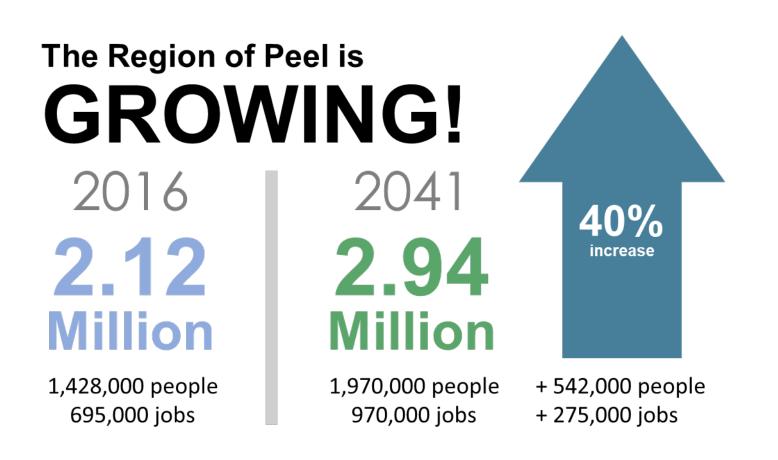
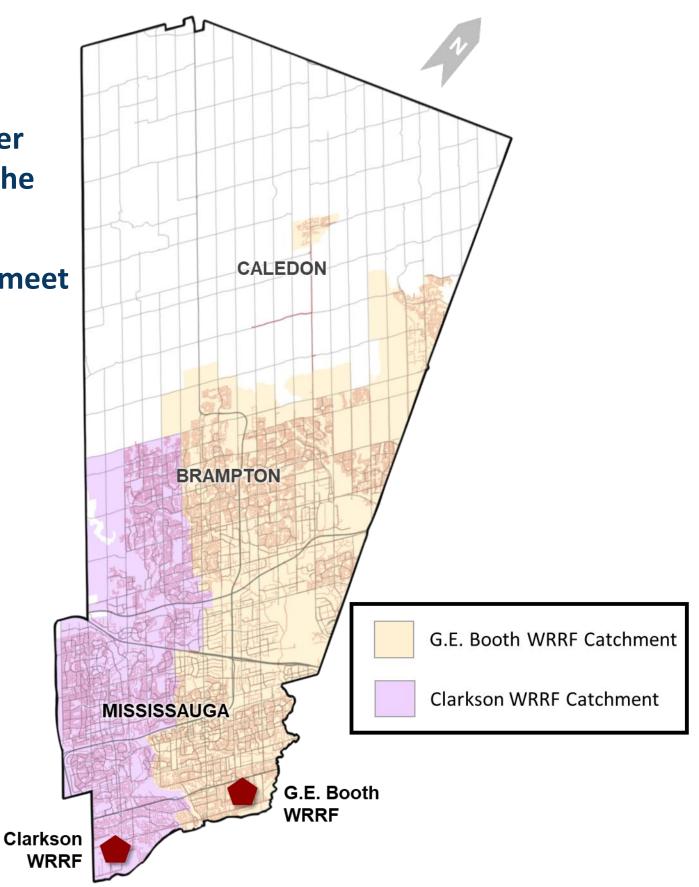


Peel Wastewater Treatment Solutions

G.E. Booth Water Resource Recovery Facility Schedule C Class Environmental Assessment

The Region of Peel is situated on the Treaty Lands and Territory of the Mississaugas of the Credit First Nation as well as the traditional territory of the Anishinabeg, Huron-Wendat, and Haudenosaunee peoples.

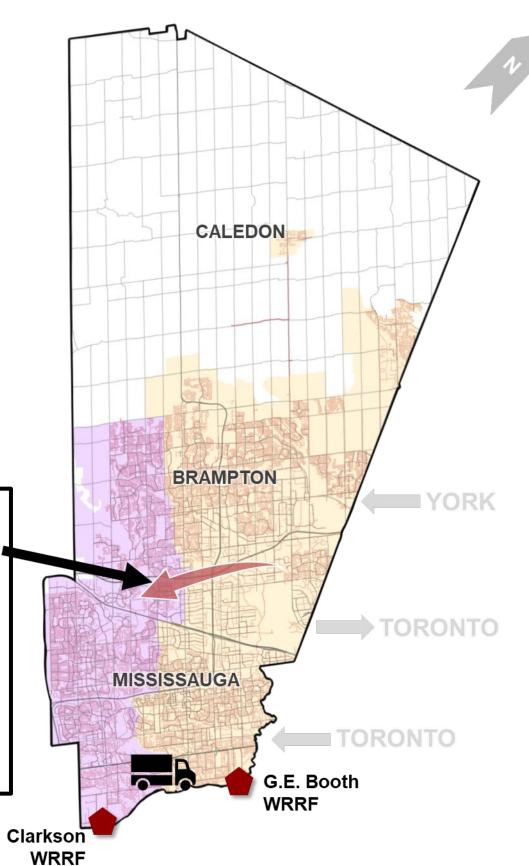

Virtual Public Information Event No. 4 On Display from Wednesday, March 15th, 2023


Background Information

 Wastewater from residential, commercial, institutional, and industrial users in the Region of Peel is collected through a network of sewers and pumping stations and treated at either the G.E. Booth Water Resource Recovery Facility (WRRF) or the Clarkson WRRF.

• As population grows in Peel, there is insufficient capacity to meet future wastewater treatment needs at the WRRFs.

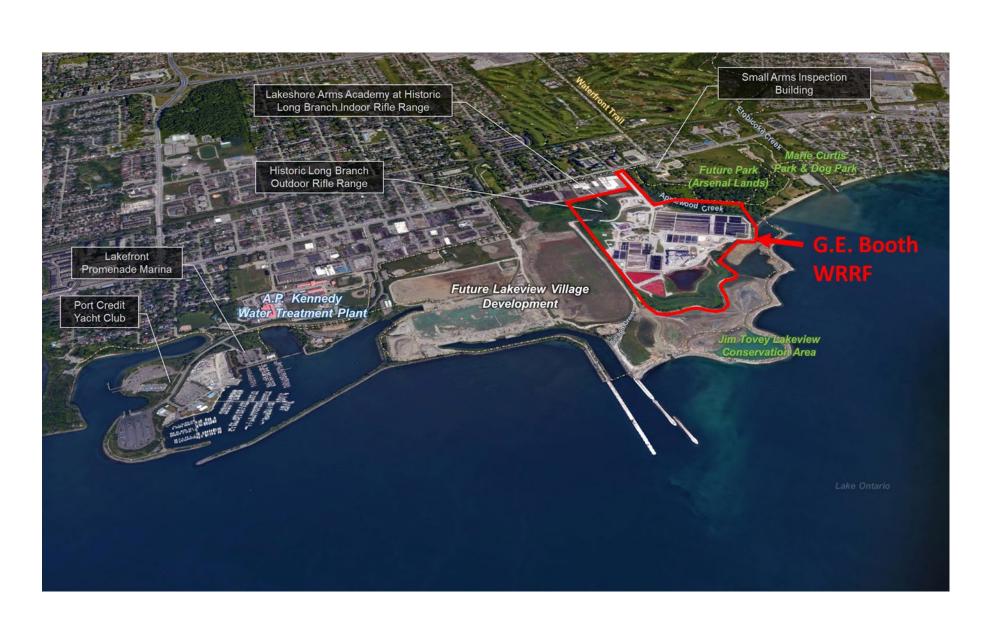
Peel's Wastewater Treatment System



G.E. Booth WRRF (518 MLD)

Clarkson WRRF (350 MLD)

The East-West Diversion is a deep gravity trunk sewer of 2400 mm diameter currently being constructed along Derry Road. It is expected to be completed and operational by 2027. It allows Peel to divert flows from the G.E. Booth WRRF catchment area where there are capacity limitations, to the Clarkson WRRF catchment area which currently has surplus capacity.


Problem / Opportunity Statement

The Region is undertaking two Schedule C Class EAs to develop preferred solutions at the G.E Booth WRRF and the Clarkson WRRF that will:

- Meet future needs associated with population growth, new regulations, climate resiliency, energy efficiency, and wet weather flow management.
- Address community expectations regarding level of service, odour, air/noise, water quality, protection of the environment and aesthetics.
- Provide greater flexibility and reliability in wastewater and biosolids management.

This Public Information Centre focuses on the Schedule C Class EA for the G.E. Booth WRRF.

Goals & Objectives of the Class EAs

23	Long-Term Sustainability	 Region-wide wastewater and biosolids management with operational flexibility Multiple biosolids product marketing opportunities Resource recovery through beneficial use
	Resiliency	 Manage wet weather flows Adapt to changing conditions Built-in redundancy in treatment processes
(P)	Energy Efficiency and Reduce Greenhouse Gas (GHG) Emissions	 Support Peel's GHG Reduction Goals Energy Reduction and Reuse Opportunities
	Environmental Protection	 Mitigate risks to natural environments Meet air and effluent quality requirements
RFIR	Community Acceptability	 Manage odour and noise Limit truck traffic Visually appealing designs and landscaping
U p	Ease of Operations	Operator acceptabilityProven processes
	Fiscally Responsible	Balance life-cycle costs, while protecting the environment and communities

Class EA Process

_			_	
D	Н	м		4
r	_	_	_	

Identify Problem and Opportunity

Problem or Opportunity

Notice of Commencement (July 16, 2020)

PHASES 1 & 2
COMPLETED
CONCURRENTLY FOR
G.E. BOOTH WRRF
AND CLARKSON WRRF

PHASE 2

Alternative Solutions

Identify Alternative Solutions to Problem and Opportunity

Public Information Event No. 1.
RE: Problem / Opportunity
Statement and Alternative
Solutions

Inventory Natural, Social, Economic Environment

Identify Impact of Alternative Solutions on the Environment, and Mitigating Measures

Evaluate Alternative Solutions: Identify Recommended Solutions

Public Information Event No. 2. RE: Preliminary Preferred Solution

Select Preferred Solution

PHASE 3

Alternative Design Concepts for Preferred Solution

Identify Alternative Design
Concepts (technologies, construction methods, site layouts)

Detail Inventory Natural, Social, Economic Environment

Identify Impact of Alternative Designs on Environment, and Mitigating Measures

Evaluate Alternative Designs: Identify Recommended Design Concepts

Public Information Event No. 3.
RE: Preliminary Preferred Design
Concept for Clarkson WRRF
(May 11, 2022)

Public Information Event No. 4. RE: Preliminary Preferred Design Concept for G.E. Booth WRRF

We are here!

Select and Finalize Preferred
Design Concept

PHASE 4

Environmental Study Report (ESR)

Complete Environmental Study Report (ESR)

Environmental Study Report (ESR) Placed on Public Record

Notice of Completion to Review Agencies and Public

Opportunity to Request Minister Within 30 Days of Notification to consider a Section 16 Order

PHASE 5

Implementation

Complete Contract Drawings and Tender Documents

Proceed to Construction and Operation

Monitor for Environmental Provisions and Commitments

PHASES 3, 4, & 5
COMPLETED
SEPARATELY FOR G.E.
BOOTH WRRF AND
CLARKSON WRRF

PIC No.4 Objectives

Objective: Review Phase 2 solutions and provide an overview of Phase 3 of the Class EA for the G.E. Booth WRRF

Present recommendations and preliminary preferred design concepts for key study components.

Provide clarity on the Municipal Class Environmental Assessment process and results.

Identify next steps and study commitments.

Receive feedback on the preliminary preferred design concepts.

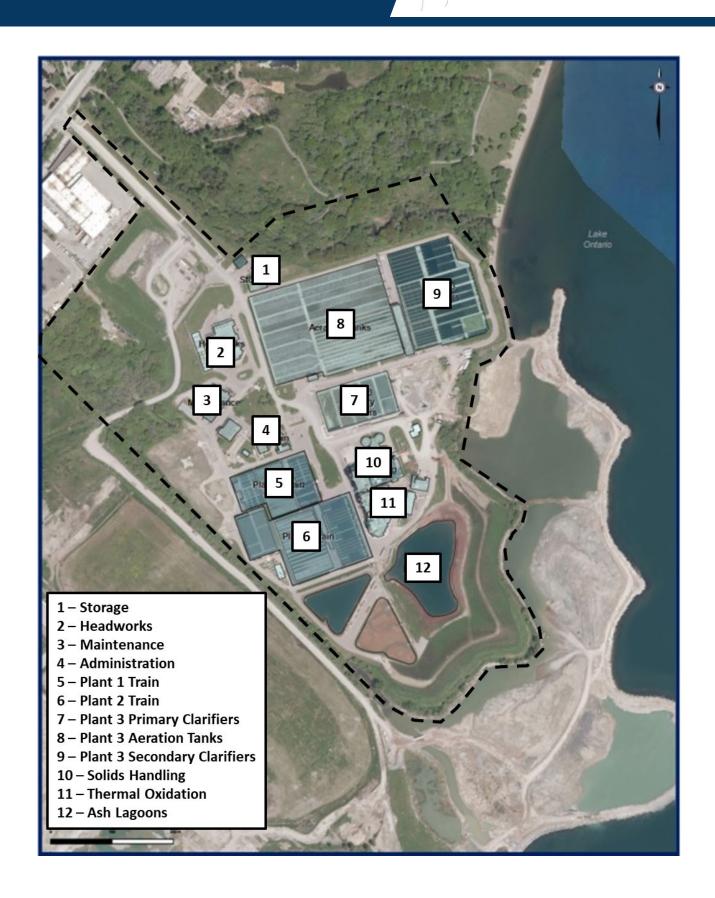
This is the fourth and final PIC for the G.E. Booth WRRF and Clarkson WRRF studies. PIC #1 (October 2020) and PIC #2 (April 2021) were conducted for Phases 1 & 2, respectively, for both plants. PIC #3 (May 2022) was conducted to outline the Phase 3 recommendations for the Clarkson WRRF.

Phase 3 Key Questions

- What technologies should we use to treat our wastewater (liquid and solids components)?
- Where should our treated biosolids go and be used?
- Do we require additional outfall capacity? How will it be provided?
- How should the wastewater plant site be laid out and look?
- How do we mitigate environmental and social impacts?

Phase 2: Existing Conditions

Wastewater Treatment


- Plant treats flows using conventional activated sludge (CAS)
 process with an average rated flow capacity of 518 Megalitres per
 day (MLD).
- Processes include screening, grit removal, primary clarification, aeration, secondary clarification, and chlorine disinfection and dechlorination prior to discharge to Lake Ontario through the plant's outfall.
- Ongoing upgrades include the replacement of Plant 1, upgrades to Plant 3 primary clarifiers, and incinerator refurbishment.

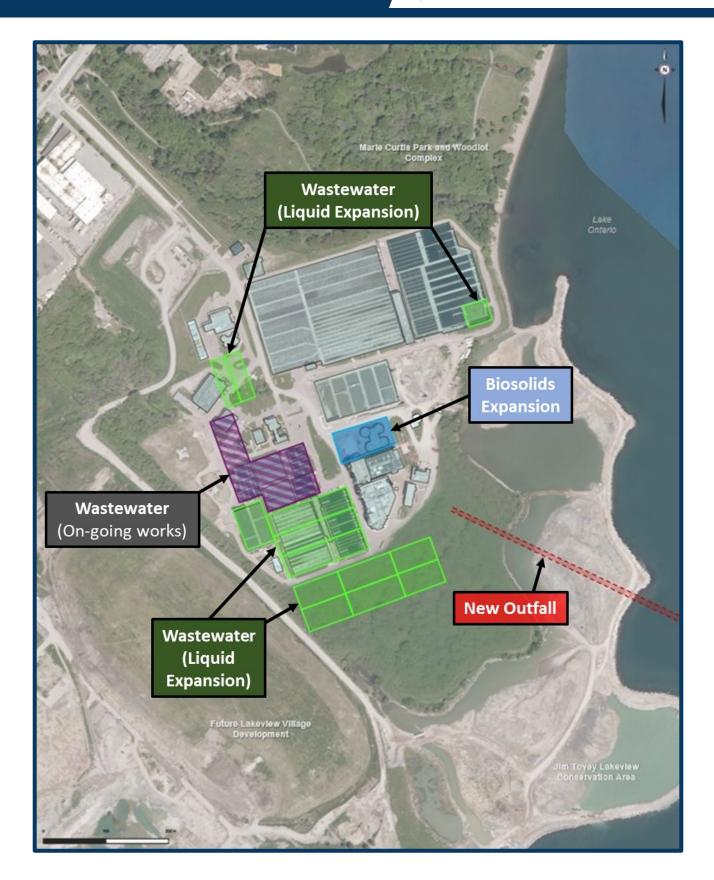
Outfall

 Existing outfall is 3.65 metres in diameter and 1,435 metres in length and conveys effluent from Plants 1, 2, & 3 into Lake
 Ontario.

Biosolids Management

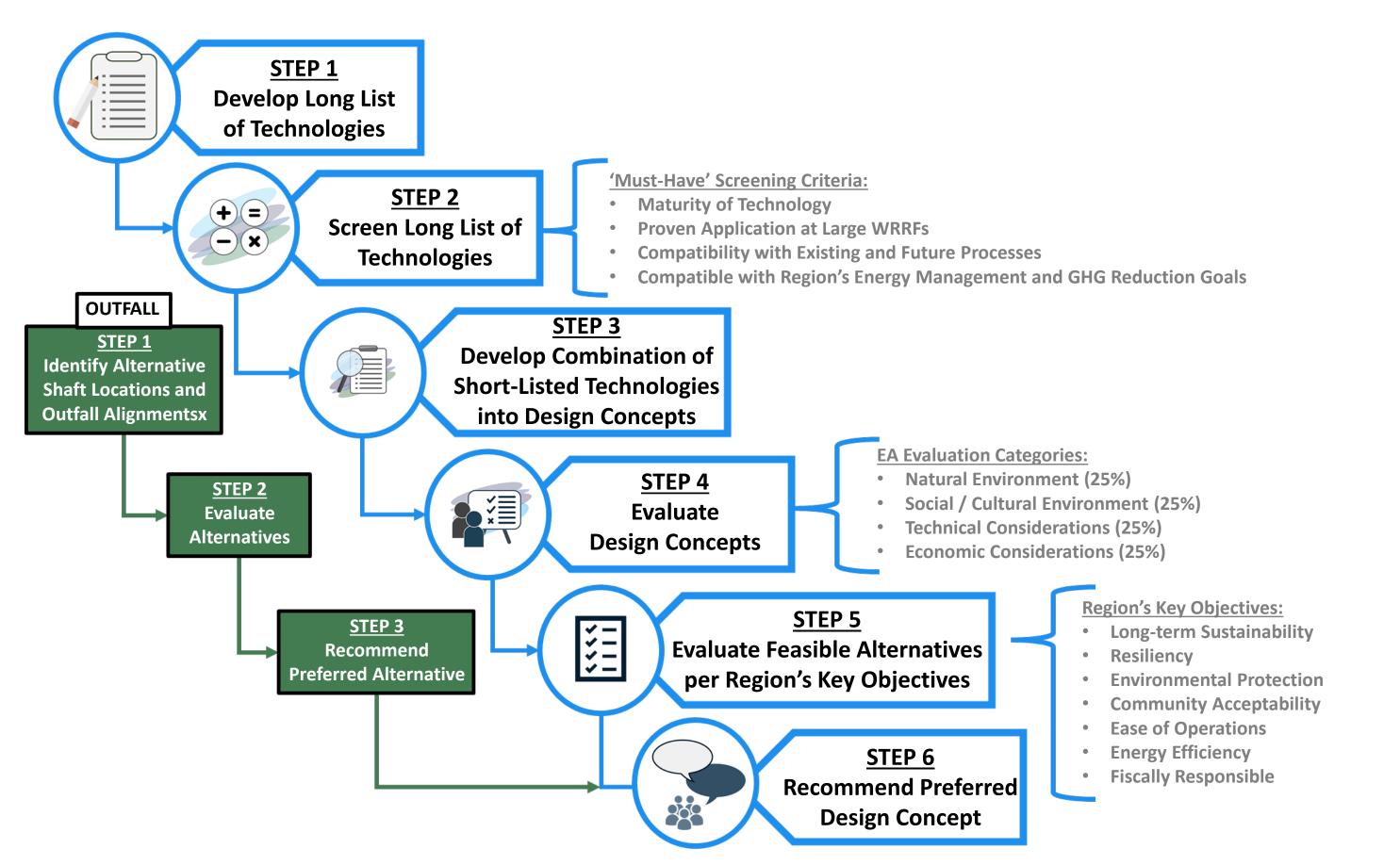
- Primary and waste activated sludge (WAS) is dewatered and incinerated in four fluidized bed incinerators.
- Digested sludge from the Clarkson WRRF is currently trucked to the
 G.E. Booth WRRF for incineration.
- Ash slurry from the incinerators is pumped to ash lagoons for settling and storage.

Phase 2: Recommended Solutions

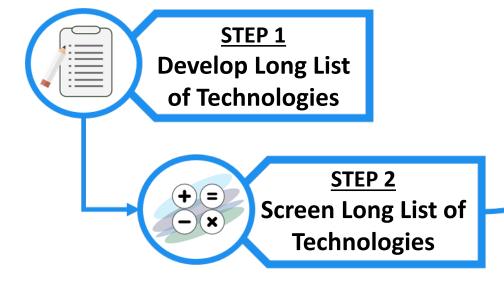


Recommended Strategy to Treat Wastewater

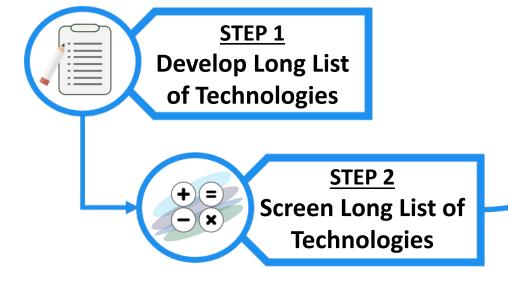
- Divert flows through the East-West Diversion Trunk Sewer
- Expand the G.E. Booth WRRF from 518 MLD to 550 MLD
- New Outfall at the G.E. Booth WRRF
- Expand the Clarkson WRRF from 350 MLD to 500 MLD


Recommended Strategy to Manage Biosolids

- Provide biosolids treatment at the Clarkson WRRF and market product for beneficial land use. This will result in phasing out the trucking of sludge from the Clarkson WRRF to the G.E. Booth WRRF.
- Assess alternatives for treatment and management of solids at the G.E. Booth WRRF, taking into consideration the incinerators' remaining service life and the investment Peel has made in the technology.


Phase 3: Evaluation Approach

Wastewater Treatment – Long List Alternatives & Screening


'Must-Have' Screening Criteria:

- Maturity of Technology
- Proven Application at Large WRRFs
- Compatibility with Existing and Future Processes
- Compatible with Region's Energy Management and GHG Reduction Goals

No.	Technology Alternative	Maturity of Technology	Proven Application at Large WRRFs	Compatibility with Existing and Future Processes	Compatible with Region's Energy Management and GHG Reduction Goals	SHORT-LISTED FOR EVALUATION
1	Conventional Activated Sludge (CAS)	Positive/No Impact	Positive/No Impact	Positive/No Impact	Moderate Impact	Yes
2	CAS with Chemically Enhanced Primary Treatment (CEPT)	Positive/No Impact	Positive/No Impact	Positive/No Impact	Positive/No Impact	Yes
3	CAS with Wet Weather Flow (WWF) Treatment	Positive/No Impact	Moderate Impact	Positive/No Impact	Moderate Impact	Yes
4	Ballasted Activated Sludge (BAS)	Moderate Impact	High Impact	Positive/No Impact	Moderate Impact	No
5	Biological Nutrient Removal (BNR)	Moderate Impact	Moderate Impact	High Impact	Positive/No Impact	No
6	Membrane Bioreactor	Positive/No Impact	Moderate Impact	Positive/No Impact	High Impact	No
7	Membrane Aerated Biofilm Reactor	Moderate Impact	High Impact	Positive/No Impact	Positive/No Impact	No
8	Integrated Fixed-Film Activated Sludge / Moving Bed Bioreactor	Moderate Impact	High Impact	High Impact	High Impact	No
9	Sequencing Batch Reactor	Positive/No Impact	Moderate Impact	High Impact	High Impact	No
10	Aerobic Granular Sludge	Moderate Impact	Moderate Impact	High Impact	Moderate Impact	No
11	Biological Aerated Filter	Positive/No Impact	Positive/No Impact	High Impact	High Impact	No

Wastewater Disinfection – Long List Alternatives & Screening

'Must-Have' Screening Criteria:

- Maturity of Technology
- Proven Application at Large WRRFs
- Compatibility with Existing and Future Processes
- Compatible with Region's Energy Management and GHG Reduction Goals

No.	Technology Alternative	Maturity of Technology	Proven Application at Large WRRFs	Compatibility with Existing and Future Processes	Compatible with Region's Energy Management and GHG Reduction Goals	SHORT-LISTED FOR EVALUATION
1	Chlorination/ dechlorination	Positive/No Impact	Positive/No Impact	Positive/No Impact	Moderate Impact	Yes
2	UV Disinfection	Positive/No Impact	Positive/No Impact	Moderate Impact	Moderate Impact	Yes
3	Ozonation	Positive/No Impact	Moderate Impact	Moderate Impact	High Impact	No
4	Peracetic Acid	Moderate Impact	Moderate Impact	High Impact	Moderate Impact	No

Description of Alternative Wastewater Design Concepts

Wastewater Treatment

Alternative	Description
Conventional Activated Sludge (CAS) Process	This alternative involves expanding the G.E. Booth WRRF with new CAS process trains which are consistent with the existing facility and would follow the same operating philosophy. There are opportunities to retrofit CAS tankage in the future to accommodate other newer technologies to optimize aeration and energy efficiency.
CAS Process with	This alternative involves expanding the G.E. Booth WRRF with new CAS process trains optimized with CEPT. The
Chemically Enhanced Primary Treatment	addition of metal salts and polymer upstream of the primary clarifiers would aid with solids settling, reducing the organic and solids load to the secondary treatment process. This would reduce the size of the aeration tanks and
(CEPT) CAS Process Optimized	would reduce the energy consumption required for aeration. This alternative involves implementing WWF management to reduce peak flows to the G.E. Booth WRRF. This could involve either a parallel, high-rate treatment facility at the plant or implementing Real Time Control (RTC)
with Wet Weather Flow (WWF) Management	in the collection system. The G.E. Booth WRRF would be expanded with new CAS process trains. This alternative would allow for the construction of smaller CAS tanks.

Wastewater Disinfection

Alternative	Description
Chlorination/ dechlorination	This technology involves expanding the disinfection facilities at the G.E. Booth WRRF using chlorination and dechlorination. This might involve construction of a new chlorine contact tank or integration with the proposed new outfall.
Ultraviolet (UV) Disinfection	This technology involves construction of a new UV disinfection facility including in-channel UV disinfection systems and power equipment.

Wastewater Treatment and Disinfection: Design Concept Evaluation

STEP 4
Evaluate
Design Concepts

EA Evaluation Categories:

- Natural Environment (25%)
- Social / Cultural Environment (25%)
- Technical Considerations (25%)
- Economic Considerations (25%)

Minimal difference in the overall scoring of the design concepts, therefore a second evaluation was conducted based on the Key Objectives of the Region.

Wastewater Treatment Design Concepts

	Design Concepts	Natural Environment (25%)	Social – Cultural Environment (25%)	Technical Considerations (25%)	Economic Considerations (25%)	Total Score (100%)
Convention	nal Activated Sludge (CAS)	17.1	17.0	18.4	15.8	68.4
CAS with Chemically Enhanced Primary Treatment (CEPT)		16.7	16.8	18.6	14.2	66.3
CAS with	CAS with High- Rate Clarification	18.3	18.0	19.8	15.0	71.1
WWF Treatment	CAS Optimized using Real Time Control (RTC)	18.3	18.0	19.8	17.5	73.6

Wastewater Disinfection Design Concepts

Design Concepts	Natural Environment (25%)	Social – Cultural Environment (25%)	Technical Considerations (25%)	Economic Considerations (25%)	Total Score (100%)
Chlorination / Dechlorination	17.9	20.7	20.9	15.8	75.3
Ultraviolet (UV) Disinfection	18.3	21.4	20.5	16.7	76.9

Wastewater Treatment and Disinfection: Evaluation of Feasible Design Concepts

STEP 5

Evaluate Feasible Alternatives per Region's Key Objectives

Region's Key Objectives:

- Long-term Sustainability
- Resiliency
- Environmental Protection
- Community Acceptability
- **Ease of Operations**
- Energy Efficiency
- Fiscally Responsible

Wastewater Treatment Design Concepts

Design Concepts	Long-term Sustainability	Resiliency	Environmental Protection	Community Acceptability	Ease of Operations	Energy Efficiency	Fiscally Responsible	Preferred Alternative
Conventional Activated Sludge (CAS)	✓							
CAS with Chemically Enhanced Primary Treatment (CEPT)	✓					✓		
CAS with High-Rate Clarification	✓	✓	✓	✓	✓			
CAS Optimized using Real Time Control (RTC)	✓	✓	✓	✓	✓		✓	\checkmark

Wastewater Disinfection Design Concepts

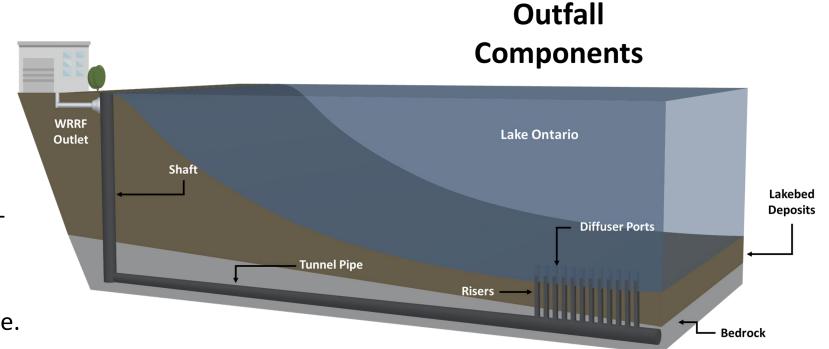
Design Concepts	Long-term Sustainability	Resiliency	Environmental Protection	Community Acceptability	Ease of Operations	Energy Efficiency	Fiscally Responsible	Preferred Alternative
Chlorination / Dechlorination		✓			✓	✓	✓	
Ultraviolet (UV) Disinfection	✓	✓	✓	✓	✓		✓	\checkmark

Outfall - Existing Conditions

An outfall conveys treated effluent from a WRRF and discharges it into a body of water. Components of the outfall system are:

On-shore shaft

- The outfall shaft is located on the east side of the plant.
- Effluent conduits convey flow from Plants 1, 2, & 3 to the effluent channels of the outfall shaft.


Off-shore tunneled pipe

• The existing outfall pipe is 3.65 metres in diameter and 1,435-metres in length.

Risers and diffusers

There are 35 diffusers in the last 212 metres of the outfall pipe.

A new outfall is required at the G.E. Booth WRRF for the following reasons:

- The rated peak flow capacity of outfall is 1,523 MLD, however it can only convey 1,200 MLD before flooding the secondary clarifier weirs.
- The existing outfall and diffuser system does not extend far enough into Lake Ontario to generate the dilutions required to meet Provincial Water Quality Objectives (PWQOs).
- There is insufficient peak flow capacity to meet future needs to the year 2041 and beyond.

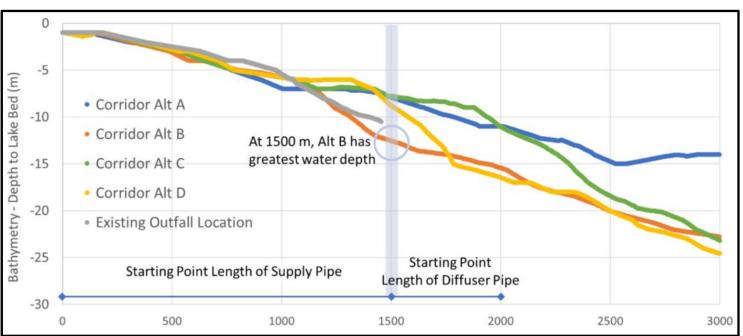
Outfall – Evaluation of Outfall Shaft Locations

Evaluation of potential locations was based on:

- Site spatial requirements
- Proximity to existing connections (effluent conduits)
- Ease of connection to District Energy Centre (DEC)
 - The DEC will use treated effluent to heat and cool future buildings in the Lakeview Development Area
- Avoiding the Jim Tovey Lakeview Conservation Area (JTLCA)

Alternative 1 was determined to be the preferred shaft location based on:

- ✓ Optimized construction sequencing with DEC
- ✓ Opportunities for capital cost savings and lowest overall cost
- ✓ Shortest construction duration


Alternative Shaft Locations	Natural Environment (25%)	Social – Cultural Environment (25%)	Technical Considerations (25%)	Economic Considerations (25%)	Total Score (100%)
Alternative 1 (East of existing disinfection building)	17.5	18.3	18.3	15.0	69.1
Alternative 2 (Southeast of existing ash storage pond)	17.5	18.3	13.3	10.0	59.1
Alternative 3 (Adjacent to existing outfall shaft near Plant 3)	10.0	16.7	8.3	5.0	40.0

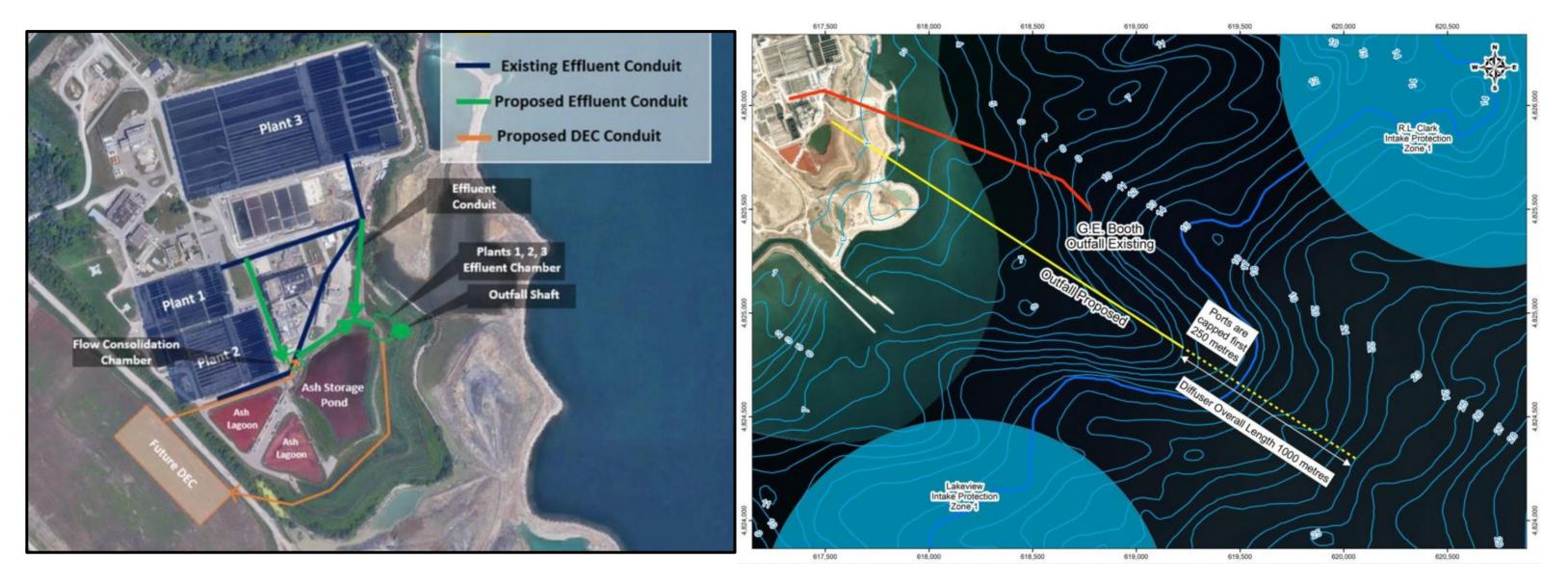
Outfall – Evaluation of Pipe Alignment Alternatives

Alternative Alignments	Natural Environment (25%)	Social – Cultural Environment (25%)	Technical Considerations (25%)	Economic Considerations (25%)	Total Score (100%)
Alignment A	20.0	14.2	12.5	12.5	59.2
Alignment B	20.0	18.3	18.3	15.0	71.6
Alignment C	20.0	18.3	16.7	12.5	67.5
Alignment D	20.0	15.0	18.3	12.5	65.8

Evaluation was based on:

- Lake bathymetry (topography)
- Minimizing impacts to the natural environment, Intake Protection Zones (IPZs), and shoreline users
- Diffuser effectiveness (currents)
- Capital cost and schedule

Alignment B was selected as the preferred alignment based on:


- ✓ Central location between IPZs for A.P. Kennedy Water Treatment Plant (WTP) and R.L. Clark WTP
- ✓ Favourable current direction and bathymetry (greater water depth achieved closer to shore, thereby improving effluent mixing)

Outfall – Preferred Design Concept

The Preferred Design Concept for the Outfall includes the following:

- Outfall shaft to be located on east side of property
 - Optimal location for connection to Plants 1, 2, & 3
- Outfall pipe alignment to be generally parallel to existing outfall
 - o 2,000 metre length supply pipe (without diffusers), 1,000 metre length diffuser pipe, 3,000 metres total length
 - Includes 67 staged 500mm diameter diffusers at 15 metre intervals
- Peak flow capacity of 2,850 MLD
 - O Sufficient capacity to service ultimate growth in G.E. Booth WRRF catchment area and potential flow increases from climate change
- Existing 1,435 metre length outfall to be maintained for redundancy purposes

Wastewater Treatment, Disinfection, & Outfall: Preferred Design Concepts

STEP 6 Recommend Preferred Design Concept

Recommended Wastewater Treatment Design Concept

- CAS expansion areas identified on concept plan
- Real Time Control (RTC) implemented in collection system, thereby eliminating need for expanded headworks.

CAS Process Flow Diagram INFLUENT WASTEWATER PRIMARY CLARIFICATION AERATION TANK SECONDARY CLARIFICATION AIR RETURN ACTIVATED SLUDGE WASTE ACTIVATED SLUDGE

Recommended Wastewater Disinfection Design Concept

- UV Disinfection has significantly lower operating costs than chlorination/dechlorination, lower risk to Lake Ontario water quality, and higher community acceptability
- Aligns with the Region's goals of reducing Operation & Maintenance (O&M) costs and chemical use

New Ultraviolet (UV) Disinfection system

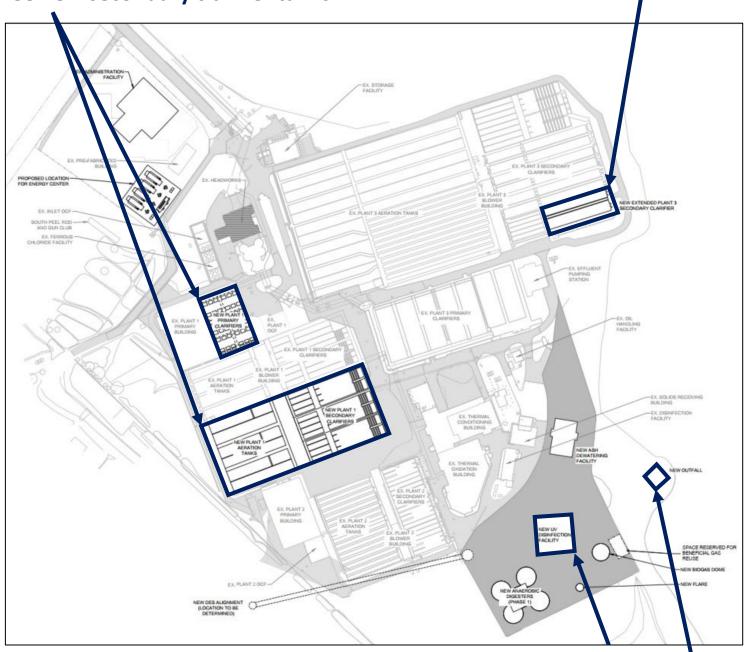
Expansion of CAS,

optimized with RTC

Recommended Outfall Design Concept

New 3,000 metre length outfall will be constructed parallel to the existing 1,435 metre outfall into Lake Ontario

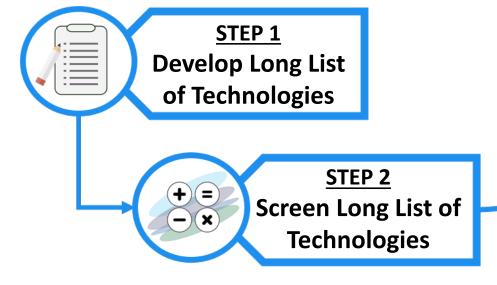
 New outfall's capacity of 2,850 MLD will be a substantial increase to the existing outfall capacity of 1,523 MLD.


New Outfall

Build-out of Plant 1

- Two new primary clarifier tanks
- Three new aeration tanks
- Three new secondary clarifier tanks

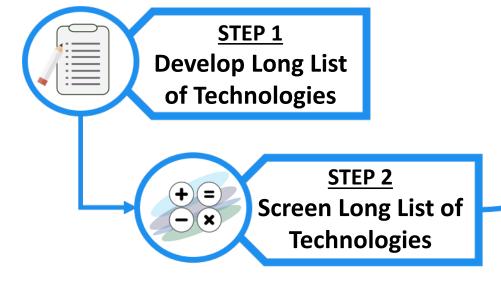
Expanded Plant 3
Secondary
Clarifier No. 11



New UV Disinfection Facility

New Outfall

Biosolids Management – Long List Alternatives & Screening


'Must-Have' Screening Criteria:

- Maturity of Technology
- Proven Application at Large WRRFs
- Compatibility with Existing and Future Processes
- Compatible with Region's Energy Management and GHG Reduction Goals

No.	Technology Alternative	Maturity of Technology	Proven Application at Large WRRFs	Compatibility with Existing Compatible with Region's Energy and Future Processes Management and GHG Reduction Goals		SHORT-LISTED FOR EVALUATION	
1	Anaerobic Digestion						
1 a	Conventional Mesophilic Anaerobic Digestion	Mature Technology	Yes	Yes Yes		Yes	
1b	Temperature-Phased Anaerobic Digestion (TPAD)	Uncommon	Yes	Complex operation	Yes	No	
1c	Acid/Gas Phased Anaerobic Digestion	Limited number of installations	Yes	Complex operation	Yes	No	
2	Anaerobic Digestion + Hydrolysis Pretrea	tment					
2 a	Thermal Hydrolysis Pre-treatment (THP)	Maturing technology becoming popular	Yes	Yes Yes		Yes	
2b	Thermo / Alkaline Hydrolysis Pre-treatment	Limited number of installations	Limited	Yes	Yes Yes		
3	3 Aerobic Digestion						
3 a	Conventional Aerobic Digestion	Mature Technology	No	No	No No		
3b	Autothermal Thermophilic Aerobic Digestion (ATAD)	Maturing Technology Second Generation	No	No No		No	
4	4 Drying						
4 a	Direct Thermal Dryer (Drum Dryer, Belt Dryer)	Mature Technology	Yes	Yes Yes		Yes	
4b	Indirect Thermal Dryer (Paddle Dryer, Disc Dryer)	Mature Technology	Limited	Yes	No	No	
4c	Solar Dryer	Newer, successful technology becoming popular	Limited	Yes	No	No	

Biosolids Management – Long List Alternatives & Screening

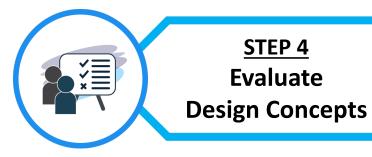
'Must-Have' Screening Criteria:

- Maturity of Technology
- Proven Application at Large WRRFs
- Compatibility with Existing and Future Processes
- Compatible with Region's Energy Management and GHG Reduction Goals

No.	Technology Alternative	Maturity of Technology	Proven Application at Large WRRFs	Compatibility with Existing and Future Processes Compatibility with Region's Energy Management and GHG Reduction Goals		SHORT-LISTED FOR EVALUATION	
5	Chemical Stabilization						
5 a	Alkaline Stabilization	Mature Technology	Yes	No; insufficient space on-site	No	No	
5b	Alkaline Stabilization with Supplemental Heat or Acid	Mature Technology	Yes	Yes; off-site only	s; off-site only		
5c	Alkaline Stabilization with Supplemental Heat and High- Speed Mixing	Maturing technology	Yes	Yes; off-site only	Yes; off-site only Yes		
6	Composting						
6a	Composting (Open Technologies Aerated Static Pile and Windrow Composting)	Mature Technology	Yes	No	No	No	
7	Thermal Conversion						
7a	Incineration	Mature Technology	Yes	Yes	Yes	Yes	
7b	Gasification	No	No	Yes	No	No	
7 c	Pyrolysis	No	No	Yes	Yes No		
7d	Wet Oxidation	No	No	Yes No		No	
7 e	Hydrothermal Liquification	No	No	Yes No		No	

Description of Alternative Biosolids Management Design Concepts

STEP 3


Develop Combination of Short-Listed Technologies into Design Concepts

Alternatives ¹	Description					
Alternative 1: Optimize and Expand Incineration	 Increase the firm capacity of incineration from 210 dry ton per day to 280 dry ton per day by installing two new incinerators units. Replace the existing four incinerators at the end of their service life. 					
Alternative 2: Optimize Incineration and Transport Additional Solids Off-site to the Clarkson WRRF for Management	 Optimize the existing incinerators to increase their operational capacity. Any excessive solids incineration capacity would be transported off-site as liquid sludge to the Clarkson WRRF for further treatment and disposal. Replace the existing four incinerators at the end of their service life. 					
Alternative 3: Thermal Hydrolysis Process (THP) followed by Anaerobic Digestion prior to Incineration	 Construct a new THP and anaerobic digestion facility. Divert a portion of solids for thermal hydrolysis followed by anerobic digestion. The biogas generated during anaerobic digestion will be collected and used for the THP operation, along with power generation by a combined heat and power (CHP) facility. Replace the existing four incinerators at the end of their service life. 					
Alternative 4: Optimize Incineration and Third-Party Management of Additional Solids (e.g., using advanced alkaline stabilization)	 Optimize the existing incinerators to increase their operational capacity. Third-party biosolids management firms will be contracted to transport and manage the solids exceeding the incineration system's capacity. The third-party firms may apply additional treatment such an advanced alkaline stabilization. Replace the existing four incinerators at the end of their service life. 					
Alternative 5: Anaerobic Digestion, Dewatering, and Direct Thermal Drying	 Optimize and operate the existing incinerators to the end of their service life. Prior to 2041, decommission the existing incinerators and replace them with eight new digesters to stabilize the solids and a direct thermal drying facility. The biogas generated during digestion would be collected and used for dryer operation and power generation by a CHP facility. 					
Alternative 6: Anaerobic Digestion Prior to Incineration	 Construct four anaerobic digesters to stabilize the solids and support the existing incinerator units to approximately 2041. The biogas generated during digestion would be collected and used for beneficial uses (power generator or other). Prior to 2041, re-assess biosolids management options and select an option that best meets the goals of Peel and the surrounding community (e.g., thermal drying, continued incineration, third-party management). 					

Note 1: All alternatives include decommissioning of the Ash Lagoons and Storage Pond and construction of an Ash Dewatering Facility.

Biosolids Management - Design Concept Evaluation

EA Evaluation Categories:

- Natural Environment (25%)
- Social / Cultural Environment (25%)
- Technical Considerations (25%)
- Economic Considerations (25%)

Design Concepts	Natural Environment (25%)	Social - Cultural Environment (25%)	Technical Considerations (25%)	Economic Considerations (25%)	Total Score (100%)
Optimize and Expand Incineration	17.0	19.0	17.5	10.0	63.5
Optimize Incineration and Transport Additional Solids Off-site to the Clarkson WRRF for Management	16.5	17.3	17.3	15.0	66.1
Thermal Hydrolysis Process (THP) Followed by Anaerobic Digestion Prior to Incineration	18.0	19.0	17.5	10.8	65.3
Optimize Incineration and Third-Party Management of Additional Solids (e.g., using advanced alkaline stabilization)	16.5	17.3	17.3	15.0	66.1
Anaerobic Digestion, Dewatering, and Direct Thermal Drying	20.0	19.0	18.4	10.0	67.4
Anaerobic Digestion Prior to Incineration	18.5	19.5	19.3	12.5	69.8

Wastewater Treatment and Disinfection: Evaluation of Feasible Design Concepts

<u>STEP 5</u> Evaluate Feasible Alternatives per Region's Key Objectives

Region's Key Objectives:
Long-term Sustainability
Resiliency
Environmental Protection
Community Acceptability

Ease of Operations Energy Efficiency Fiscally Responsible

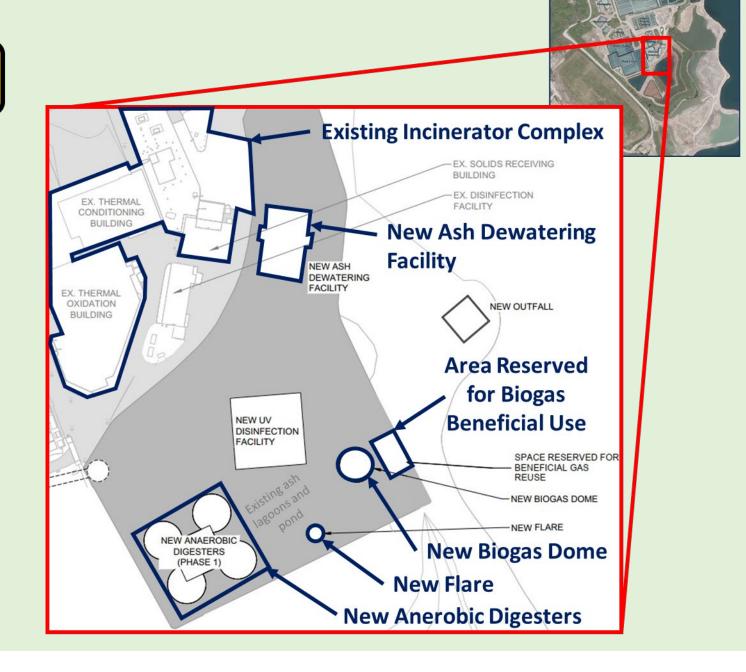
Design Concepts	Long-term Sustainability	Resiliency	Environmental Protection	Community Acceptability	Ease of Operations	Energy Efficiency	Fiscally Responsible	Preferred Alternative
Optimize and Expand Incineration			✓		✓			
Optimize Incineration and Transport Additional Solids Off-site to the Clarkson WRRF for Management					✓			
Thermal Hydrolysis Process (THP) Followed by Anaerobic Digestion Prior to Incineration		✓	✓			✓		
Optimize Incineration and Third-Party Management of Additional Solids (e.g., using advanced alkaline stabilization)					✓			
Anaerobic Digestion, Dewatering, and Direct Thermal Drying	✓	✓	✓	✓				
Anaerobic Digestion Prior to Incineration	✓	✓	✓	✓	✓	✓	✓	✓

Biosolids Management – Preferred Design Concept

Recommended Biosolids
Management Design Concept

Anaerobic Digestion Prior to Incineration

Process Flow Diagram


Due to continuous development of treatment technologies, biosolids management regulation changes, and the remaining service life of the existing thermal oxidation (incinerator) facility, it is recommended to:

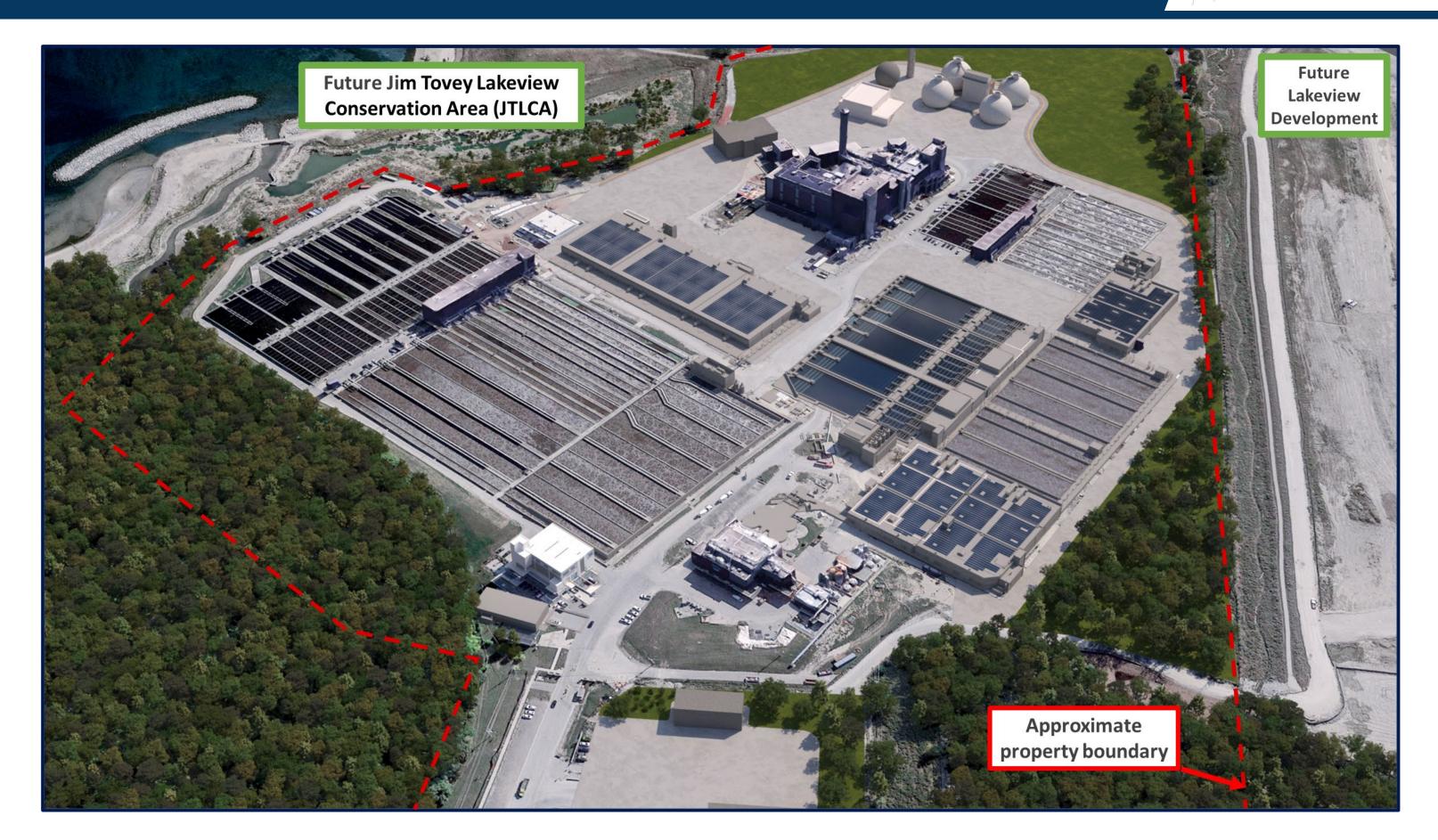
- ✓ Continue with incineration to the end of the existing incinerators' service life
- ✓ Provide anaerobic digestion to reduce biosolids incineration requirements
- ✓ Re-assess biosolids management options in the future to select technology that best meets the needs of Peel and the surrounding community

This strategy best aligns with the Region's goals of increased energy recovery, improved resiliency, and increased construction flexibility.

Conceptual Site Layout

- Existing ash lagoons and pond to be decommissioned; and space restored. Ash dewatering facility will be constructed to replace function.
- Four (4) new anaerobic digesters, new biogas dome, and new flare to be constructed in re-claimed pond area.
- Area allocated for beneficial use of biogas.

G.E. Booth WRRF: Current Site Layout


G.E. Booth WRRF: Overall Design Concept

G.E. Booth WRRF: Overall Design Concept

Impacts and Mitigation: Overview of Adjacent Land Uses

Jim Tovey Lakeview Conservation Area

Impacts and Mitigation: Natural Environment

A review of background information was conducted to confirm the preliminary Ecological Land Classification (ELC) mapping within and adjacent to the G.E. Booth WRRF. Field investigations were completed to confirm the Candidate Natural Heritage

The following provincially significant natural heritage features were identified on and abutting the site:

- Significant woodland
- Candidate Significant Wildlife Habitat (SWH), and;
- Candidate habitat for endangered and threatened species

The **Preferred Design Concept** was developed to avoid natural heritage features to the extent possible. However, there may be some isolated tree removals and encroachment on portions of the Candidate Significant Wildlife Habitat on the northwest side of the site.

The Region is working with the Conservation Authorities to develop appropriate measures to mitigate impacts to natural heritage features, which will include:

- Construction timing windows
- Stormwater management plans
- Restoration

Impacts and Mitigation: Social and Cultural

Potential Impact	Mitigation
Noise	Noise controls will be implemented through the conceptual design of the plant expansion to mitigate any noise impacts exceeding applicable guidelines.
Odour	 The Region has been proactively working with the City of Mississauga to develop an enhanced odour management strategy at the G.E. Booth WRRF. The odour management strategy includes: Replacing old Plant 1 and enclosing the new Plant 1 primary clarifiers with flat covers, a building, and an odour control facility. Covering the existing Plant 2 & Plant 3 primary clarifiers with flat covers, a building, and odour control facilities. Increasing the stack height of the odour control facility at the existing headworks facility. Adding a polishing stage of odour control to the existing headworks odour control facility. Continued odour modelling and community outreach. Through implementation of these control measures, odours from the existing G.E. Booth WRRF will be reduced.
Visual	 Decommissioning the lagoons. Constructing naturalized barriers between the plant and surrounding areas, including the Lakeview development area, the Jim Tovey Lakeview Conservation Area, and Marie Curtis Park.
Archaeology	 Stage 1 Archaeological & Marine Archaeological Assessment identifies that the site is disturbed with little remaining potential for archaeological resources. If additional areas are disturbed, a Stage 2 Archaeological Assessment will be completed during conceptual design.
Traffic	Due to the biosolids from the Clarkson WRRF not being trucked to G.E. Booth WRRF, there is an overall reduction in truck traffic for the site.

Summary of Net Effects

The Preferred Expansion Project will:

- Mitigate impacts to natural heritage features
- Protect Lake Ontario water quality and shoreline users
- Enhance the site aesthetics through the removal of ash lagoons, site restoration, and maximizing buffer areas
- Reduce odours from existing conditions
- Optimize the use of existing plant infrastructure while providing flexibility to meet future conditions
- Provide opportunities for energy recovery and GHG emissions reductions at the G.E. Booth WRRF


The expansion project will also be designed to support the District Energy Centre (DEC) planned on the Lakeview Development site

• The DEC is a thermal energy centre which pumps treated effluent from the G.E. Booth WRRF through heat exchangers to provide heating and cooling to buildings in the Lakeview Development.

Further details on the preferred expansion project at the G.E. Booth WRRF, including refinements to measures to mitigate impacts will be developed through the detailed design stage.

Project Timeline

Phase 3: Alternative Design Concepts for Preferred Solution

Phase 2 Tasks (Completed)

• Prepare natural, hydrogeological, social, cultural, archaeological & economic inventory

Phase 2:

Alternative Solutions

- · Identify potential impacts and how to address them
- Supporting technical analysis and studies
- Identify key factors and considerations
- Determine detailed criteria for overall strategy
- Identify alternative solutions
- Public Information Centre No. 2

Phase 3 Tasks (Ongoing)

- Validate preferred solution
- Identify design concept alternatives
- Prepare detailed inventory
- Identify impacts and how to address them
- Select preliminary preferred conceptual design and technologies
- Public Information Centre No. 4 (March 15th, 2023)
- Two-week Question Submission Period (March 16th to 30th, 2023)
- Response to Questions (April 13th, 2023)

Phase 3 Studies (Ongoing)

Air, Odour, & Noise Modelling

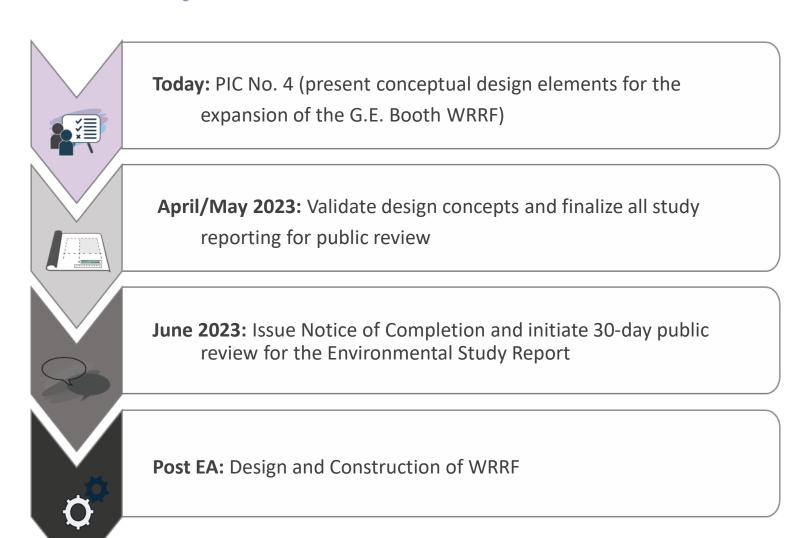
We are here!

Phase 4 Tasks (Future)

Study Report (ESR)

- Confirm preferred design concepts and technologies
- Finalize Environmental Study Report
- Notice of study completion
- Finalize conceptual design
- File study report
- Public review period

Thank you for participating. Please Stay Engaged!


We want to hear from you!

- Visit our website: www.peelregion.ca/GEBooth
- **Provide PIC No. 4 feedback** on the website from March 16th to 30th, 2023
- Sign-up to receive study notifications on the website, including notice of study completion when the final report is available for public review.

For any Class EA questions, please contact the Project Manager:

Cindy Kambeitz, PMP, PMI-RMP 905-791-7800, ext. 5040 GEBoothEA@peelregion.ca

Next Steps:

