          | 350                                      | 1000                                     | 1000                                         | 9999                                            | 9999                                     |        |                                                                                                                                  |
|         | Pump Rated Capacity (ML/d)                                                       | 27                                   | 9999                                 | 45                                          | 9999                                 | 45                                           | 18                                       | 60                                       | 60                                           | 9999                                            | 9999                                     |        |                                                                                                                                  |
|         |                                                                                  |                                      |                                      |                                             |                                      |                                              |                                          |                                          |                                              |                                                 |                                          |        |                                                                                                                                  |
|         |                                                                                  |                                      |                                      |                                             |                                      |                                              |                                          |                                          |                                              | •                                               |                                          |        |                                                                                                                                  |
|         | Pump No.                                                                         | 4                                    | 5                                    | 6                                           | 7                                    | 11                                           | 12                                       | 13                                       | 14                                           | 15                                              | 16                                       |        | Forecasted Demand (ML/d)                                                                                                         |
|         | Pump No.<br>Tag No.                                                              | <b>4</b><br>LLP30410                 | <b>5</b><br>LLP30510                 | <b>6</b><br>LLP30610                        | 7<br>LLP30710                        | <b>11</b><br>LLP31110                        | <b>12</b><br>LLP31210                    | <b>13</b><br>LLP31310                    | <b>14</b><br>LLP31410                        | <b>15</b><br>LLP31510                           | <b>16</b><br>LLP31610                    |        | Forecasted Demand (ML/d)<br>Installed Station Capacity (ML/d)                                                                    |
|         | Pump No.<br>Tag No.<br>Year in Service                                           | <b>4</b><br>LLP30410<br>2001         | 5<br>LLP30510<br>1978                | <b>6</b><br>LLP30610<br>2004                | 7<br>LLP30710<br>1987                | <b>11</b><br>LLP31110<br>1995                | <b>12</b><br>LLP31210<br>Future          | <b>13</b><br>LLP31310<br>Future          | <b>14</b><br>LLP31410<br>2004                | <b>15</b><br>LLP31510<br>Future                 | <b>16</b><br>LLP31610<br>Future          |        | Forecasted Demand (ML/d)<br>Installed Station Capacity (ML/d)<br>Theoretical Firm Capacity (ML/d)                                |
| LLP4C   | Pump No.<br>Tag No.<br>Year in Service<br>Year to be Decommissioned              | 4<br>LLP30410<br>2001<br>9999        | 5<br>LLP30510<br>1978<br>9999        | 6<br>LLP30610<br>2004<br>9999               | 7<br>LLP30710<br>1987<br>9999        | 11<br>LLP31110<br>1995<br>9999               | <b>12</b><br>LLP31210<br>Future<br>9999  | <b>13</b><br>LLP31310<br>Future<br>9999  | <b>14</b><br>LLP31410<br>2004<br>9999        | <b>15</b><br>LLP31510<br>Future<br>9999         | <b>16</b><br>LLP31610<br>Future<br>9999  | LLP4C  | Forecasted Demand (ML/d)<br>Installed Station Capacity (ML/d)<br>Theoretical Firm Capacity (ML/d)<br>Actual Firm Capacity (ML/d) |
| LLP4C   | Pump No.<br>Tag No.<br>Year in Service<br>Year to be Decommissioned<br>Load (HP) | 4<br>LLP30410<br>2001<br>9999<br>350 | 5<br>LLP30510<br>1978<br>9999<br>350 | <b>6</b><br>LLP30610<br>2004<br>9999<br>250 | 7<br>LLP30710<br>1987<br>9999<br>750 | <b>11</b><br>LLP31110<br>1995<br>9999<br>750 | 12<br>LLP31210<br>Future<br>9999<br>9999 | 13<br>LLP31310<br>Future<br>9999<br>9999 | <b>14</b><br>LLP31410<br>2004<br>9999<br>600 | <b>15</b><br>LLP31510<br>Future<br>9999<br>9999 | 16<br>LLP31610<br>Future<br>9999<br>9999 | LLP4C  | Forecasted Demand (ML/d)<br>Installed Station Capacity (ML/d)<br>Theoretical Firm Capacity (ML/d)<br>Actual Firm Capacity (ML/d) |

#### HANLAN PUMPING STATION

|        | Pump No.                   | 1        | 2        | 3        | 4        | 1b       | 2b       |          |          |                 |                |          |          |        | Forecasted Demand (ML/d)          |
|--------|----------------------------|----------|----------|----------|----------|----------|----------|----------|----------|-----------------|----------------|----------|----------|--------|-----------------------------------|
|        | Tag No.                    | HLP11501 | HLP11502 | HLP11503 | HLP11504 | HLP11501 | HLP11502 |          |          |                 |                |          |          |        | Installed Station Capacity (ML/d) |
|        | Year in Service            | 1969     | 1969     | 2004     | 1972     | 2099     | 2099     |          |          | montioning of B | 8 D2 Domisson  | ant      |          |        | Theoretical Firm Capacity (ML/d)  |
| HLP4C  | Year to be Decommissioned  | 2098     | 2098     | 9999     | 9999     | 9999     | 9999     |          | 10       | mentioning of P | a FZ Replacell | ient.    |          | FILP4C | Actual Firm Capacity (ML/d)       |
|        | Load (HP)                  | 350      | 800      | 600      | 900      |          |          |          |          |                 |                |          |          |        |                                   |
|        | Pump Rated Capacity (ML/d) | 23       | 46       | 34       | 57       | 60       | 60       |          |          |                 |                |          |          |        |                                   |
|        |                            |          |          |          |          |          |          |          |          |                 |                |          |          |        |                                   |
|        | Pump No.                   | 5        | 6        | 7        | 8        | 9        | 10       | 11       | 12       | 13              | 14             | 15       | 16       |        | Forecasted Demand (ML/d)          |
|        | Tag No.                    | LLP11505 | LLP11506 | LLP11507 | LLP11508 | LLP11509 | LLP11510 | LLP11010 | LLP11020 | LLP11030        | LLP11040       | LLP11050 | LLP11060 |        | Installed Station Capacity (ML/d) |
| LI D2C | Year in Service            | 1972     | 1989     | 1972     | 1992     | 2004     | 2004     | 2011     | 2011     | 2011            | Future         | Future   | Future   | LI D2C | Theoretical Firm Capacity (ML/d)  |
| LLF30  | Year to be Decommissioned  | 9999     | 9999     | 9999     | 9999     | 9999     | 9999     | 9999     | 9999     | 9999            | 9999           | 9999     | 9999     | LLFJU  | Actual Firm Capacity (ML/d)       |
|        | Load (HP)                  | 800      | 1000     | 800      | 1000     | 1050     | 1050     | 1250     | 1250     | 1250            | 9999           | 9999     | 9999     |        |                                   |
|        | Pump Rated Capacity (ML/d) | 114      | 136      | 114      | 136      | 145      | 145      | 120      | 120      | 120             | 9999           | 9999     | 9999     |        |                                   |
|        |                            |          |          |          |          |          |          |          |          |                 |                |          |          |        |                                   |

| 2019  | 2021  | 2026  | 2031  | 2036  | 2041  |
|-------|-------|-------|-------|-------|-------|
| 119.5 | 114.3 | 123.0 | 131.3 | 138.4 | 146.4 |
| 255   | 255   | 255   | 255   | 255   | 255   |
| 195   | 195   | 195   | 195   | 195   | 195   |
| 176   | 186   | 184   | 188   | 187   | 189   |
| ОК    | ОК    | ОК    | ОК    | ОК    | ОК    |
| 184.5 | 194.8 | 205.4 | 215.1 | 226.0 | 235.0 |
| 390   | 390   | 390   | 390   | 390   | 390   |
| 297   | 297   | 297   | 297   | 297   | 297   |
| 195   | 273   | 271   | 271   | 271   | 271   |
| ОК    | ОК    | ОК    | ОК    | ОК    | ОК    |

| 2019  | 2021  | 2026  | 2031  | 2036  | 2041  |
|-------|-------|-------|-------|-------|-------|
| 87.6  | 89.5  | 92.3  | 94.9  | 97.4  | 100.1 |
| 160   | 160   | 160   | 160   | 160   | 160   |
| 103   | 103   | 103   | 103   | 103   | 103   |
| 119   | 127   | 121   | 123   | 124   | 125   |
| ок    | ОК    | ОК    | ОК    | ОК    | ОК    |
|       |       |       |       |       |       |
| 653.9 | 691.7 | 801.8 | 897.1 | 932.9 | 969.1 |
| 1150  | 1150  | 1150  | 1150  | 1150  | 1150  |
| 1005  | 1005  | 1005  | 1005  | 1005  | 1005  |
| 1024  | 1029  | 1029  | 1032  | 1032  | 1033  |
| ОК    | ОК    | ОК    | ОК    | ОК    | ОК    |

# **PUMPING** tables of available vs. required capacity

| SILVERTH | ORN PUMPING STATION        |          |          |          |          |          |          |                                                      |        |                                   | 2019 | 2021 | 2026  | 2031  | 2036  | 2041  |
|----------|----------------------------|----------|----------|----------|----------|----------|----------|------------------------------------------------------|--------|-----------------------------------|------|------|-------|-------|-------|-------|
|          | Pump No.                   | 6        | 7        | 8*       | 8*       | 9        | 10       |                                                      |        | Forecasted Demand (ML/d)          | 39.4 | 40.8 | 44.2  | 46.9  | 48.6  | 50.7  |
|          | Tag No.                    | HLP10600 | HLP10700 | HLP10800 | HLP10800 | HLP10900 | HLP11000 |                                                      |        | Installed Station Capacity (ML/d) | 103  | 103  | 103   | 103   | 103   | 103   |
| HI D3C   | Year in Service            | 1971     | 1967     | 1967     | 2099     | 2099     | 2099     | Refer W-P-174 to PS: no mentioning of PS Penlacement | HI D3C | Theoretical Firm Capacity (ML/d)  | 58   | 58   | 58    | 58    | 58    | 58    |
|          | Year to be Decommissioned  | 9999     | 9999     | 2098     | 9999     | 9999     | 9999     | Refer W-1-114 to 10, no mentioning of 10 Replacement |        | Actual Firm Capacity (ML/d)       | 58   | 58   | 58    | 58    | 59    | 59    |
|          | Load (HP)                  | 550      | 350      | 650      | ?        | ?        | ?        |                                                      |        |                                   |      |      |       |       |       |       |
|          | Pump Rated Capacity (ML/d) | 35       | 23       | 45       | 23       | 35       | 23       |                                                      |        |                                   | OK   | OK   | OK    | ОК    | OK    | OK    |
|          |                            | -        |          | _        |          |          |          |                                                      |        |                                   |      |      |       |       |       |       |
|          | Pump No.                   | 1        | 2        | 3        | 4        | 5        |          |                                                      |        | Forecasted Demand (ML/d)          | 73.8 | 78.9 | 116.2 | 134.7 | 152.0 | 167.7 |
|          | Tag No.                    | LLP10100 | LLP10200 | LLP10300 | LLP10400 | LLP10500 |          |                                                      |        | Installed Station Capacity (ML/d) | 495  | 495  | 495   | 495   | 495   | 495   |
|          | Year in Service            | 2012     | 2012     | 1971     | 1971     | 1971     |          |                                                      |        | Theoretical Firm Capacity (ML/d)  | 387  | 387  | 387   | 387   | 387   | 387   |
| LLF20    | Year to be Decommissioned  | 9999     | 9999     | 9999     | 9999     | 9999     |          |                                                      | LLF20  | Actual Firm Capacity (ML/d)       | 192  | 193  | 204   | 206   | 210   | 213   |
|          | Load (HP)                  | 1000     | 1000     | 750      | 750      | 750      |          |                                                      |        |                                   |      |      |       |       |       |       |
|          | Pump Rated Capacity (ML/d) | 108      | 108      | 83       | 105      | 91       |          |                                                      |        |                                   | OK   | OK   | ОК    | ОК    | OK    | OK    |

#### Arthur P. Kennedy PUMPING STATION

|        | Pump No.                   | 2        | 5        | 6        | 7        | 8        | 9        | 10       | 11       | 12       | 13       |
|--------|----------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|        | Tag No.                    | HLP83220 | HLP83520 | HLP83620 | HLP83720 | HLP84220 | HLP84320 | HLP84420 | HLP84520 | HLP84120 | HLP84620 |
| HI P2C | Year in Service            | 2005     | 2005     | 2005     | 2005     | 2014     | 2014     | 2014     | 2099     | 2099     | 2099     |
|        | Year to be Decommissioned  | 9999     | 9999     | 9999     | 9999     | 9999     | 9999     | 9999     | 9999     | 9999     | 9999     |
|        | Load (HP)                  | 2800     | 2800     | 4250     | 4250     | 3250     | 3250     | 3250     | 3250     | 3250     | 3250     |
|        | Pump Rated Capacity (ML/d) | 100      | 100      | 150      | 150      | 150      | 150      | 150      | 150      | 150      | 150      |
|        |                            |          |          |          |          |          |          |          |          |          |          |
|        | Pump No.                   | 1        | 3        | 4        | 14       | 15       |          |          |          |          |          |
|        | Tag No.                    | HLP83120 | HLP83320 | HLP83420 | HLP84720 | HLP84820 |          |          |          |          |          |
| HI P1C | Year in Service            | 1978     | 1978     | 1978     | 2014     | 2014     |          |          |          |          |          |
| TILFIC | Year to be Decommissioned  | 9999     | 9999     | 9999     | 9999     | 9999     |          |          |          |          |          |
|        | Load (HP)                  | 900      | 1200     | 1350     | 1250     | 1350     |          |          |          |          |          |
|        | Pump Rated Capacity (ML/d) | 65       | 90       | 90       | 90       | 90       |          |          |          |          |          |

|                                   | 2019  | 2021  | 2026  | 2031  | 2036  | 2041  |
|-----------------------------------|-------|-------|-------|-------|-------|-------|
| Forecasted Demand (ML/d)          | 608.5 | 635.6 | 703.3 | 777.9 | 805.6 | 835.3 |
| Installed Station Capacity (ML/d) | 950   | 950   | 950   | 950   | 950   | 950   |
| Theoretical Firm Capacity (ML/d)  | 800   | 800   | 800   | 800   | 800   | 800   |
| Actual Firm Capacity (ML/d)       | 998   | 1005  | 1005  | 1005  | 1005  | 1005  |
|                                   | ок    | ок    | ОК    | ОК    | ОК    | ОК    |
|                                   |       |       |       |       |       |       |
| Forecasted Demand (ML/d)          | 110.4 | 122.5 | 143.5 | 167.6 | 183.2 | 198.0 |
| Installed Station Capacity (ML/d) | 425   | 425   | 425   | 425   | 425   | 425   |
| Theoretical Firm Capacity (ML/d)  | 335   | 335   | 335   | 335   | 335   | 335   |
| Actual Firm Capacity (ML/d)       | 282   | 281   | 287   | 289   | 295   | 347   |
|                                   | ок    | ОК    | ОК    | ОК    | ОК    | ОК    |

# **PUMPING** tables of available vs. required capacity

# EAST TRANSMISSION SYSTEM

|       | Pump No.                   |  |       | Forecasted Demand (ML/d)          |
|-------|----------------------------|--|-------|-----------------------------------|
|       | Tag No.                    |  |       | Installed Station Capacity (ML/d) |
|       | Year in Service            |  |       | Theoretical Firm Capacity (ML/d)  |
|       | Year to be Decommissioned  |  |       | Actual Firm Capacity (ML/d)       |
|       | Load (HP)                  |  |       |                                   |
|       | Pump Rated Capacity (ML/d) |  |       |                                   |
| _     |                            |  |       | •                                 |
|       | Pump No.                   |  |       | Forecasted Demand (ML/d)          |
|       | Tag No.                    |  |       | Installed Station Capacity (ML/d) |
|       | Year in Service            |  |       | Theoretical Firm Capacity (ML/d)  |
| LLPOE | Year to be Decommissioned  |  | LLPOE | Actual Firm Capacity (ML/d)       |
|       | Less (UD)                  |  |       |                                   |
|       | Load (HP)                  |  |       |                                   |
|       | Pump Rated Capacity (ML/d) |  |       |                                   |

| ULLAMO | RE PUMPING STATION         |          | _        |          |          |
|--------|----------------------------|----------|----------|----------|----------|
|        | Pump No.                   | 1        | 2        | 3        | 4        |
|        | Tag No.                    | HLP11910 | HLP11920 | HLP11930 | HLP11940 |
|        | Year in Service            | 2013     | 2013     | 2013     | 2013     |
|        | Year to be Decommissioned  | 9999     | 9999     | 9999     | 9999     |
|        | Load (HP)                  | 800      | 800      | 800      | 800      |
|        | Pump Rated Capacity (ML/d) | 40       | 40       | 40       | 40       |
|        |                            |          |          |          |          |
|        | Pump No.                   | 5        | 6        | 7        |          |
|        | Tag No.                    | LLP11950 | LLP11960 | LLP11970 |          |
|        | Year in Service            | 2013     | 2013     | 2013     | ]        |
| LEFJE  | Year to be Decommissioned  | 9999     | 9999     | 9999     |          |
|        | Load (HP)                  | 300      | 300      | 300      | ]        |
|        | Pump Rated Capacity (ML/d) | 30       | 30       | 30       |          |

#### AIRPORT ROAD PUMPING STATION

| AIRPORT | ROAD PUMPING STATION       |          |          |          |          |          |          |                        |                  |                    |                  |                             |        |                                   |
|---------|----------------------------|----------|----------|----------|----------|----------|----------|------------------------|------------------|--------------------|------------------|-----------------------------|--------|-----------------------------------|
|         | Pump No.                   | 5E1      | 5E2      | 5E3      | 5E4      |          |          |                        |                  |                    |                  |                             |        | Forecasted Demand (ML/d)          |
|         | Tag No.                    | HLP30510 | HLP30520 | HLP30530 | HLP30540 |          |          |                        |                  |                    |                  |                             |        | Installed Station Capacity (ML/d) |
|         | Year in Service            | 2003     | 2003     | 2003     | 2013     |          |          |                        |                  |                    |                  |                             |        | Theoretical Firm Capacity (ML/d)  |
| TIEF JE | Year to be Decommissioned  | 9999     | 9999     | 9999     | 9999     |          |          |                        |                  |                    |                  |                             | TILFJL | Actual Firm Capacity (ML/d)       |
|         | Load (HP)                  | 900      | 900      | 900      | 900      |          |          |                        |                  |                    |                  |                             |        |                                   |
|         | Pump Rated Capacity (ML/d) | 45       | 45       | 45       | 45       |          |          |                        |                  |                    |                  |                             |        |                                   |
|         |                            |          |          |          |          | 4E3*     | 4E2*     | _                      |                  |                    |                  |                             |        |                                   |
|         | Pump No.                   | 4E1      | 4E2      | 4E3      | 4E4      | 4E5      | 4E6      |                        |                  |                    |                  |                             |        | Forecasted Demand (ML/d)          |
|         | Tag No.                    | LLP30410 | LLP30420 | LLP30430 | LLP30440 | LLP30450 | LLP30460 | No pump bays available |                  |                    |                  |                             |        | Installed Station Capacity (ML/d) |
|         | Year in Service            | 2003     | 2003     | 2003     | 2013     | 2099     | 2099     |                        | Modify numpir    | a station to tran  | efor two Vork pu | mps to LLP-4E               |        | Theoretical Firm Capacity (ML/d)  |
| LLF4L   | Year to be Decommissioned  | 9999     | 2098     | 2098     | 9999     | 9999     | 9999     |                        | mouny pumpi      | ig station to tran | LLF4L            | Actual Firm Capacity (ML/d) |        |                                   |
|         | Load (HP)                  | 450      | 450      | 450      | 600      | 600      | 600      | no r                   | nentioning of P4 | 1E2 & P4E3 Repla   |                  |                             |        |                                   |
|         | Pump Rated Capacity (ML/d) | 42       | 42       | 42       | 56       | 56       | 56       |                        |                  |                    |                  |                             |        |                                   |
|         |                            |          |          |          |          |          |          |                        |                  |                    |                  |                             | LLP3Y  |                                   |
|         | Pump No.                   | Y1       | Y2       | Y3       | Y4       | Y5       | Y6       | ¥7                     | Y8               | P1                 | P2               |                             |        | Forecasted Demand (ML/d)          |
|         | Tag No.                    | HLP30610 | HLP30620 | HLP30630 | HLP30640 | HLP30650 | HLP30660 | HLP30670               | HLP30680         | LLP95010           | LLP95020         |                             |        | Installed Station Capacity (ML/d) |
| Vork    | Year in Service            | 2003     | 2003     | 2003     | 2003     | 2013     | 2013     | 2013                   | 2013             | 2003               | 2003             |                             | Vork   | Theoretical Firm Capacity (ML/d)  |
| TOIN    | Year to be Decommissioned  | 9999     | 9999     | 9999     | 9999     | 9999     | 9999     | 9999                   | 9999             | 9999               | 9999             |                             | TOLK   |                                   |
|         | Load (HP)                  | 1000     | 1000     | 1000     | 1000     | 1000     | 1000     | 1000                   | 1000             | 125                | 125              |                             |        |                                   |
|         | Pump Rated Capacity (ML/d) | 56       | 56       | 56       | 56       | 56       | 56       | 56                     | 56               | 5                  | 5                |                             |        |                                   |

| BECKETT  | SPROULE PUMPING STATIO     | ON       |          |          |          |          |          |          |          | <u>_</u> L            | LLP3A    |                                   | 2019   | 2021   | 2026  | 2031  | 2036  | 2041  |
|----------|----------------------------|----------|----------|----------|----------|----------|----------|----------|----------|-----------------------|----------|-----------------------------------|--------|--------|-------|-------|-------|-------|
| Airport  | Pump No.                   | 21       | 22       | 23       | 24       | 25       | 26       | 27       | 28       |                       | Airport  | Forecasted Demand (ML/d)          | 299.6  | 325.4  | 407.8 | 479.2 | 494.3 | 510.2 |
| Anport   | Tag No.                    | LLP32110 | LLP32210 | LLP32310 | LLP32410 | LLP32510 | LLP32610 | LLP32710 | LLP32810 |                       | Anport   | Installed Station Capacity (ML/d) | 408    | 408    | 714   | 714   | 714   | 714   |
| Deed     | Year in Service            | 2004     | 2004     | 2004     | 2004     | 2023     | 2023     | 2023     | Future   | Pofor W-P-064 for P25 | Pood     | Theoretical Firm Capacity (ML/d)  | 306    | 306    | 612   | 612   | 612   | 612   |
| Ruau     | Year to be Decommissioned  | 9999     | 9999     | 9999     | 9999     | 9999     | 9999     | 9999     | 9999     |                       | Ruau     | Actual Firm Capacity (ML/d)       | 275    | 275    | 513   | 513   | 513   | 513   |
| <b>T</b> | Load (HP)                  | 800      | 800      | 800      | 800      | 800      | 800      | 800      | 800      |                       | <b>T</b> |                                   |        |        |       |       |       |       |
| Transfer | Pump Rated Capacity (ML/d) | 102      | 102      | 102      | 102      | 102      | 102      | 102      | 102      |                       | Transfer |                                   | NOT OK | NOT OK | OK    | OK    | OK    | OK    |

| 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|-----|-----|-----|-----|-----|-----|
| 0   | 0   | 0   | 0   | 0   | 0   |
| 0   | 0   | 0   | 0   | 0   | 0   |
| 0   | 0   | 0   | 0   | 0   | 0   |
|     |     |     |     |     |     |
| ОК  | OK  | OK  | OK  | OK  | ОК  |
|     |     |     |     |     |     |
| 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0   | 0   | 0   | 0   | 0   | 0   |
| 0   | 0   | 0   | 0   | 0   | 0   |
| 0   | 0   | 0   | 0   | 0   | 0   |
|     |     |     |     |     |     |
| ОК  | ОК  | ОК  | ОК  | ОК  | ОК  |

| 2019     | 2021  | 2026  | 2031  | 2036  | 2041  |
|----------|-------|-------|-------|-------|-------|
| 59.2     | 50.5  | 56.4  | 65.3  | 70.3  | 73.3  |
| 180      | 180   | 180   | 180   | 180   | 180   |
| 135      | 135   | 135   | 135   | 135   | 135   |
| 131      | 137   | 137   | 139   | 139   | 139   |
| ок       | ОК    | ОК    | ОК    | ОК    | ОК    |
| <br>86.9 | 97.0  | 111.6 | 122.7 | 132.7 | 146.0 |
| 182      | 182   | 182   | 182   | 182   | 182   |
| 126      | 126   | 126   | 126   | 126   | 126   |
| 149      | 151   | 160   | 160   | 160   | 161   |
| ок       | ок    | ок    | ок    | ок    | ОК    |
| 210.9    | 231.8 | 276.7 | 331.0 | 331.0 | 331.0 |
| 458      | 458   | 458   | 458   | 458   | 458   |
| 402      | 402   | 402   | 402   | 402   | 402   |
|          |       |       |       |       |       |
| ок       | ОК    | ОК    | ОК    | ок    | ОК    |


REGIONAL MUNICIPALITY OF PEEL





## System Wide Servicing Concepts Evaluation

| Concept<br>Number | Concept Name                                                           | Concept Description / Comment                                                                                                                                                                                                                                | Advantages                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Disadvantages                                                                                                                                                                                                                                                                                                                                                                                                                                       | Rating | Carried Forward/Screened Out |
|-------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------|
| 1                 | Do Nothing                                                             | Do nothing - Existing infrastructure remains as is                                                                                                                                                                                                           | <ul> <li>Does not incur any new capital costs</li> <li>No social / economic / environmental disruptions due to<br/>infrastructure construction</li> </ul>                                                                                                                                                                                                                                                                                                              | <ul> <li>Does not achieve required levels of service to support existing and future growth</li> <li>Does not comply with Region of Peel Official Plan and Places to Grow growth targets</li> <li>Does not align with the principles of the Region's Growth Management Strategy</li> <li>Potential social / economic / environmental disruptions due to lack of servicing</li> </ul>                                                                 | Low    | Screened Out                 |
| 2                 | Limit Growth                                                           | Limit community growth so as to<br>not trigger new infrastructure or<br>upgrades                                                                                                                                                                             | <ul> <li>Reduces capital costs incurred from infrastructure construction</li> <li>Reduces social / economic / environmental disruptions due to<br/>infrastructure construction</li> </ul>                                                                                                                                                                                                                                                                              | <ul> <li>Does not comply with Region of Peel Official Plan and Places to<br/>Grow growth targets</li> <li>Does not align with the principles of the Region's Growth<br/>Management Strategy</li> </ul>                                                                                                                                                                                                                                              | Low    | Screened Out                 |
| 3                 | Build off Planned 2031<br>Infrastructure                               | <ul> <li>Expand transmission, storage<br/>and pumping to support<br/>development of upper zones</li> <li>Increase connectivity within the<br/>system</li> </ul>                                                                                              | <ul> <li>Meets 2041 servicing requirements</li> <li>Potential to maximize existing and planned infrastructure</li> <li>Leverages existing structure for 2041 with considerations for post-2041 growth</li> <li>Supports the Region of Peel Official Plan and Places to Grow growth targets</li> <li>Aligns with the principles of the Region's Growth Management Strategy</li> </ul>                                                                                   | <ul> <li>Capital cost of construction of infrastructure within existing built-up areas</li> <li>Potential for social / economic / environmental disruptions to existing built-up areas</li> <li>Some site capacity limitations at existing Pumping Stations, Reservoirs and Treatment Plants</li> </ul>                                                                                                                                             | High   | Carried Forward              |
| 4                 | Construct new stream or<br>groundwater based Water<br>Treatment Plant  | <ul> <li>Construct new stream or<br/>groundwater based system</li> <li>Reduce the expansion/<br/>upgrades of transmission, storage<br/>and pumping to support<br/>development of upper zones</li> <li>Increase connectivity within the<br/>system</li> </ul> | <ul> <li>Meets 2041 servicing requirements</li> <li>Leverages existing structure for 2041 with considerations for post-2041 growth</li> <li>Northern Water Treatment Plant has potential to minimize need for future transmission system upgrades and energy requirements for pumping</li> <li>Potential to reduce/eliminate transmission upgrades through built-up areas</li> <li>Aligns with the principles of the Region's Growth Management Strategy</li> </ul>    | <ul> <li>Stringent permitting/approval requirements (Conservation authorities, MECP, Approval Agencies, etc.)</li> <li>Does not maximize existing treatment capacity. Existing Water Treatment Plants have sufficient capacity to meet 2041 demands.</li> <li>Significant capital cost for a new Water Treatment Plant</li> <li>Transmission upgrades may still be required to service intensification areas within lower pressure zones</li> </ul> | Medium | Carried Forward              |
| 5                 | Construct new Water<br>Treatment Plant in<br>shoreline of Lake Ontario | <ul> <li>Construct new Lake based</li> <li>Water Treatment Plant</li> <li>Expand transmission, storage<br/>and pumping to support<br/>development of upper zones</li> <li>Increase connectivity within the<br/>system</li> </ul>                             | <ul> <li>Meets 2041 servicing requirements with considerations for build-<br/>out</li> <li>Adds system redundancy</li> </ul>                                                                                                                                                                                                                                                                                                                                           | <ul> <li>Does not maximize existing treatment capacity. Existing Water<br/>Treatment Plants have sufficient capacity to meet 2041 demands.</li> <li>Significant capital cost for a new Water Treatment Plant in<br/>shoreline of Lake Ontario</li> <li>Site required in developed and valuable land with limited availability</li> </ul>                                                                                                            | Low    | Screened Out                 |
| 6                 | Water Conservation<br>Practices                                        | <ul> <li>Water Conservation</li> <li>Water Efficiency</li> <li>Water Reuse</li> <li>Water Restrictions</li> </ul>                                                                                                                                            | <ul> <li>Potential to maximize existing and planned infrastructure</li> <li>Potential to reduce demands in system, creating savings in<br/>pumping, treatment and need for upgraded infrastructure</li> <li>Leverage ongoing water efficiency strategy</li> <li>Provide opportunity to introduce new best management practices<br/>for water conservation and efficiency</li> <li>Aligns with the principles of the Region's Growth Management<br/>Strategy</li> </ul> | <ul> <li>Difficult to predict/quantify levels of conservation trends over the years. Potential not to meet demand reduction targets</li> <li>Dependent on public and private participation and commitment</li> <li>Not considered feasible as complete standalone solution. Needs combination with other servicing concepts to ensure 2041 servicing requirements are met</li> <li>Water rate revenue reduction</li> </ul>                          | Medium | Carried Forward              |

### APPENDIX 3E: STRATEGY EVALUATIONS



#### System Wide Servicing Strategies Evaluation

|                        |                                                                                                                                                                            | Strategy 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Strategy 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                              |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                                                                                                                                                                            | Build off Planned 2031 Infrastructure                                                                                                                                                                                                                                                                                                                                                                                                                                                  | New Stream-Based Water Treatment Plant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                              |
|                        | Description of Strategy                                                                                                                                                    | -Build off planned 2031 infrastructure by expanding transmission, storage and pumping to support development of upper zones.<br>Increase connectivity within the transmission and distribution systems.<br>-Continue to implement the Region's water efficiency strategy and conservation program.                                                                                                                                                                                     | •Build off a modified version of the planned 2031 infrastructure with less expansion of transmission, storage<br>and pumping to support development of upper zones.<br>•Increase connectivity within the transmission and distribution systems<br>•Construct a new stream-based water treatment plant in the north/upper pressure zones.<br>•Provide supply to north/upper pressure zones from the new stream-based water treatment plant.<br>•Continue to implement the Region's water efficiency strategy and conservation program.                                                                                                                                      | •Build off a<br>and pumpin<br>•Increase cc<br>•Construct a<br>•Provide su<br>•Continue to                                                                    |
|                        | Increase spare capacity in existing system                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |
|                        | Improve/maintain level of service of existing users                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |
|                        | Avoid/minimize proximity and/or conflicts with existing infrastructure                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |
|                        | Consider constructability and technical feasibility to build and maintain infrastructure                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |
|                        | Provide opportunity for operational flexibility and security                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |
|                        | Avoid/minimize construction in projects                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | u u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                              |
|                        | Avoid/minimize construction in areas with innited access                                                                                                                   | . · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                              |
|                        | Ability to maintain existing services during construction/implementation                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |
|                        | Maximize alignments along road rights of way and/or easements                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |
|                        | Support intensification growth                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |
| Technical              | Incremental extension of infrastructure as growth progresses                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |
|                        | Ability to provide/maintain desired level of service under climate change conditions                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |
|                        | Technical Comments                                                                                                                                                         | Maximizes use of existing infrastructure     Does not require new or upgrades to water treatment plants by 2041     Maintains the lake-based system with no mixing of water from streams or groundwater sources     Provides redundancy in supply/distribution     Water Treatment Plants are located far from upper pressure zones     Increase requirement for transmission system upgrades to service upper zones     Increamental extension of infrastructure as growth progresses | Does not maximize existing infrastructure     Requires new stream based treatment facility located closer to north service areas and upper pressure zones     Potentially reduce or eliminate future upgrades to existing Water Treatment Plants     Limited / constrained capacity in streams/rivers. Allowable surface water taking may be inadequate to meet demand     (i.e. additional transmission may still be required)     Potential for isolated system due to water mixing restrictions     Increased operation and maintenance for new treatment facility. Decreased operation and maintenance and energy     for pumping water through several pressure zones | Does not m     Potentially     Potential g     additional tra     May requin     Can supply     Opportunity     Potential fc     Increased o     pumping wat |
|                        | Minimize impact on nearby agricultural lands                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |
|                        | Avoid/minimize environmental crossings                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |
|                        | Avoid/minimize impact on environmental sensitive/protected areas                                                                                                           | $\checkmark \checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                              |
|                        | Avoid/minimize impact on local aquatic/terrestrial species at risk and nabitats<br>Avoid/minimize potential impact on groundwater quantity and quality during construction |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |
|                        | Consider resiliency and adaptation to climate change                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |
| Environmentel          |                                                                                                                                                                            | - Does not require increased water taking                                                                                                                                                                                                                                                                                                                                                                                                                                              | - Potential for significant environmental/ecosystem impacts with respect to water taking from a watercourse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - Potential fo                                                                                                                                               |
| Environmentai          | Environmental Comments                                                                                                                                                     | <ul> <li>Lake-based supply considered more favorable than stream or groundwater based (less stringent approvals)</li> <li>Less impact on groundwater sources</li> <li>More resilient option to potential effects of climate change (e.g. drought)</li> </ul>                                                                                                                                                                                                                           | Potential limitation on volume of water that can be extracted     New treatment plant would potentially be located closer to environmentally sensitive areas (e.g. Greenbelt)     Potential increase for environmental impacts due to plant construction and new required intake structure     Stringent approvals and permitting required     Less resilient option to potential effects of climate change (e.g. drought)                                                                                                                                                                                                                                                 | <ul> <li>Potential ir</li> <li>Source wa</li> <li>Stringent a</li> <li>Less resilie</li> </ul>                                                               |
|                        | Minimize short/long term noise & odour Issues                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |
|                        | Consider visual aesthetics of the proposed infrastructure                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |
|                        | Consider potential community resistance to alternative/strategy/alignment                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |
|                        | Minimize impact during construction and operation                                                                                                                          | - √√                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                              |
|                        | Minimize impact on surrounding properties                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |
| Socio/Cultural         | Minimize construction impact on traffic, local businesses and residents                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |
|                        | Avoid/minimize impact on heritage sites                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                            |
|                        | Socio/Cultural Comments                                                                                                                                                    | - Bulids on current plan for water servicing. Less potential for community resistance                                                                                                                                                                                                                                                                                                                                                                                                  | - Significant change away from current water servicing strategy. Poternial for public resistance Potential discriptions to neighboring areas due to construction of new water treatment plant - Potential to reduce impact of transmission main construction in built-up areas - Requires new water treatment plant site away from built-up area - Mixing of stream-based and lake-based supply may be required                                                                                                                                                                                                                                                            | <ul> <li>Significant</li> <li>Anticipated</li> <li>Potential d</li> <li>Requires n</li> <li>Mixing of g</li> </ul>                                           |
|                        | Maximizes worker safety and operability                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |
|                        | Does not require land acquisition or easement                                                                                                                              | $\checkmark \checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                              |
| Legal/Jurisdictional   | Minimizes approvals/coordination                                                                                                                                           | Deduced and ferrores to consisting and consist                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | New site a                                                                                                                                                   |
|                        | Legal/ Jurisdictional Comments                                                                                                                                             | <ul> <li>Reduced need for property adquisitors and permits</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                  | New site required not water treatment plant in noninenr upper pressure zone     Potential for reduced land requirements for transmission mains through builtup core     Stringent approvals and permitting for suite acquisition and water taking                                                                                                                                                                                                                                                                                                                                                                                                                          | - Potential fo<br>- Multiple pe                                                                                                                              |
|                        | Maximize use of existing infrastructure                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |
|                        | Avoid/minimize introducing new infrastructure                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |
|                        | Avoid/minimize upgrading existing infrastructure                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |
|                        | I ower capital cost relative to other options                                                                                                                              | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                              |
|                        | Reduce/eliminate operation & maintenance costs                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |
| Financial              | Support long-term financial sustainability                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |
|                        | Integration with SOGR program                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |
|                        | Support priasing and implementation of capital projects over time                                                                                                          | - Builds off existing and planned transmission and distribution infrastructure                                                                                                                                                                                                                                                                                                                                                                                                         | - Significant capital investment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - Significant                                                                                                                                                |
|                        | Financial Comments                                                                                                                                                         | Requires new infrastructure and upgrades of the transmission system to support upper pressure zones     No new water treatment plant costs within 2041 planning horizon                                                                                                                                                                                                                                                                                                                | - Increased operation and costs for new water treatment plant, reduced operation and maintenance costs for transmission - Additional costs for studies and permits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - Increased<br>transmission<br>- Additional                                                                                                                  |
|                        | Apply innovation and/or new technologies                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |
|                        | Use of data for evidence based decision making process                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |
|                        | Establish a baseline and a process to measure results and desire outcomes                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |
|                        | Incorporate water conservation and reuse practices                                                                                                                         | $\checkmark\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                              |
| Inneveties ( Adverted) | Maximize energy efficiency                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |
| innovation/ Adaptation | Avoid energy-intensive infrastructure                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |
|                        | Consider opportunity for renewable energy production and use                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |
|                        | Innovation/ Adaptation Comments                                                                                                                                            | Opportunity for application of innovation to improve efficiency of existing treatment processes     Uses actual historical data to determine current water demands and project future water demands, which results in no need for treatment capacity expansion within the 2041 planning horizon.                                                                                                                                                                                       | Opportunity for application of innovation in new treatment technologies and construction practices     Requires new treatment facility even though historical data and water demand projection analysis shows that     additional treatment capacity is not required within the 2041 planning horizon.                                                                                                                                                                                                                                                                                                                                                                     | - Opportunit<br>- Requires n<br>additional tre                                                                                                               |
|                        | Preferred Strategy                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                              |
|                        |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |

|                                        | Legend                 |                         |  |  |  |
|----------------------------------------|------------------------|-------------------------|--|--|--|
| N/A Not Applicable     Adverse impacts |                        | Not Applicable          |  |  |  |
|                                        |                        | Adverse impacts         |  |  |  |
|                                        | ✓                      | Beneficial Impacts      |  |  |  |
|                                        | $\checkmark\checkmark$ | Very Beneficial Impacts |  |  |  |

| Strategy 3                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| New Groundwater-Based Water Treatment Plant                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
| nodified version of the planned 2031 infrastructure with less expansion of transmission, storage<br>g to support development of upper zones.<br>nnectivity within the transmission and distribution systems<br>new groundwater-based water treatment plant in the north/upper pressure zones.<br>oply to north/upper pressure zones from the new groundwater-based water treatment plant.<br>implement the Region's water efficiency strategy and conservation program. |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| naximize existing infrastructure<br>reduce or eliminate future upgrades to existing Water Treatment Plants<br>roundwater supply constraints. Allowable groundwater intake may be inadequate to meet demand (i.e.<br>nsmission may still be required)<br>e several well sites<br>/ to localized service areas<br>y for phasing multiple well locations as demand increases in separate growth areas                                                                      |  |  |  |  |  |  |  |
| or isolated system due to water mixing restrictions<br>operation and maintenance for new facilities/wells. Decreased operation and maintenance and energy for<br>the through concernal encourse races.                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
| ter tirrougii several pressure zones                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| in significant environmental eccession impacts with respect to taking from groundwater<br>recrease for environmental features due to plant construction<br>ter protection measures required<br>pprovals and permitting required<br>and option to potential effects of climate change (e.g. drought)                                                                                                                                                                     |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
| change away from current water servicing strategy. Potential for public resistance                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |
| I impact on groundwater table<br>isruptions to neighboring areas due to construction of new water treatment plant<br>new water treatment plant site away from built-up area<br>water treatment plant site away from bure required.                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| equired for water treatment plant in northern upper pressure zone                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
| imits and approvals for site, potential well sites and water taking                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| capital investment<br>operation and costs for new water treatment plant, reduced operation and maintenance costs for                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| costs for studies and permits                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| y for application of innovation in new treatment technologies and construction practices<br>new treatment facility even though historical data and water demand projection analysis shows that<br>atment capacity is not required within the 2041 planning horizon.                                                                                                                                                                                                     |  |  |  |  |  |  |  |
| -<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |



| Focus Area       | Water Strategy & Key Issues                                                                                                                                                                                                                                                                                                                                                                                                                                       | Servicing Solution Components                                                                                   |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| <u>Treatment</u> | The Region of Peel Water Treatment Plants are anticipated to have<br>enough capacity to meet the projected water demands for the Region up<br>to 2041.     Expansion of treatment capacity at the current facilities has not been<br>identified as part of the preferred water servicing strategy.     However, the following components have been incorporated in the<br>servicing strategy: intake, treated water storage, standby power, and<br>waste building | Arthur P. Kennedy WTP<br>- New Intake<br>- Reservoir Expansion<br>- Standby Power<br>- Waste Building Expansion |

| Project(s) Drivers:<br>Why do we need the project(s)?  |   | Project(s) Drivers - Details                                                                                                        | Project(s) Influences:<br>What could potentially have an impact on the<br>project(s)? | Project(s) Influences - Details                                                                                                        |
|--------------------------------------------------------|---|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Capacity for new growth to 2041                        | * | Requirement to service Regoin's planned growth to 2041                                                                              | 2041 Planning Forecast                                                                | - Projected 2041 Population and Employment forecast                                                                                    |
| Supports post-2041 growth                              | 1 | - New proposed intake supports growth to 2041 as well as post-2041 growth                                                           | Post-2041 Forecast                                                                    | - High level review of potential growth beyond 2041<br>informs the recommendations                                                     |
| Flexibility / Optimization                             |   |                                                                                                                                     | Design Criteria - Water and Wastewater                                                | - Water - 270 L/cap/d, 250 L/emp/d                                                                                                     |
| Maximize capacity of existing / planned infrastructure | 1 | - Existing treatment capacity planned to be used to support growth to 2041                                                          | York W WW Needs                                                                       | York demands to be supplied by Peel may require MP<br>infrastructure. York Demand and Flow make up part of<br>the long term W WW needs |
| Alleviate existing capacity constraints                | 1 | <ul> <li>Storage sizing takes into consideration maximum day demands throughout to<br/>provide required level of service</li> </ul> | Climate Change Master Plan                                                            | Climate Change Master Plan will influence future<br>infrastructure policies and projects                                               |
| Minimize pumping, energy, O&M costs                    |   |                                                                                                                                     | DC                                                                                    | - Certain projects provide post 2041 benefit- Out of<br>ByLaw (OBL)                                                                    |
| Alignment with SOGR or other programs                  | 1 | - Region continues to coordinate SOGR program with growth-related upgrades                                                          | Existing Studies, Design or Analysis                                                  |                                                                                                                                        |
| Capacity Resiliency / Climate Change                   |   |                                                                                                                                     |                                                                                       |                                                                                                                                        |
| Source Water Protection                                |   |                                                                                                                                     |                                                                                       |                                                                                                                                        |





| Focus Area             | Water Strategy & Key Issues                                                                                                                                                                                                                                                                                                                                         | Servicing Solution Components                                                                                                                                  |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Pressure Zone 1</u> | Pressure zone 1 has projected adequate storage and pumping<br>capacity up to 2041.     Servicing solutions for this area are centered around increasing<br>connectivity of the distribution system to support projected growth within<br>the pressure zone including areas such as Inspiration Lakeview, Port<br>Credit Mobility Hub, West Village and Clarkson GO. | Key distribution projects considered in this pressure zone are the Lakeshore Water Distribution<br>Mains from the Arthur P. Kennedy WTP to the Lorne Park WTP. |

| Project(s) Drivers:<br>Why do we need the project(s)?  |   | Project(s) Drivers - Details                                                                                                                                               | Project(s) Influences:<br>What could potentially have an impact on the<br>project(s)? | Project(s) Influences - Details                                                                                                        |
|--------------------------------------------------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Capacity for new growth to 2041                        |   | Pressure Zone has projected adequate storage and pumping capacity up to 2041                                                                                               | 2041 Planning Forecast                                                                | - Projected 2041 Population and Employment forecast                                                                                    |
| Supports post-2041 growth                              |   |                                                                                                                                                                            | Post-2041 Forecast                                                                    | - High level review of potential growth beyond 2041<br>informs the recommendations                                                     |
| Flexibility / Optimization                             | 1 | <ul> <li>Optimizes connectivity of the distribution system to support projected growth<br/>within the Pressure Zone</li> </ul>                                             | Design Criteria - Water and Wastewater                                                | - Water - 270 L/cap/d, 250 L/emp/d                                                                                                     |
| Maximize capacity of existing / planned infrastructure | • | <ul> <li>Servicing solutions in the area will maximize existing infrastructure by<br/>increasing connectivity of existing distribution system to support growth</li> </ul> | York W WW Needs                                                                       | York demands to be supplied by Peel may require MP<br>infrastructure. York Demand and Flow make up part of<br>the long term W WW needs |
| Alleviate existing capacity constraints                |   |                                                                                                                                                                            | Climate Change Master Plan                                                            | Climate Change Master Plan will influence future<br>infrastructure policies and projects                                               |
| Minimize pumping, energy, O&M costs                    |   |                                                                                                                                                                            | Existing Studies, Design or Analysis                                                  | - Inspiratoin Lakeview / Port Credit Servicing Studies                                                                                 |
| Alignment with SOGR or other programs                  | 1 | - Region continues to coordinate SOGR program with growth-related upgrades                                                                                                 |                                                                                       |                                                                                                                                        |
| Capacity Resiliency / Climate Change                   |   |                                                                                                                                                                            |                                                                                       |                                                                                                                                        |
| Source Water Protection                                |   |                                                                                                                                                                            |                                                                                       |                                                                                                                                        |





| Focus Area             | Water Strategy & Key Issues                                                                                                                                                                                                                                                                                                                              | Servicing Solution Components                                                                                                                                                                                                                                                                                                         |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Pressure Zone 2</u> | Servicing solutions for pressure zone 2 mainly consist of:<br>- Increasing transmission and pumping capacity to move water to the<br>upper pressure zones.<br>- Support growth within intensification areas such as Dundas Connect.<br>- Support the Queensway pressure zone 1 / zone 2 switchover and<br>connection to the Silverthorn Pumping Station. | <ul> <li>Streetsville Transmission Main</li> <li>Queensway Sub-Transmission Main Extension</li> <li>Lorne Park Pumping Station Capacity Expansion</li> <li>Key distribution projects considered in this pressure zone include the Distribution Mains along<br/>Dundas Street East from Dixie Road to Confederation Parkway</li> </ul> |

| Project(s) Drivers:<br>Why do we need the project(s)?  |   | Project(s) Drivers - Details                                                                                                                                                                                 | Project(s) Influences:<br>What could potentially have an impact on the<br>project(s)? | Project(s) Influences - Details                                                                                                                              |
|--------------------------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Capacity for new growth to 2041                        | 1 | Projected growth to 2041 within intensification areas (Dundas Connect)     Project(s) support 2041 growth within intensification areas as well as provide additional supply to support growth in upper zones | 2041 Planning Forecast                                                                | Projected 2041 Population and Employment forecast                                                                                                            |
| Supports post-2041 growth                              | 1 | - Certain projects support post-2041 growth in upper zones                                                                                                                                                   | Post-2041 Forecast                                                                    | <ul> <li>High level review of potential growth beyond 2041<br/>informs the recommendations</li> </ul>                                                        |
| Flexibility / Optimization                             | 4 | <ul> <li>Optimizes flows by constructing new sub-transmission main supporting the<br/>connection to the Silverthorn SPS</li> </ul>                                                                           | Design Criteria - Water and Wastewater                                                | - Water - 270 L/cap/d, 250 L/emp/d                                                                                                                           |
| Maximize capacity of existing / planned infrastructure | 4 | <ul> <li>Maximizes existing and future infrastructure to support growth in upper<br/>pressure zones</li> </ul>                                                                                               | York W WW Needs                                                                       | <ul> <li>York demands to be supplied by Peel may require MP<br/>infrastructure. York Demand and Flow make up part of<br/>the long term W WW needs</li> </ul> |
| Alleviate existing capacity constraints                | 1 | <ul> <li>Additional high lift pumping capacity required to service flows from new<br/>development in West Peel</li> </ul>                                                                                    | Climate Change Master Plan                                                            | Climate Change Master Plan will influence future<br>infrastructure policies and projects                                                                     |
| Minimize pumping, energy, O&M costs                    |   |                                                                                                                                                                                                              | DC                                                                                    | - Certain projects provide post 2041 benefit- Out of<br>ByLaw (OBL)                                                                                          |
| Alignment with SOGR or other programs                  |   |                                                                                                                                                                                                              | Existing Studies, Design or Analysis                                                  |                                                                                                                                                              |
| Capacity Resiliency / Climate Change                   |   |                                                                                                                                                                                                              |                                                                                       |                                                                                                                                                              |
| Source Water Protection                                |   |                                                                                                                                                                                                              |                                                                                       |                                                                                                                                                              |





| Focus Area             | Water Strategy & Key Issues                                                                                                                                                                                                                                                   | Servicing Solution Components                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Pressure Zone 3</u> | Servicing solutions for pressure zone 3 mainly consist of:<br>- Increasing transmission and pumping capacity to move water to the<br>upper pressure zones<br>- Support growth within intensification areas such as the Mississauga<br>City Centre and the Hurontario Corridor | - Meadowvale North Transmission Main - Burnhamthorpe Road Sub-Transmission Main - Confederation Parkway Sub-Transmission Main - Beckett Sproule Transfer Pumping Station Capacity Expansion - Silverthorn Pumping Station Capacity Expansion - Silverthorm Pumping Station Capacity Expansion - Key distribution projects considered in this pressure zone are distributions mains in the Mississauga City Centre |

| Project(s) Drivers:<br>Why do we need the project(s)?  |   | Project(s) Drivers - Details                                                                                                                                                                                                                                                       | Project(s) Influences:<br>What could potentially have an impact on the<br>project(s)? | Project(s) Influences - Details                                                                                                          |
|--------------------------------------------------------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Capacity for new growth to 2041                        | 4 | <ul> <li>Significant growth predicted in intensification areas such as Central<br/>Mississauga and Hurontario Corridor</li> <li>- Project(9) support 2044 growth within intensification areas as well as provide<br/>additional supply to support growth in upper zones</li> </ul> | 2041 Planning Forecast                                                                | - Projected 2041 Population and Employment forecast                                                                                      |
| Supports post-2041 growth                              | 1 | - Certain projects support post-2041 growth in upper zones                                                                                                                                                                                                                         | Post-2041 Forecast                                                                    | - High level review of potential growth beyond 2041<br>informs the recommendations                                                       |
| Flexibility / Optimization                             | 1 | - Flexibility needed to move water to the upper pressure to support intensification<br>corridors                                                                                                                                                                                   | Design Criteria - Water and Wastewater                                                | - Water - 270 L/cap/d, 250 L/emp/d                                                                                                       |
| Maximize capacity of existing / planned infrastructure | 1 | <ul> <li>New transmission, sub-transmission and pumping station capacity constructed<br/>to service significant growth areas</li> </ul>                                                                                                                                            | York W WW Needs                                                                       | - York demands to be supplied by Peel may require MP<br>infrastructure. York Demand and Flow make up part of<br>the long term W WW needs |
| Alleviate existing capacity constraints                | 1 | - Additional pumping capacity to move more water to intensification areas and<br>limiting constraints                                                                                                                                                                              | Metrolinx MTO External Ongoing Works - LRT                                            | - 'Transit works may impact planning projections<br>LRT may impact infrastructure along Hurontario corridor                              |
| Minimize pumping, energy, O&M costs                    |   |                                                                                                                                                                                                                                                                                    | Climate Change Master Plan                                                            | - Climate Change Master Plan will influence future<br>infrastructure policies and projects                                               |
| Alignment with SOGR or other programs                  |   |                                                                                                                                                                                                                                                                                    | DC                                                                                    | - Certain projects provide post 2041 benefit- Out of ByLaw (OBL)                                                                         |
| Capacity Resiliency / Climate Change                   |   |                                                                                                                                                                                                                                                                                    | Existing Studies, Design or Analysis                                                  |                                                                                                                                          |
| Source Water Protection                                |   |                                                                                                                                                                                                                                                                                    |                                                                                       |                                                                                                                                          |





| Focus Area             | Water Strategy & Key Issues                                                                                                                                                                                | Servicing Solution Components                                                                                                                                                                   |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Pressure Zone 4</u> | Pressure zone 4 has projected adequate storage and pumping<br>capacity up to 2041.     The servicing solutions for pressure zone 4 consist mainly of improving<br>the feed to the East Brampton Reservoir. | - East Brampton Transmission Main Twinning     - Key distribution projects considered in this pressure zone are distribution mains along Hurontario Street and Queen Street East, among others. |

| Project(s) Drivers:<br>Why do we need the project(s)?  | Project(s) Drivers - Details |                                                                                                                                                                    | Project(s) Influences:<br>What could potentially have an impact on the<br>project(s)? | Project(s) Influences - Details                                                                                                        |
|--------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Capacity for new growth to 2041                        | 4                            | Pressure Zone has projected adequate pumping capacity to 2041     Project(s) mainly support 2041 growth in upper zones                                             | 2041 Planning Forecast                                                                | - Projected 2041 Population and Employment forecast                                                                                    |
| Supports post-2041 growth                              |                              |                                                                                                                                                                    | Post-2041 Forecast                                                                    | - High level review of potential growth beyond 2041<br>informs the recommendations                                                     |
| Flexibility / Optimization                             | 1                            | - Improve feed to the East Brampton Reservoir to service future development                                                                                        | Design Criteria - Water and Wastewater                                                | - Water - 270 L/cap/d, 250 L/emp/d                                                                                                     |
| Maximize capacity of existing / planned infrastructure | 1                            | - Maximizes the capacity of the East Brampton Transmission Main                                                                                                    | York W WW Needs                                                                       | York demands to be supplied by Peel may require MP<br>infrastructure. York Demand and Flow make up part of<br>the long term W WW needs |
| Alleviate existing capacity constraints                | 1                            | <ul> <li>Alleviates storage capacity constraints by expanding the West Brampton<br/>reservoir to service future development in the secondary plan areas</li> </ul> | Metrolinx MTO External Ongoing Works - LRT                                            | Transit works may impact planning projections     LRT may impact infrastructure along Hurontario corridor                              |
| Minimize pumping, energy, O&M costs                    |                              |                                                                                                                                                                    | Climate Change Master Plan                                                            | Climate Change Master Plan will influence future<br>infrastructure policies and projects                                               |
| Alignment with SOGR or other programs                  |                              |                                                                                                                                                                    | Existing Studies, Design or Analysis                                                  |                                                                                                                                        |
| Capacity Resiliency / Climate Change                   |                              |                                                                                                                                                                    |                                                                                       |                                                                                                                                        |
| Source Water Protection                                |                              |                                                                                                                                                                    |                                                                                       |                                                                                                                                        |





| Focus Area             | Water Strategy & Key Issues                                                                                                                                                                                                                                                              | Servicing Solution Components                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Pressure Zone 5</u> | Servicing solutions for pressure zone 5 consist of:<br>- Extending servicing for future greenfield growth and into the Uptown<br>Brampton growth node<br>- Improving connectivity across pressure zone 5<br>- Supporting intensification in areas such as the Downtown Brampton<br>Core. | - Central Brampton Sub-Transmission Main - Willams Parkway Sub-Transmission Main - Countryside Drive Sub-Transmission Main - Centre Street Sub-Transmission Main - Goreway Drive Sub-Transmission Main - Mayfield Road Sub-Transmission Main - West Brampton Pumping Station - Capacity Expansion - Several distribution projects located in growth areas such as Highway 427 Industrial Secondary Plan, Bram West, Uptown Brampton, Brampton Downtown Core, among others - Counter Sub-Transmission Main Capacity Expansion - Several distribution projects located in growth areas such as Highway 427 Industrial Secondary Plan, Bram West, Uptown Brampton, Brampton Downtown Core, among others - Counter Sub-Transmission Main Capacity Expansion - Several distribution projects located in growth areas such as Highway 427 Industrial Secondary Plan, Bram West, Uptown Brampton, Brampton Downtown Core, among others - Counter Sub-Transmission Main Capacity - Several distribution projects located in growth areas such as Highway 427 Industrial Secondary - Several distribution projects located in growth areas such as Highway 427 Industrial Secondary - Sub-Transmission Main - Several distribution projects located in growth areas such as Highway 427 Industrial Secondary - Several distribution projects located in growth areas such as Highway 427 Industrial Secondary - Several distribution projects located in growth areas such as Highway 427 Industrial Secondary - Several distribution projects located in growth areas such as Highway 427 Industrial Secondary - Several distribution projects located in growth areas such as Highway 427 Industrial Secondary - Several distribution projects located in growth areas such as Highway 427 Industrial Secondary - Several distribution projects located in growth areas such as Highway - Several distribution projects located in growth areas such as Highway - Several distribution projects located in growth areas - Several distribution projects located in growth - Several distribution projects located in growth - Severa |

| Project(s) Drivers:<br>Why do we need the project(s)?  | Project(s) Drivers - Details И |                                                                                                                                                                                                                                                                                            | Project(s) Influences:<br>What could potentially have an impact on the<br>project(s)? | Project(s) Influences - Details                                                                       |
|--------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Capacity for new growth to 2041                        | 4                              | <ul> <li>Projected greenfield and Uptown Brampton growth expected as well as the<br/>Downtown Brampton Core</li> <li>Project(9) support 2041 growth within greenfield areas and intensification<br/>areas as well as provide additional supply to support growth in upper zones</li> </ul> | 2041 Planning Forecast                                                                | Projected 2041 Population and Employment forecast                                                     |
| Supports post-2041 growth                              | 1                              | - Certain projects support post-2041 growth in upper zones                                                                                                                                                                                                                                 | Post-2041 Forecast                                                                    | <ul> <li>High level review of potential growth beyond 2041<br/>informs the recommendations</li> </ul> |
| Flexibility / Optimization                             | 1                              | <ul> <li>Optimizes the connectivity across the entire Pressure Zone by constructing<br/>several sub-transmission mains</li> </ul>                                                                                                                                                          | Design Criteria - Water and Wastewater                                                | - Water - 270 L/cap/d, 250 L/emp/d                                                                    |
| Maximize capacity of existing / planned infrastructure | 1                              | <ul> <li>Maximize capacity of planned infrastructure to service future development<br/>areas as well as areas with planned intensification</li> </ul>                                                                                                                                      | Existing Studies, Design or Analysis                                                  | - Queen St Corridor Water / Wastewater Review                                                         |
| Alleviate existing capacity constraints                | 1                              | <ul> <li>Significant reduces capacity of existing sub-transmission mains by<br/>constructing several new sub-transmission mains to support servicing in future<br/>greenfield and Uptown Brampton nodes</li> </ul>                                                                         | Climate Change Master Plan                                                            | Climate Change Master Plan will influence future<br>infrastructure policies and projects              |
| Minimize pumping, energy, O&M costs                    | 1                              | <ul> <li>No storage facility in Pressure Zone 5 east, eliminating costs associated with<br/>equalization, fire and emergency storage</li> </ul>                                                                                                                                            | GTA West                                                                              | Preferred GTA West Corridor alignment crosses through service area                                    |
| Alignment with SOGR or other programs                  |                                |                                                                                                                                                                                                                                                                                            | Existing Studies, Design or Analysis                                                  |                                                                                                       |
| Capacity Resiliency / Climate Change                   |                                |                                                                                                                                                                                                                                                                                            |                                                                                       |                                                                                                       |
| Source Water Protection                                |                                |                                                                                                                                                                                                                                                                                            |                                                                                       |                                                                                                       |





| Servicing solutions for pressure zone 6 consist of:       - Victoria Reservoir         - Extending servicing into northwest Brampton       - Victoria Transmission and Sub-Transmission Mains         - Adding a secondary feed to west Bolton       - West Brampton Pumping Station Capacity Expansion         - Providing floating storage from the new zone 6 reservoir       - Bovaird Drive West Sub-Transmission Main         - Providing floating storage from the new zone 6 reservoir       - Bovaird Drive West Sub-Transmission Main         - Heritage Road (North) Sub-Transmission Main       - Heritage Road Sub-Transmission Main         - Heritage Road Sub-Transmission Main       - Heritage Road Sub-Transmission Main | Focus Area      | Water Strategy & Key Issues                                                                                                                                                                                    | Servicing Solution Components                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| - Official distribution projects are included in the Master Fight to externa servicing to grow an areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pressure Zone 6 | Servicing solutions for pressure zone 6 consist of:<br>- Extending servicing into northwest Brampton<br>- Adding a secondary feed to west Bolton<br>- Providing floating storage from the new zone 6 reservoir | Victoria Reservoir     Victoria Transmission and Sub-Transmission Mains     West Brampton Pumping Station Capacity Expansion     Bovaird Drive West Sub-Transmission Main     Mayfield Road Sub-Transmission Main     Heritage Road (North) Sub-Transmission Main     Heritage Road Sub-Transmission Main     Heritage Road Sub-Transmission Main     Several distribution projects are included in the Master Plan to extend servicing to growth areas |

| Project(s) Drivers                                     |   | Project(s) Drivers - Details                                                                                     | Project(s) Influences                  | Project(s) Influences - Details                                                                       |
|--------------------------------------------------------|---|------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------|
| Capacity for new growth to 2041                        | • | - Project(s) mainly support greenfield growth to 2041                                                            | 2041 Planning Forecast                 | - Projected 2041 Population and Employment forecast                                                   |
| Supports post-2041 growth                              | 1 | New sub-transmission along Innis Lake Road and Healy Road strategically<br>oversized to support post-2041 growth | Post-2041 Forecast                     | <ul> <li>High level review of potential growth beyond 2041<br/>informs the recommendations</li> </ul> |
| Flexibility / Optimization                             | * | - Optimizes the connectivity across the entire Pressure Zone by constructing<br>several sub-transmission mains   | Design Criteria - Water and Wastewater | - Water - 270 L/cap/d, 250 L/emp/d                                                                    |
| Maximize capacity of existing / planned infrastructure | * | Maximizes recently built facilities                                                                              | DC                                     | - Certain projects provide post 2041 benefit- Out of<br>ByLaw (OBL)                                   |
| Alleviate existing capacity constraints                |   |                                                                                                                  | Climate Change Master Plan             | Climate Change Master Plan will influence future<br>infrastructure policies and projects              |
| Minimize pumping, energy, O&M costs                    |   |                                                                                                                  | GTA West                               | Preferred GTA West Corridor alignment crosses through service area                                    |
| Alignment with SOGR or other programs                  |   |                                                                                                                  | Existing Studies, Design or Analysis   |                                                                                                       |
| Capacity Resiliency / Climate Change                   |   |                                                                                                                  |                                        |                                                                                                       |
| Source Water Protection                                |   |                                                                                                                  |                                        |                                                                                                       |





| Focus Area             | Water Strategy & Key Issues                                                                                                                                                                                                                                                                                                            | Servicing Solution Components                                                                                                                                                                                       |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Pressure Zone 7</u> | Servicing solutions for pressure zone 7 consist of:<br>- Extending servicing to support growth in areas north of Mayfield Road<br>- Providing pumping storage until the new zone 7 storage is<br>commissioned<br>- Key growth areas in this pressure zone include the Mayfield West<br>Developments and the Tullamore Industrial Area. | Key Components<br>- New Elevated Tank (Option 1 Carried Forward)<br>- Associated transmission and sub-transmission mains<br>- Several distribution projects to support new Greenfield growth north of Mayfield Road |

| Project(s) Drivers:<br>Why do we need the project(s)?  |   | Project(s) Drivers - Details                                                                                                             | Project(s) Influences:<br>What could potentially have an impact on the<br>project(s)? | Project(s) Influences - Details                                                                       |
|--------------------------------------------------------|---|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Capacity for new growth to 2041                        | 4 | - Project(s) mainly support greenfield growth to 2041                                                                                    | 2041 Planning Forecast                                                                | - Projected 2041 Population and Employment forecast                                                   |
| Supports post-2041 growth                              |   |                                                                                                                                          | Post-2041 Forecast                                                                    | <ul> <li>High level review of potential growth beyond 2041<br/>informs the recommendations</li> </ul> |
| Flexibility / Optimization                             |   |                                                                                                                                          | Design Criteria - Water and Wastewater                                                | - Water - 270 L/cap/d, 250 L/emp/d                                                                    |
| Maximize capacity of existing / planned infrastructure | 1 | <ul> <li>Maximizes existing infrastructure to extend servicing to support growth in areas<br/>north of Mayfield Road</li> </ul>          |                                                                                       |                                                                                                       |
| Alleviate existing capacity constraints                | 1 | <ul> <li>Storage capacity constraints alleviated by providing pumped storage until new<br/>Zone 7 storage can be commissioned</li> </ul> | Climate Change Master Plan                                                            | Climate Change Master Plan will influence future<br>infrastructure policies and projects              |
| Minimize pumping, energy, O&M costs                    |   |                                                                                                                                          | GTA West                                                                              | Preferred GTA West Corridor alignment crosses through service area                                    |
| Alignment with SOGR or other programs                  |   |                                                                                                                                          | Existing Studies, Design or Analysis                                                  |                                                                                                       |
| Capacity Resiliency / Climate Change                   | 1 |                                                                                                                                          |                                                                                       |                                                                                                       |
| Source Water Protection                                | - | - Elevated tank storage potential lower impact to source water protection than in-<br>ground reservoir                                   |                                                                                       |                                                                                                       |





#### Focus Area - Pressure Zone 6 Secondary Feed to West Bolton Evaluation

|                         |                                                                                          | Zone 6 Sub-<br>Secondary Feed                                                                                                                                                                                                                              | Fransmission<br>I to West Bolton                                                                                                                                                                                        |
|-------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         | Description of Strategy                                                                  | Option 1:<br>Innis Lake / Healy Road                                                                                                                                                                                                                       | Option 2:<br>Mayfield / Humberstation Road                                                                                                                                                                              |
|                         | Increase spare capacity in existing system                                               | $\checkmark\checkmark$                                                                                                                                                                                                                                     | <b>√</b> √                                                                                                                                                                                                              |
|                         | Improve/maintain level of service of existing users                                      | <b>√</b> √                                                                                                                                                                                                                                                 | <b>√</b> √                                                                                                                                                                                                              |
|                         | Avoid/minimize provimity and/conflicts with existing infrastructure                      |                                                                                                                                                                                                                                                            | ×                                                                                                                                                                                                                       |
|                         | Consider constructability and technical feasibility to build and maintain infrastructure |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                         |
|                         | Provide opportunity for operational flexibility and security                             |                                                                                                                                                                                                                                                            | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                   |
|                         | Integration with road/transportation projects                                            | ✓ <i>✓</i>                                                                                                                                                                                                                                                 | <br>✓                                                                                                                                                                                                                   |
|                         | Avoid/minimize construction in areas with limited access                                 | ✓                                                                                                                                                                                                                                                          | ×                                                                                                                                                                                                                       |
|                         | Avoid/minimize environmental/roads/utility crossings                                     | ✓                                                                                                                                                                                                                                                          | ✓                                                                                                                                                                                                                       |
| Technical               | Ability to maintain existing services during construction/implementation                 | <i>√√</i>                                                                                                                                                                                                                                                  | <i>√√</i>                                                                                                                                                                                                               |
| Technical               | Maximize alignments along road rights of way and/or easements                            | $\checkmark \checkmark$                                                                                                                                                                                                                                    | $\checkmark \checkmark$                                                                                                                                                                                                 |
|                         | Support intensification growth                                                           | $\checkmark\checkmark$                                                                                                                                                                                                                                     | $\checkmark \checkmark$                                                                                                                                                                                                 |
|                         | Support post-2041 growth                                                                 | √√                                                                                                                                                                                                                                                         | ✓                                                                                                                                                                                                                       |
|                         | Incremental extension of infrastructure as growth progresses                             | $\checkmark\checkmark$                                                                                                                                                                                                                                     | <b>√</b> √                                                                                                                                                                                                              |
|                         | Ability to provide/maintain desired level of service under climate change conditions     | $\checkmark\checkmark$                                                                                                                                                                                                                                     | <b>√</b> √                                                                                                                                                                                                              |
|                         | Technical Comments                                                                       | <ul> <li>sub-transmission strategically oversized to support post-<br/>period/buildout growth within pressure zone 6</li> <li>Construction required along existing road, less potential<br/>for conflict with existing users and infrastructure</li> </ul> | <ul> <li>Construction required along existing road, potential for<br/>conflict with existing users and infrastructure</li> <li>Less opportunity to support post-period/build-out growth<br/>due to alignment</li> </ul> |
|                         | Minimize impact on nearby agricultural lands                                             | ✓                                                                                                                                                                                                                                                          | $\checkmark \checkmark$                                                                                                                                                                                                 |
|                         | Avoid/minimize environmental crossings                                                   | ✓                                                                                                                                                                                                                                                          | ✓                                                                                                                                                                                                                       |
|                         | Avoid/minimize impact on environmental sensitive/protected areas                         | ✓                                                                                                                                                                                                                                                          | $\checkmark \checkmark$                                                                                                                                                                                                 |
|                         | Avoid/minimize impact on local aquatic/terrestrial species at risk and habitats          |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                         |
| Environmental           | Avoid/minimize potential impact on groundwater quantity and quality during construction  |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                         |
|                         | Consider resiliency and adaptation to climate change Environmental Comments              | - no major difference in number of environmental<br>crossings between options                                                                                                                                                                              | - no major difference in number of environmental<br>crossings between options                                                                                                                                           |
|                         | Minimize short/leng term poins 9 adour leause                                            |                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                       |
|                         | Consider viewel easthetics of the proposed infractively us                               |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                         |
|                         |                                                                                          |                                                                                                                                                                                                                                                            | · · ·                                                                                                                                                                                                                   |
|                         | Consider potential community resistance to alternative/strategy/alignment                | ••                                                                                                                                                                                                                                                         | •                                                                                                                                                                                                                       |
|                         | Avoid/minimize impact on archaeological sites/resources                                  |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                         |
| Socio/Cultural          | Minimize impact on surrounding properties                                                | 44                                                                                                                                                                                                                                                         | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                   |
|                         | Minimize construction impact on traffic local businesses and residents                   |                                                                                                                                                                                                                                                            | , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                   |
|                         | Avoid/minimize impact on boritage sites                                                  |                                                                                                                                                                                                                                                            | •                                                                                                                                                                                                                       |
|                         |                                                                                          |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                         |
|                         | Socio/Cultural Comments                                                                  |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                         |
|                         | Maximizes worker safety and operability                                                  | $\checkmark \checkmark$                                                                                                                                                                                                                                    | $\checkmark \checkmark$                                                                                                                                                                                                 |
|                         | Does not require land acquisition or easement                                            | $\checkmark\checkmark$                                                                                                                                                                                                                                     | $\checkmark \checkmark$                                                                                                                                                                                                 |
| Logal / Juriadiational  | Minimizes approvals/coordination                                                         | $\checkmark\checkmark$                                                                                                                                                                                                                                     | ✓                                                                                                                                                                                                                       |
| Legal / Sullsuictional  | Legal/ Jurisdictional Comments                                                           |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                         |
|                         | Maximize use of existing infrastructure                                                  | $\checkmark$                                                                                                                                                                                                                                               | $\checkmark$                                                                                                                                                                                                            |
|                         | Avoid/minimize introducing new infrastructure                                            | $\checkmark\checkmark$                                                                                                                                                                                                                                     | ✓                                                                                                                                                                                                                       |
|                         | Avoid/minimize upgrading existing infrastructure                                         | $\checkmark\checkmark$                                                                                                                                                                                                                                     | $\checkmark \checkmark$                                                                                                                                                                                                 |
|                         | Minimize long term energy costs                                                          |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                         |
|                         | Lower capital cost relative to other options                                             |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                         |
| Financial               | Reduce/eliminate operation & maintenance costs                                           |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                         |
|                         | Support long-term financial sustainability                                               |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                         |
|                         | Integration with SOGR program                                                            |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                         |
|                         | Support phasing and implementation of capital projects over time                         | √ √                                                                                                                                                                                                                                                        | ✓                                                                                                                                                                                                                       |
|                         | Financial Comments                                                                       | Sub-transmission main along Innis Lake oversized to<br>support post-period/buildout growth with potential to<br>connect to future zone 7 storage                                                                                                           | A new sub-transmission main will be required to extent<br>connection to future Zone 7 storage                                                                                                                           |
|                         | Apply innovation and/or new technologies                                                 | <u> </u>                                                                                                                                                                                                                                                   | ./                                                                                                                                                                                                                      |
|                         | Operational flexibility to adapt to climate chance                                       | • •                                                                                                                                                                                                                                                        | •                                                                                                                                                                                                                       |
|                         | Establish a baseline and a process to measure results and desire outcomes                |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                         |
|                         | Incorporate water conservation and reuse practices                                       |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                         |
|                         | Maximize energy efficiency                                                               |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                         |
| Innovation / Adaptation | Avoid energy-intensive infrastructure                                                    |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                         |
|                         | Consider performance of the system under power outage conditions                         |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                         |
|                         | Consider opportunity for renewable energy production and use                             |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                         |
|                         | Innovation/ Adaptation Comments                                                          | Analysis of potential buildout demonstrate that a future<br>zone 7 storage will be required. This project has oversize<br>provisions to connect to the future zone 7 storage                                                                               | No provisions for connection to zone 7 storage                                                                                                                                                                          |
|                         | Preferred Option                                                                         | √√                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                       |



#### Focus Area - Pressure Zone 7 Zone 7 Storage Evaluation

| Description of Strategy         Option 1:<br>Elevated Tank         Option 1:<br>Elev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Doption 2:<br>nground Reservoir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Increase spare capacity in existing system       Improve/maintain level of service of existing users       Improve/maintain level of service of existing users         Avoid/minimize proximity and/conflicts with existing infrastructure       Improve/maintain level of service of existing users       Improve/maintain level of service of existing users         Provide opportunity for operational flexibility and security       Improve/maintain level of service opportunity for operational flexibility and security       Improve/maintain level of service opportunity for operational flexibility and security         Avoid/minimize construction in areas with limited access       Improve/maintain level of service operational flexibility crossings       Improve/maintain level of service operational flexibility crossings         Avoid/minimize alignments along road rights of way and/or easements       Improve/maintain desired level of service under climate change conditions       Improve/maintain desired level of service under climate change conditions         Ability to provide/maintain desired level of service under climate change conditions       Improve/maintain desired level of service under climate change conditions       Improve/maintain desired level of service under climate change conditions       Improve/maintain desired level of service under climate change conditions       Improve/maintain desired level of service under climate change conditions       Improve/maintain desired level of service under climate change conditions       Improve/maintain desired level of service under climate change conditions       Improve/maintain desired level of service under climate change conditions       Improve/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Improve/maintain level of service of existing users <ul> <li>V</li> <li>Avoid/minimize proximity and/conflicts with existing infrastructure</li> <li>V</li> <li>Integration with road/transportation projects</li> <li>Avoid/minimize construction in areas with limited access</li> <li>Avoid/minimize construction in areas with limited access</li> <li>Avoid/minimize environmental/roads/utility crossings</li> <li>Avoid/minimize alignments along road rights of way and/or easements</li> <li>Support intersification growth</li> <li>Support post-2041 growth</li> <li>Ability to provide/maintain desired level of service under climate change conditions</li> <li>Ability to provide/maintain desired level of service under climate change conditions</li> <li>Ability to provide/maintain desired level of service areas</li> <li>Avoid/minimize inpact on nearby agricultural lands</li> <li>Avoid/minimize impact on nearby agricultural lands</li> <li>Avoid/minimize impact on nearby agricultural sensitive/protected areas</li> <li>Avoid/minimize impact on nearby agricultural sensitive/protected areas</li> <li>Avoid/minimize impact on col environmental sensitive/protected areas</li> <li>Avoid/minimize impact on col aquatic/terrestrial species at risk and habitats</li> <li>Avoid/minimize impact on groundwater quantity and quality during construction</li> <li>V</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Avoid/minimize proximity and/conflicts with existing infrastructure <ul> <li>✓</li> <li>Consider constructability and technical feasibility to build and maintain infrastructure</li> <li>✓</li> <li>Provide opportunity for operational flexibility and security</li> <li>✓</li> </ul> <ul> <li>Integration with read/transportation projects</li> <li>Avoid/minimize environmental/reads/utility crossings</li> <li>Avoid/minimize environmental/reads/utility crossings</li> <li>Ability to maintain existing services during construction/implementation</li> <li>✓</li> <li>Maximize alignments along road rights of way and/or easements</li> <li>Support intensification growth</li> <li>Support intensification growth</li> <li>Incremental extension of infrastructure as growth progresses</li> <li>✓</li> </ul> <ul> <li>Maximize along more drights of service under climate change conditions</li> <li>✓</li> <li>Maximum available storage lower than option 2</li> <li>Elevated tanks are not typically expanded and construction growth are not typically expanded and constructing new facilities is required to provide additional storage</li> <li>Minimize impact on nearby agricultural lands</li> <li>Avoid/minimize impact on nearby agricultural lands</li> <li>Avoid/minimize impact on no environmental sensitive/protected areas</li> <li>✓</li> <li>Avoid/minimize impact on local aquatic/terrestrial species at risk and habitats</li> <li>✓</li> <li>Avoid/minimize impact on growthater quantity and quality during construction</li> <li>✓</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Consider constructability and technical feasibility to build and maintain infrastructure <ul> <li>Provide opportunity for operational flexibility and security</li> <li>Integration with road/transportation projects</li> <li>Avoid/minimize construction in areas with limited access</li> <li>Avoid/minimize onvironmental/roads/utility crossings</li> <li>Ability to maintain existing services during construction/implementation</li> <li></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Provide opportunity for operational flexibility and security <ul> <li>Integration with read/transportation projects</li> <li>Avoid/minimize construction in areas with limited access</li> <li>Avoid/minimize environmental/roads/utility crossings</li> <li>Avoid/minimize environmental/roads/utility crossings</li> <li>Avoid/minimize environmental/roads/utility crossings</li> <li>Maximize alignments along road rights of way and/or easements</li> <li>Support intensification growth</li> <li>V</li> <li>Incremental extension of infrastructure as growth progresses</li> <li>Ability to provide/maintain desired level of service under climate change conditions</li> <li>Ability to provide/maintain desired level of service under climate change conditions</li> <li> <li>Maximum available storage lower than option 2                  <li>Elevated tanks are not typically expanded and construction growth storage</li> <li></li></li></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Integration with road/transportation projects       Iminitial end the set with initiate access         Avoid/minimize construction in a reas with limited access       Iminitial end the set with road/transportation projects         Avoid/minimize environmental/roads/utility crossings       Iminitial end the set with road/transportation projects         Ability to maintain existing services during construction/implementation       ✓         Maximum available storage lower than option 2       Iminitie alignmental/roads/utility to provide/maintain desired level of service under climate change conditions       Iminitie alignmental/roads/utility expanded and iminities are not typically expanded and iminities in pact on nearby agricultural lands       Iminities in equivalent to provide additional storage         Avoid/minimize impact on nearby agricultural lands       Iminities in a environmental sensitive/protected areas       Iminities impact on nearby agricultural lands       Iminities impact on nearby agricultural lands       Iminities impact on convincemental sensitive/protected areas       Iminities impact on convincemental sensitive/protected areas </th <td>Average of the second sec</td> | Average of the second sec |
| Avoid/minimize construction in areas with infinited access       Image: Signal access acccess access access access access access access access                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum available storage higher than option 1<br>- Inground reservoirs can be interconnected for potential<br>Increased construction required for additional<br>nfrastructure; longer feeder main required to reach ground<br>alevations to support pressure zone 7 HGL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Ability to maintain existing services during construction/implementation       ✓✓         Maximize alignments along road rights of way and/or easements          Support intensification growth       ✓         Incremental extension of infrastructure as growth progresses       ✓         Ability to provide/maintain desired level of service under climate change conditions       ✓         Ability to provide/maintain desired level of service under climate change conditions       ✓         Ability to provide/maintain desired level of service under climate change conditions       ✓         Minimize impact on nearby agricultural lands       ✓         Avoid/minimize impact on nearby agricultural sensitive/protected areas       ✓         Avoid/minimize impact on on environmental sensitive/protected areas       ✓         Avoid/minimize impact on on contracting potential impact on groundwater quantity and quality during construction       ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Technical       Maximize alignments along road rights of way and/or easements       Image: Construction growth         Support intensification growth       Image: Construction growth       Image: Construction growth         Ability to provide/maintain desired level of service under climate change conditions       Image: Constructing new facilities is required to provide additional storage         Ability to provide/maintain desired level of service under climate change conditions       Image: Constructing new facilities is required to provide additional storage         Minimize impact on nearby agricultural lands       Image: Constructing new facilities is required to provide additional storage         Avoid/minimize impact on nearby agricultural sensitive/protected areas       Image: Im                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Average of the second sec |
| Support intensification growth       Imported intensification growth       Imported intensification of infrastructure as growth progresses       Imported intensification of infrastructure and growth progresses       Imported intensification of infrastructure as growth progresses       Imported intensification of infrastructure and growth progresses       Imported intensification of infrastructure and growth progresses       Imported intensification of infrastructure and growth progresses       Imported intensification of infrastructure andintensingeore at risk and habitats       Impor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Average of the second sec |
| Support post-2041 growth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Advance of the second of  |
| Incremental extension of infrastructure as growth progresses       ✓          Ability to provide/maintain desired level of service under climate change conditions       ✓          Ability to provide/maintain desired level of service under climate change conditions            Technical Comments       - Maximum available storage lower than option 2       - N       - N          Technical Comments       - Maximum available storage lower than option 2       - N       - N       - N         Minimize impact on nearby agricultural lands       - If       - If       - If       - If         Avoid/minimize impact on nearby agricultural sensitive/protected areas       ✓        - If         Avoid/minimize impact on could aduatic/terrestrial species at risk and habitats       ✓           Avoid/minimize impact on groundwater quantity and quality during construction       ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Avainum available storage higher than option 1     Inground reservoirs can be interconnected for potential     xxpansion if required.     Increased construction required for additional     Infrastructure; longer feeder main required to reach ground     Jevations to support pressure zone 7 HGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Ability to provide/maintain desired level of service under climate change conditions <ul> <li>Maximum available storage lower than option 2</li> <li>Flewate tanks are not typically expanded and</li> <li>Constructing new facilities is required to provide additional options</li> </ul> <ul> <li>Minimize impact on nearby agricultural lands</li> <li>Avoid/minimize impact on environmental sensitive/protected areas</li> <li>Avoid/minimize impact on groundwater quantity and quality during construction</li> <li>V</li> </ul> <ul> <li>Void/minimize impact on groundwater quantity and quality during construction</li> <li>V</li> </ul> <ul> <li>V</li> <li>V</li> </ul> <ul> <li>Void/minimize impact on groundwater quantity and quality during construction</li> <li>V</li> </ul> <ul> <li>V</li> <li>V</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maximum available storage higher than option 1     Inground reservoirs can be interconnected for potential<br>xpansion if required.     Increased construction required for additional<br>nfrastructure; longer feeder main required to reach ground<br>alevations to support pressure zone 7 HGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Image: Second Secon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | International available solvage ingline inter option!<br>Inground reservoirs can be interconnected for potential<br>appansion if required.<br>Increased construction required for additional<br>Infrastructure; longer feeder main required to reach ground<br>alevations to support pressure zone 7 HGL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Minimize impact on nearby agricultural lands       ✓✓       Impact on prearby agricultural lands       Impact on pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Avoid/minimize environmental crossings        Avoid/minimize impact on environmental sensitive/protected areas        Avoid/minimize impact on local aquatic/terrestrial species at risk and habitats        Avoid/minimize potential impact on groundwater quantity and quality during construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Avoid/minimize impact on environmental sensitive/protected areas     ✓ ✓       Avoid/minimize impact on local aquatic/terrestrial species at risk and habitats     ✓ ✓       Avoid/minimize potential impact on groundwater quantity and quality during construction     ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Avoid/minimize impact on local aquaticrerrestrial species at risk and habitats VV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | v<br>v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Consider resiliency and adaptation to climate change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\sqrt{}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| - Construction in greenbelt area, potential to impact - 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - Significant construction in greenbelt area, potential to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Environmental sensitive and protected areas. Less impact important important in the option of the potential location further south. High - Lower impact to groundwater and source water protection further south Lower impact to groundwater and source water protection further south Cover resiliency to climate change/natural environmental environmenta environmenta environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mpact environmentally sensitive and protected areas.<br>Higher impact than option 1 due to potential location<br>urther north.<br>Greater potential impact to groundwater and source water<br>rotection than option 1<br>- Potential impact to local aquatic/terrestrial species<br>- Increased natural protection to extreme changes in<br>emperature and harsh weather conditions<br>- Larger areas of surrounding undeveloped or agricultural<br>and, higher potential to impact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Niciping abother asia 9 adam lanua                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Minimize short/long term noise & odour issues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ¥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Consider orbitalia destinations of the problema initial database in the problema initial database in the problema initial database in a second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | √                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Avoid/mininze impact on archaeological sites/revoluces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Minimize impact during construction and operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Socia / Cultural Minimize impact on surrounding properties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Minimize construction impact on traffic, local businesses and residents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Avoid/minimize impact on heritage sites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Longer construction period, increased impact to<br>surrounding residents and businesses<br>Location of underground reservoir has higher potential<br>anvironmental impacts potential due to<br>pricemental functionaries and divisionities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Maximizes worker safety and operability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Does not require land acquisition or easement ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Legal / Minimizes approvals/coordination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Jurisdictional Legal/ Jurisdictional Comments - Greater ease of accessibility, increasing worker safety - I and operability during routine maintenance - I on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>Lower ease of accessibility</li> <li>Increased potential for approvals and coordination based<br/>on ground/soil suitability for construction</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Maximize use of existing infrastructure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Avoid/minimize introducing new infrastructure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\checkmark\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Avoid/minimize introducing new infrastructure     Image: Construction of the second seco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Avoid/minimize introducing new infrastructure     ✓     Image: Construction of the construc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ✓<br>✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Avoid/minimize introducing new infrastructure     ✓     Image: Construct of the structure     ✓       Avoid/minimize upgrading existing infrastructure     ✓     Image: Construct of the structure     ✓       Minimize long term energy costs     ✓     Image: Construct of the structure     ✓       Lower capital cost relative to other options     ✓     Image: Construct of the structure     Image: Construct of the structure       Reduce/eliminate operation & maintenance costs     ✓     Image: Construct of the structure     Image: Construct of the structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ✓<br>✓<br>✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Avoid/minimize introducing new infrastructure     ✓        Avoid/minimize upgrading existing infrastructure     ✓        Minimize long term energy costs     ✓✓        Lower capital cost relative to other options     ✓✓        Reduce/eliminate operation & maintenance costs     ✓        Support long-term financial sustainability     ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ✓<br>✓<br>✓<br>✓<br>✓<br>✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Avoid/minimize introducing new infrastructure     ✓        Avoid/minimize upgrading existing infrastructure     ✓        Minimize long term energy costs     ✓✓        Lower capital cost relative to other options     ✓✓        Reduce/elliminate operation & maintenance costs     ✓        Support long-term financial sustainability     ✓        Integration with SOGR program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Avoid/minimize introducing new infrastructure     ✓        Avoid/minimize upgrading existing infrastructure     ✓        Minimize long term energy costs     ✓✓        Lower capital cost relative to other options     ✓✓        Reduce/eliminate operation & maintenance costs     ✓        Support long-term financial sustainability     ✓        Integration with SOGR program         Support phasing and implementation of capital projects over time     ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Avoid/minimize introducing new infrastructure       ✓         Avoid/minimize upgrading existing infrastructure       ✓✓         Minimize long term energy costs       ✓✓         Lower capital cost relative to other options       ✓✓         Reduce/elliminate operation & maintenance costs       ✓         Support long-term financial sustainability       ✓         Integration with SOGR program       ✓         Support phasing and implementation of capital projects over time       ✓         Financial       ✓         Financial       ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Avoid/minimize introducing new infrastructure       Image: Constructure       Image: Constructure         Avoid/minimize upgrading existing infrastructure       Image: Constructure       Image: Construct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Requires longer transmission and sub-transmission<br>nains than option 1 to reach ground elevations that<br>upport pressure zone 7 HGL<br>Increased pumping required for operation, increased<br>nergy requirements and costs<br>- Could potentially be expanded as pressure zone 7 builds<br>but                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Avoid/minimize introducing new infrastructure       ✓         Avoid/minimize upgrading existing infrastructure       ✓✓         Minimize long term energy costs       ✓✓         Lower capital cost relative to other options       ✓✓         Reduce/eliminate operation & maintenance costs       ✓✓         Support long-term financial sustainability       ✓         Integration with SOGR program       ✓         Support phasing and implementation of capital projects over time       ✓         Financial       ✓         Apply innovation and/or new technologies       ✓         Use of data for evidence based decision making process       ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Avoid/minimize introducing new infrastructure       ✓         Avoid/minimize upgrading existing infrastructure       ✓✓         Minimize long term energy costs       ✓✓         Lower capital cost relative to other options       ✓✓         Reduce/eliminate operation & maintenance costs       ✓✓         Support Iong-term financial sustainability       ✓         Integration with SOGR program       ✓         Support phasing and implementation of capital projects over time       ✓         Financial       ✓         Apply innovation and/or new technologies       ✓         Use of data for evidence based decision making process       ✓✓         Operational flexibility to addpt to climate change       ✓✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Avoid/minimize introducing new infrastructure       Image: Constructure       Image: Constructure         Avoid/minimize upgrading existing infrastructure       Image: Constructure       Image: Construct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Avoid/minimize introducing new infrastructure       Image: Constructure       Image: Constructure         Avoid/minimize upgrading existing infrastructure       Image: Constructure       Image: Construct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Requires longer transmission and sub-transmission<br>nains than option 1 to reach ground elevations that<br>upport pressure zone 7 HGL<br>Increased pumping required for operation, increased<br>nergy requirements and costs  Could potentially be expanded as pressure zone 7 builds<br>but                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Avoid/minimize introducing new infrastructure       Image: stating infrastructure       Image: stating infrastructure         Avoid/minimize upgrading existing infrastructure       Image: stating infrastructure       Image: stating infrastructure       Image: stating infrastructure         Minimize long term energy costs       Image: stating infrastructure       Image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Avoid/minimize introducing new infrastructure       ✓         Avoid/minimize upgrading existing infrastructure       ✓✓         Minimize long term energy costs       ✓✓         Lower capital cost relative to other options       ✓✓         Reduce/eliminate operation & maintenance costs       ✓✓         Support long-term financial sustainability       ✓         Integration with SOGR program       ✓         Support phasing and implementation of capital projects over time       ✓         Financial       ✓         Apply innovation and/or new technologies          Use of data for evidence based decision making process       ✓         Use of data for evidence based decision making process       ✓         Incorporate water conservation and ruse practices       ✓         Incorporate water conservation and ruse practices       ✓         Maximize energy efficiency       ✓         Adaptation       ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Avoid/minimize introducing new infrastructure            Avoid/minimize upgrading existing infrastructure             Minimize long term energy costs              Lower capital cost relative to other options <t< th=""><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Avoid/minimize introducing new infrastructure       V         Avoid/minimize upgrading existing infrastructure       VV         Minimize long term energy costs       VV         Lower capital cost relative to other options       VV         Reduce/eliminate operation & maintenance costs       V         Support long-term financial sustainability       V         Integration with SOGR program       V         Support phasing and implementation of capital projects over time       V         • Requires new transmission and sub-transmission mains -       • Requires new transmission and sub-transmission mains -         • Integration with SOGR program       •         Support phasing and implementation of capital projects over time       •         • Requires new transmission and sub-transmission mains -       •         • May require additional storage as pressure zone 7 builds out       •         • Use of data for evidence based decision making process       V       •         • Operational flexibility to adapt to climate change       V       •         • Innovation /       Maximize energy efficiency       V       •         Avoid energy-intensive infrastructure       V       •       •         Consider performance of the system under power outage conditions       V       •       •         Innovation /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Avoid/minimize introducing new infrastructure <ul> <li>Avoid/minimize upgrading existing infrastructure</li> <li>Minimize long term energy costs</li> <li>Lower capital cost relative to other options</li> <li>V</li> <li>Lower capital cost relative to other options</li> <li>V</li> <li>Support long-term financial sustainability</li> <li>Integration with SOGR program</li> <li>Integration with SOGR program</li> <li>Support phasing and implementation of capital projects over time</li> <li>Reduce/leminate costs</li> <li>Nay require additional storage as pressure zone 7 builds from a source of the system under power outage conditions</li> <li>Operational flexibility to adapt to climate change</li> <li>V</li> <li>Use of data for evidence based decision making process</li> <li>V</li> <li>Maximize energy efficiency</li> <li>Avoid energy-infrastructure</li> <li>V</li> <li>Maximize energy efficiency</li> <li>V</li> <li>Maximize energy efficiency</li> <li>V</li> <li>Maximize energy efficiency</li> <li>V</li> <li>Maximize energy efficiency</li> <li>V</li> <li>Consider performance of the system under power outage conditions</li> <li>V</li> <li>Consider performance of the system under power outage conditions</li> <li>V</li> <li>Consider performance of the system under power outage conditions</li> <li>V</li> <li>Consider performance of the system under power outage conditions</li> <li>V</li> <li>Consider performance of the system under power outage conditions</li> <li>V</li> <li>Supposed torge options, and associated transmission and sub-trana</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Avoid/minimize introducing new infrastructure <ul> <li>Avoid/minimize upgrading existing infrastructure</li> <li>Avoid/minimize upgrading existing infrastructure</li> <li>Avoid/minimize upgrading existing infrastructure</li> <li>Integration &amp; minimenance costs</li> <li>Support long-term financial sustainability</li> <li>Support long-term financial sustainability</li> <li>Integration with SOGR program</li> <li>Pequires new transmission and sub-transmission mains</li> <li>Reduce/eliminate operation &amp; minimenance</li> <li>Regures new transmission and sub-transmission mains</li> <li>Regures new transmission and sub-transmission and sub-transmission and sub-transmission and sub-transmission and a process to measure results and desire outcomes</li> <li>Incovation /</li> <li>Adaptation</li> <li>Maximize energy efficiency</li> <li>Avoid many energy efficiency</li> <li>Regures end a process to measure results and desire outcomes</li> <li>Innovation / Adaptation Comments</li> <li>Consider performance of the system under power outage conditions</li> <li>Consider opportunity for renewable energy production and use</li> <li>Consider opportunity for renewable energy production and use</li> <li>The proposed storage</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Avoid/minimize uproducing new infrastructure     -/-       Avoid/minimize uproducing existing infrastructure     -/-       Minimize long term energy costs     -/-       Lower capital cost relative to other options     -/-       Reduce/eliminate operation & maintenance costs     -/-       Support long-term financial sustainability     -/-       Integration with SOGR program     -/-       Support long-term financial sustainability     -/-       Integration with SOGR program     -/-       Support phasing and implementation of capital projects over time     -/-       Financial     -/-       Use of data for evidence based decision making process     -/-       Operational flexibility to adapt to dimate change     -/-       Consider opportunity for renewable energy production and reuse practices     -/-       Incorporate water conservation and reuse practices     -/-       Avoid energy-intensive infrastructure     -/-       Consider opportunity for renewable energy production and use     -/-       Innovation/ Adaptation     /-       N/A     Not Applicable     -/-       N/A     Not Applicable     -/-       X     Averse impacts     -/-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Region of Peel - 2020 Water and Wastewater Master Plan for the Lake-Based Systems

Very Beneficial Impacts

 $\checkmark\checkmark$ 



REGIONAL MUNICIPALITY OF PEEL





To: Ms. Sogol Bandehali, M.Sc., P.Eng. Project Manager, Infrastructure Planning & Asset Management, Growth and Water Resources Region of Peel 10 Peel Centre Drive, Suite A 4<sup>th</sup> Floor Brampton, ON L6T 4B9

CC: Laura Boroweic, Region of Peell Miriam Polga, Region of Peel AECOM Canada Ltd. 105 Commerce Valley Drive West 7th Floor Markham, ON L3T 7W3 Canada

T: 905.886.7022 F: 905.886.9494 aecom.com

Project name: Region of Peel - Standby Power Study Update

Project ref: 60270348

From: Benny Wan (P.Eng.)

Date: June 19, 2020

# Memo

Subject:

Standby Power Study Update 2019

## 1. Introduction

The Region of Peel retained AECOM to review the standby power requirements in 2018. The scope of the study was updated to address the Region's comments regarding additional considerations in calculating the available standby power capacity for pumping as well as the growth/demands updates. The analysis results presented herein are based on the updated water hydraulic model analysis and the latest planning information. For the hydraulic modelling, AECOM used the hydraulic model that included the water infrastructure information as per the 2018 capital program. The model also included the population and demands as per Scenario 15 (SGU October, 2017) and subsequently validated the information with the latest projected population as per Scenario 16.

The purpose of the study is to assess the water supply ability to meet the anticipated water demands (including York Region) and acceptable criteria during a blackout or other emergency conditions based on existing standby power capacity as well as identifying additional standby power requirements to provide sustainable water service to the customers. The hydraulic analysis was completed for the existing and future demand (2031 and 2041) scenarios and the following tasks were completed in the hydraulic analysis:

- Compiled available background information to establish and document the existing standby power capacity at each station;
- Reviewed the best industry practices to provide water service under emergency conditions;
- Reviewed the standby power capacity required based on the latest planning forecasts (SGU Scenario 16) for existing (2020), 2031 and 2041 planning years.;
- Updated the water model analysis for extended emergency condition (72 hours);
- Reviewed the tank and reservoirs levels based on the recent SCADA available and identified the typical starting water level;

- Created scenarios based on the maximum residential and average ICI demand condition to represent the blackout or emergency condition demand for existing (2020), 2031 and 2041 scenarios;
- Selected the appropriate pumps based on the operation description mentioned in PCN and O&Ms and available horsepower in each station; and
- Optimized the pump selection based on the available and allowable horsepower usage.

## 2. Data Collection and Review

A comprehensive review of the following information provided by the Region was undertaken and data for standby power requirement assessment was obtained:

- Process Control Narrative (PCN);
  - Obtained the available standby power capacity (standby generators capacity)
- Operational Manual (O&M);
  - Pump operation under emergency conditions
- Recent Station's Schematic;
  - Existing pump capacity (horsepower)
- Design Reports
  - Pump capacity, generator capacity, modeling criteria

Table 1 below provides a summary of the information utilized in this study.

#### Data Type Facility **Design Report** PCN Schematic **O&M Manual** Drawings Lakeview $\checkmark$ $\checkmark$ $\checkmark$ Х $\checkmark$ Silverthorn Х $\checkmark$ $\checkmark$ Х $\checkmark$ Hanlan $\checkmark$ $\checkmark$ $\checkmark$ χ $\checkmark$ **Beckett Sproule** $\checkmark$ Х $\checkmark$ Х $\checkmark$ East Brampton $\checkmark$ $\checkmark$ Х χ $\checkmark$ **North Brampton** $\checkmark$ $\checkmark$ Х χ Х Airport $\checkmark$ $\checkmark$ Х Х Х $\checkmark$ Tullamore $\checkmark$ χ Х Х Lorne Park $\checkmark$ $\checkmark$ Х χ χ Herridge $\checkmark$ $\checkmark$ $\checkmark$ Х $\checkmark$ Streetsville $\checkmark$ Х $\checkmark$ $\checkmark$ Х Meadowvale $\checkmark$ $\checkmark$ Х Х Х West Brampton $\checkmark$ $\checkmark$ Х Х Х Alloa $\checkmark$ $\checkmark$ $\checkmark$ Х $\checkmark$

#### **Table 1: Data Summary**

The above information was used to calculate the standby power requirements presented in the following sections.

## 3. Industry Best Practices

In reviewing the required standby power capacity in South Peel Water System, several materials were reviewed for validating the evaluation approach applied in this study. The following materials were utilized in the industry best practices review.

- AWWA Emergency Power Source Planning for Water and Wastewater, 2004
- AWWA Manual of Water Supply Practices M19, Fifth Edition, Emergency Planning for Water and Wastewater Utilities, 2018
- EPA Power Resilience presentation, Guide for Water and Wastewater Utilities, 2019
- MOE Design Guidelines for Drinking Water Systems, 2019

The above noted documents provided similar considerations in determining the method for providing sustainable water and wastewater services under power outage conditions. The design considerations that were applicable for water supply system were summarized as follow:

- Water Demand
- Emergency Duration
- Design of standby power
  - Existing system configurations (with or without water storage)
  - o Equipment technology
  - o Selection fuel supply
  - o On site fuel storage capacity
  - o Operation and Maintenance
  - Other considerations:
    - o **Economic**
    - o Code, regulation and standard
    - Communication planning
    - o Coordination with commercial electric power company

The key information that obtained from these documents were the durage of outage and water demand considerations under emergency condition. Accodring to the AWWA Eerngency Power Source Planning for Water and Wastewater, 2004, the duration for long term outages for large-scale natural diasters such as huurrians and flooding was not articulated; however, it was suggested that the design of the standby power could be based on the prescedant of the similar long term outage event. For Region of Peel, the most recent long term outage event was 2003 Blackout which the extended power outage duration was about 72 hours. As a result, this study included the evaluation of standby power requirement for 72 hours in order to determine the system upgrade implications.

For system demand consideration, MOE Design Guidelines for Drinking Water Systems, 2019, suggested that the standby power should be designed to meet the average day demand conditions. In 2007 Peel Standby Power Study, the water demand conditions under 2003 Blackout was approximately equal to maximum day demand for residential use plus average day demand for employment use; which was higher than the typical average day demand conditions for the Region. As a result, it was considered acceptable for the demand criteria identified in 2007 Peel Standy Power Study to be used for evaluating the standby power requirements.

The following sections details the industry best practices for water system.

## 3.1 AWWA Emergency Power Source Planning

The following summarizes the relevant information obtained from the AWWA document that applied to the study:

- The minimum requirement for water demand under emergency condition should be average day demand;
- Outage Duration:

- For the short term (local power outage)
  - Normally last less than 2 hours
    - Some events could last 16 hours of longer
- For the long term (catastrophic events)
  - No articulation of emergency duration
  - Castrophic events as such earthquakes, hurricane could last from a few hours to a month
  - The manual suggested that the duration should consider the previous event(s) and fuel tank size.

# 3.2 AWWA Manual of Water Supply Practices – M19 Emergency Planning for Water and Wastewater Utilities

The following summarizes the relevant information obtained from the AWWA M19 document that was related to the study

- No articulation of emergency duration
- No articulation of water demands required under emergency conditions
- The document mentioned that standby power would be required for protecting critical infrastructures.

## 3.3 EPA Power Resilience presentation, Guide for Water and Wastewater Utilities

The following summarizes the relevant information obtained from the EPA document that was related to the study

- Emergency standby power was designed for short-term use; typically rated to operate for no more than 200 hours per year
- The selection of standby power equipment must comply with local and federal regulations on generators, fuel storage, and use and maximum permissible testing.
- An extended emergency condition was referred to as the "Black Sky" incident that will last for at least 30 days.

## 3.4 MOE Design Guidelines for Drinking Water Systems

The following summarizes the relevant information obtained from the MOE document that was related to the study

- Standby power should be identified to ensure that average day demand can be met during a power outage
- Availability of storage capacity in the distribution should be taking into account when identifying the standby power requirements
- The following considerations were suggested by identifying the standby power requirements:
  - Frequency and length of power outages;
  - Reliability of primary power source;
  - Available treated water storage within the system;
  - Type of water storage (underground or elevated);
  - Requirements for fire protection;
  - Type of standby power; and
  - Lower level of emissions provided by alternative fuel technology

## 4. Model Update

As part of this study, AECOM used the hydraulic model that included the water infrastructure information as per the 2018 capital program. The model also included the population and demands as per Scenario 15 (SGU October, 2017) and subsequently validated the information with the latest projected population as per Scenario 16. The following sections provide a review of the proposed infrastructures, the estimation of the anticipated water demand (including York Region demand) and the design criteria definition.

- Update demand based on the latest planning forecasts (SGU Scenario 16) for planning years of 2017(existing), 2031 and 2041;
- Update the water model according to the latest master plan capital program to have the most recent infrastructures incorporated into the model;

In validating the applicability and the validity of the hydraulic model, the water demands for Scenario 15 and Scenario 16 were compared. Table 2 summarizes the comparison results.

|          | Scenario 15 (applied                     | in hydraulic and         | alysis)         | Scenario 16                              |                          |                 |
|----------|------------------------------------------|--------------------------|-----------------|------------------------------------------|--------------------------|-----------------|
| Year     | Region of Peel Under<br>Emergency (ML/d) | York<br>Demand<br>(ML/d) | Total<br>(ML/d) | Region of Peel Under<br>Emergency (ML/d) | York<br>Demand<br>(ML/d) | Total<br>(ML/d) |
| Existing | 868                                      | 100                      | 968             | 751                                      | 100                      | 851             |
| 2031     | 1,061                                    | 100                      | 1,161           | 899                                      | 100                      | 999             |
| 2041     | 1,179                                    | 100                      | 1,279           | 1,019                                    | 100                      | 1,119           |

### **Table 2: Water Demand Comparison**

As noted in Table 2, the water demands included in the hydraulic model were higher than those for Scenario 16. After reviewing this comparison result with the Region, it was concluded that the analysis results based on the current hydraulic model used for this study would provide relatively conservative results and it was considered acceptable.

### 4.1 Water Demand

The modeling water demand was established based on the latest Region's planning forecasts (SGU Scenario 16) and Master Plan's design criteria. Table 3 summarizes the residential and employment population-based on updated information from Scenario 16. The design criteria are presented in Table 4.

#### Table 3: Region of Peel Population as per Scenario 16

| Year | Residential Population | Employment-Population | Total Equivalent Population |
|------|------------------------|-----------------------|-----------------------------|
| 2020 | 1,489,743              | 748,556               | 2,238,299                   |
| 2031 | 1,735,231              | 863,628               | 2,598,858                   |
| 2041 | 1,931,654              | 963,439               | 2,895,093                   |

### Table 4: Design Criteria

| Design Criteria          | Residential Consumption | Employment Consumption |
|--------------------------|-------------------------|------------------------|
| Average Day Demand (ADD) | 270                     | 250                    |
| (L/cap/day)              |                         |                        |
| Maximum Day Factor (MDF) | 1.8                     | 1.4                    |

The model demand was calculated based on Maximum Day Demand for Residential plus Average Day Demand for Employment as per the 2007 South Peel Standby Power Study. Table 5 summarizes the water demands used for this study.

#### Table 5: Model Demand

| Year | Pagion of Paol Under Emergency (ML/d) | York Demand | Total   |
|------|---------------------------------------|-------------|---------|
|      | Region of Feel Onder Emergency (ML/d) | (ML/d)*     | (ML/d)  |
| 2020 | 751.0                                 | 100.0       | 851.0   |
| 2031 | 899.0                                 | 100.0       | 999.0   |
| 2041 | 1,019.0                               | 100.0       | 1,119.0 |

\*As a part of this study, the York Region demand is considered and agreed as 100ML/d as per the previous study for standby power (2007) and there is a provision for one reservoir turnover.

### 4.2 Watermain Infrastructure

As part of this study, the latest Capital Work Plans were reviewed. Please refer to the Region's Water and Wastewater Master Plan Update 2019 for further details of the recommended water infrastructure upgrades.

## 5. Basis of the Analysis

### 5.1 Assumptions

The following assumptions were applied in evaluating the standby power requirements

- Victoria reservoir was expected to be commissioned in 2022 and Snelgrove Elevated Tank was expected to be decommissioned in 2022
- Emergency supply for York Region was 100ML/d for analysis scenarios

### 5.2 Analysis Criteria

The Region's water distribution system was analyzed for the system pressure and flow velocity based on the following criteria from the Ministry of the Environment Design Guidelines for Drinking-Water Systems:

- Minimum acceptable pressure 275 kPa (40 psi)
- Maximum acceptable pressure 700 kPa (100 psi)
- Maximum acceptable velocity 2 m/s

## 5.3 Modeling Approach

The analysis was conducted in the Extended Period Simulation. The modeling scenarios were analyzed based on the following boundary conditions:

- The scenario began at 4 pm to simulate the start of the emergency condition; which was considered as peak hour demand period.
- The initial water storage level was 60% full. This value was validated based on historical SCADA / EMS.
- The simulation was performed for 72 hours and the duration of the emergency was analyzed for 3 hours, 12 hours, 24 hours, 48 hours and 72 hours. For each emergency duration scenario, the objective was to identify the minimum pumping requirements at each pumping station for maintaining the low water level at the reservoirs at the end of the emergency period. The following shows the low water level at each reservoir.

| Reservoir Name             | Zone | Min % | Status                       |  |
|----------------------------|------|-------|------------------------------|--|
| Silverthorn Reservoir      | 1C   | 40    | Existing                     |  |
| Herridge Reservoir         | 1W   | 37    | Existing                     |  |
| Hanlan Reservoir           | 2C   | 37    | Existing                     |  |
| Streetsville Reservoir     | 2W   | 37    | Existing                     |  |
| Beckett Sproule Reservoir  | 3C   | 37    | Existing                     |  |
| Airport Road Reservoir     | 3E   | 37    | Existing                     |  |
| Meadowvale Reservoir       | 3W   | 37    | Existing                     |  |
| East Brampton Reservoir    | 4C   | 37    | Existing                     |  |
| Tullamore                  | 4E   | 40    | Existing                     |  |
| West Brampton Reservoir    | 4W   | 37    | Existing                     |  |
| North Brampton Reservoir   | 5C   | 37    | Existing                     |  |
| Bolton Elevated Tank       | 6B   | 5     | Existing                     |  |
| Snelgrove Elevated Tank    | 6C   | 45    | To be decommissioned by 2022 |  |
| Mayfield Elevated Tank     | 7C   | 37    | Existing                     |  |
| Victoria Reservoir         | 6C   | 37    | To be commissioned by 2022   |  |
| Alloa Reservoir            | 5W   | 37    | Existing                     |  |
| West Caledon Elevated Tank | 7W   | 37    | To be commissioned by 2027   |  |

## 5.4 Standby Power Evaluation Methodology

The following summarizes the evaluation approach for identifying the standby power requirements at the pumping facilities.

- Utilized hydraulic modeling results to identify minimum pump operation for maintaining minimum water service
- Identified the horsepower requirements at each station based on simulated pump ON/OFF status.
   Based on design pump horsepower at per OCWA pump station schematic
- Compared horsepower requirements with the available standby power. Required standby power was calculated based on the following considerations:
  - o Reduce the total installed standby power to address Base Load for each station;
  - o Increase the required standby power to address the energy usage for pump startup;
    - Additional 50% of horsepower requirement for a single largest pump in operation Reduce the total installed standby power by 25 % to consider the energy efficiency of the
  - Reduce the total installed standby power by 25 % to consider the energy efficiency of the unit that was operated beyond 3 hours.

## 6. Hydraulic Analysis Methodology

## 6.1 Available Power for Pumping

After reviewing the data provided by the Region (PCNs, O&Ms, etc.), the total capacity at each station was obtained and the following table is summarizing the total installed and total available capacity at each station. The available power for operating the pump(s) presented in Table 6 was used to analyze the required standby power for each pumping station under emergency conditions. As noted in Section 5.4, the available standby power was calculated based on the following considerations:

- Base Load:
  - Base loads for Arthur P. Kennedy Water Treatment Plant and Lorne Park Water Treatment Plant were provided by the Region
  - Base load for East Brampton Pumping Station was calculated by comparing the Historical pump ON/OFF Status as per SCADA and energy consumption records
    - The different pump ON/OFF status was compared to the energy consumption records to identify the energy consumption for each pump;
    - Historical energy consumption was subtracted by the total energy usage for the number of pumps in operation for the same period to determine the base load
    - The calculated base load for East Brampton was about 56kW
  - Base loads for other pumping stations were assumed to be the ratio between the base load and installed standby power at East Brampton (about 4%)
  - Available standby power capacity was reduced by 25% after 3 hours of continuous operation

| Pumping<br>Stations  | Zones             | Total Installed<br>Standby Power<br>(kW) | Auxiliary Load<br>(kW) – Base Load | Available Power<br>for Pumping for<br>first 3 hours (kW) | Available Power<br>for Pumping after<br>3 hours (kW) |
|----------------------|-------------------|------------------------------------------|------------------------------------|----------------------------------------------------------|------------------------------------------------------|
| Arthur P. Kennedy    | Zone 1            | 12 000                                   | 1,058                              | 10,942                                                   | 8,207                                                |
| (APK)                | Zone 2            | 12,000                                   |                                    |                                                          |                                                      |
| Lorne Park (LP)      | Zone 1            | 0.200                                    | 1,200                              | 8,100                                                    | 6,075                                                |
|                      | Zone 2            | 9,300                                    |                                    |                                                          |                                                      |
| Cilcontheory (CNI)   | Zone 2            | 2 000                                    | 110                                | 2,887                                                    | 2,165                                                |
| Silvertilorii (Silv) | Zone 3            | 3,000                                    | 115                                |                                                          |                                                      |
| Herridge (HG)        | Zone 2            | 3 000                                    | 112                                | 2,887                                                    | 2,165                                                |
| nemage (no)          | Zone 3            | 3,000                                    | 115                                |                                                          |                                                      |
|                      | Zone 3            |                                          |                                    | 5,293                                                    | 3,970                                                |
| Hanlan (HN)          | Zone 4            | 5,500                                    | 207                                |                                                          |                                                      |
|                      | Zone 3 (Transfer) |                                          |                                    |                                                          |                                                      |
| Streetsville (SV)    | Zone 3            | 3 000                                    | 113                                | 2,887                                                    | 2,165                                                |
| Streetsville (SV)    | Zone 4            | 3,000                                    |                                    |                                                          |                                                      |
| Meadowyale (MV)      | Zone 4            | 3 500                                    | 66                                 | 3,434                                                    | 2,576                                                |
|                      | Zone 5            | 3,300                                    |                                    |                                                          |                                                      |
|                      | Zone 4            |                                          | 169                                | 4,331                                                    | 3,248                                                |
| Becket Sproule (BS)  | Zone 5            | 4,500                                    |                                    |                                                          |                                                      |
|                      | Zone 4 (Transfer) |                                          |                                    |                                                          |                                                      |
|                      | Zone 4            |                                          | 151                                | 3,849                                                    | 2,887                                                |
| Airport (AP)         | Zone 5            | 4,000                                    |                                    |                                                          |                                                      |
|                      | York Region       |                                          |                                    |                                                          |                                                      |
| West Brampton (WB)   | Zone 5            | 1,360                                    | 51                                 | 1,309                                                    | 982                                                  |
|                      | Zone 6            |                                          |                                    |                                                          |                                                      |
| East Brampton (EB)   | Zone 5            | 1,500                                    | 56                                 | 1,444                                                    | 1,083                                                |
|                      | Zone 6            |                                          |                                    |                                                          |                                                      |
| Tullamore (TM)       | Zone 5            | 1 500                                    | 56                                 | 1,444                                                    | 1,083                                                |
|                      | Zone 6            | 1,500                                    |                                    |                                                          |                                                      |
| North Brampton (NB)  | Zone 6            | 750                                      | 28                                 | 722                                                      | 542                                                  |
|                      | Zone 7            |                                          |                                    |                                                          |                                                      |
| Alloa (AA)           | Zone 6            | 1.250                                    | 47                                 | 1,203                                                    | 902                                                  |
|                      | Zone 7            | 1,200                                    |                                    |                                                          |                                                      |

## Table 6: Available Horsepower Capacity at Existing Pump Stations

## 6.2 Pump Selection

Pumps selection for each scenario was determined using the following priorities:

- 1. Designated pumps mentioned in PCN or O&M
- 2. Variable Frequency Drive Pumps (VFD)
- 3. Large size pumps
- 4. Medium Size pumps
- 5. Small size pumps

Using the above list and the total available power at each station, the combinations of pumps were selected to provide water service under emergency or blackout conditions.

## 7. Modeling Results

The hydraulic analysis was conducted for the modeling scenarios to evaluate and confirm the serviceability under emergency conditions. The modeling results were utilized to confirm the pump selection for maintaining adequate water service in the system and the results were used for evaluating the standby power requirements under various modeling scenarios; including different emergency durations. Table 7 summarizes the additional standby power requirements at each pumping station.

The analysis results as presented in Table 7 led to the following key findings.

- Sufficient stand power capacity was installed at the water facilities to meet the 3 hours emergency duration until 2031.
- Standby power capacity upgrades at North Brampton and Tullamore Pumping Stations would be required by 2041.
- Additional standby power capacity requirement at North Brampton Pumping Station was dropped in 2031 for the 12 hours to 72 hours emergency durations due to the commissioning of Victoria Reservoir.
- In comparison of the additional standby power capacity for the 12 hours to 72 hours emergency duration for 2041, the required additional capacity in these scenarios were nearly identical.

#### **Additional Standby Power** Additional Standby Power **Additional Standby Power** Additional Standby Power **Additional Standby Power** for 3 hours Duration (kW) for 12 hours Duration (kW) for 24 hours Duration (kW) for 48 hours Duration (kW) for 72 hours Duration (kW) System Station 2020 2031 2041 2020 2031 2041 2020 2031 2041 2020 2031 2041 2020 2031 2041 Central APK<sup>1</sup> --4,426 -4,426 4,426 5,321 4,426 5,321 --5,321 5,321 --Central SN 109 668 668 668 370 668 668 370 668 668 -----Central HN 262 262 560 262 560 -----560 -560 --Central BS 368 368 368 368 368 368 368 368 368 368 368 368 ---EΒ Central -185 483 185 185 185 185 185 483 185 185 483 ---NB Central -173 130 --241 18 130 241 18 130 241 18 130 -West LΡ 319 991 319 991 170 991 991 170 991 991 -----HG West --------------West SV 463 1.545 463 1.545 240 985 1.545 240 985 1.545 -----West ΜV . . ---. -. -. --. --West WB 174 361 174 361 361 361 361 361 361 361 -----West AA -421 -421 645 645 ---------AP 96 432 96 432 432 96 432 432 East 432 96 432 432 ---ТΜ 271 36 408 36 408 408 36 408 408 36 408 408 East --408

#### Table 7: Standby Power Evaluation Results

<sup>&</sup>lt;sup>1</sup> Included future capacity upgrade to a total capacity of 18000kW as per Region capital plan

## 8. CONCLUSIONS AND RECOMMENDATIONS

The completion of this analysis for the Region of Peel leads to the following conclusions:

- In reviewing of the industry best practices for providing water services under emergency conditions, the following materials were studied:
  - o AWWA Emergency Power Source Planning for Water and Wastewater, 2004
  - AWWA Manual of Water Supply Practices M19, Fifth Edition, Emergency Planning for Water and Wastewater Utilities, 2018
  - o EPA Power Resilience presentation, Guide for Water and Wastewater Utilities, 2019
  - o MOE Design Guidelines for Drinking Water Systems, 2019
- The key information that was obtained from these documents was:
  - The level of service under extended emergency conditions should be 72hours based on the latest Blackout event in 2003.
  - The standby power requirements should be designed to meet average day demand conditions
    - Region of Peel used maximum day demand for residential use plus average day demand for employment use; which was considered appropriate
- To confirm the system upgrade requirements for extended emergency conditions, this study included an assessment of the additional standby power capacity needs for 72 hours.
- The standby power analysis was completed based on the same criteria as those in the Peel Standby Power Study, 2007.
  - Water demand under emergency condition = MDD for Residential plus ADD for Employment
  - The following additional considerations were applied in evaluating the required standby power capacity:
    - Base load
    - 25% reduction in available standby power capacity after 3 hours of operation
    - 50% increase in power requirement for pump start-up
- The hydraulic modeling results show that the Region of Peel would provide sustainable water service under 3 hours emergency duration until 2041; Upgrades in North Brampton and Tullamore Pumping Stations were identified in 2041.
- Since additional standby power capacity for the 12 hours to 72 hours emergency duration for 2041 were
  marginal, it is recommended the Region to further review the level of service requirements under
  emergency conditions in the next master plan study. The following summarizes the recommended
  investigation for identifying the suitable level of service on a station by station basis:
  - Review fuell storage capacity for emergency duration.
  - Review land availability
  - Review pump station expandability to accommodate additional standby power unit(s)

- o Revview life cycle for standby power equipment and replacement option(s):
  - Fuel type (e.g. diesel, natural gas)
  - Continuous backup power to maximum the efficiency under long term outage condition
- o Detailed cost analysis for the above noted considerations
- o Review the standby power requirements for wastewater system (sanitary sewer lift station)

## Appendix A:

## **Detailed Hydraulic Modelling Results**



Figure A.1 System Pressures for 3 hours Emergency Duration under Existing Demand Conditions



## **Tank Group Graphs**

Figure A.2: Tank Levels for 3 hours Emergency Duration under Existing Demand Conditions



Figure A.3 System Pressures for 12 hours Emergency Duration under Existing Demand Conditions



## **Tank Group Graphs**

Figure A.4: Tank Levels for 12 hours Emergency Duration under Existing Demand Conditions



Figure A.5 System Pressures for 24 hours Emergency Duration under Existing Demand Conditions



## **Tank Group Graphs**

Figure A.6: Tank Levels for 24 hours Emergency Duration under Existing Demand Conditions



Figure A.7 System Pressures for 48 hours Emergency Duration under Existing Demand Conditions


Figure A.8: Tank Levels for 48 hours Emergency Duration under Existing Demand Conditions



Figure A.9 System Pressures for 72 hours Emergency Duration under Existing Demand Conditions



Figure A.10: Tank Levels for 72 hours Emergency Duration under Existing Demand Conditions



Figure A.11 System Pressures for 3 hours Emergency Duration under 2031 Demand Conditions



Figure A.12: Tank Levels for 3 hours Emergency Duration under 2031 Demand Conditions





Figure A.13 System Pressures for 12 hours Emergency Duration under 2031 Demand Conditions



Figure A.14: Tank Levels for 12 hours Emergency Duration under 2031 Demand Conditions



Figure A.15 System Pressures for 24 hours Emergency Duration under 2031 Demand Conditions



Figure A.16: Tank Levels for 24 hours Emergency Duration under 2031 Demand Conditions



Figure A.17 System Pressures for 48 hours Emergency Duration under 2031 Demand Conditions



Figure A.18: Tank Levels for 48 hours Emergency Duration under 2031 Demand Conditions



Figure A.19 System Pressures for 72 hours Emergency Duration under 2031 Demand Conditions



Figure A.20: Tank Levels for 72 hours Emergency Duration under 2031 Demand Conditions



Figure A.21 System Pressures for 3 hours Emergency Duration under 2041 Demand Conditions



Figure A.22: Tank Levels for 3 hours Emergency Duration under 2041 Demand Conditions





Figure A.23 System Pressures for 12 hours Emergency Duration under 2041 Demand Conditions



Figure A.24: Tank Levels for 12 hours Emergency Duration under 2041 Demand Conditions



Figure A.25: System Pressures for 24 hours Emergency Duration under 2041 Demand Conditions



Figure A.26: Tank Levels for 24 hours Emergency Duration under 2041 Demand Conditions



Figure A.27 System Pressures for 48 hours Emergency Duration under 2041 Demand Conditions



Figure A.28: Tank Levels for 48 hours Emergency Duration under 2041 Demand Conditions



Figure A.29 System Pressures for 72 hours Emergency Duration under 2041 Demand Conditions



Figure A.30: Tank Levels for 72 hours Emergency Duration under 2041 Demand Conditions



REGIONAL MUNICIPALITY OF PEEL





Dounter Laur. אין שייט יאט ויטעעע ויטעבע - זיאטיטי אין אישיוע איי







ocument Path:



