Appendix C

Geometric Review

April 30, 2012

Mr. Neal Smith, C.E.T.
Project Manager
Peel Region
10 Peel Centre Drive, Suite B
4th Floor
Brampton, ON L6T 4B9

Re: Class Environmental Assessment for Mayfield Road from Chinguacousy Road to Heart Lake Road (Project \#10-4350) Geometric Review Report

Dear Mr. Smith:
Attached please find the Geometric Review Report for the Class Environmental Assessment for Mayfield Road from Chinguacousy Road to Heart Lake Road as per the requirements of RFP \#10-4350.

The Geometric Review Report documents the existing geometrics of Mayfield Road.
Should you have any questions, please feel free to contact either of the undersigned.
Yours truly,
GENIVAR Inc.

Bruce Grundon, B.Tech.
Project Manager

Table of Contents

Transmittal Letter
Table of Contents

1. INTRODUCTION 1
2. PURPOSE OF THE REPORT. 1
3. GEOMETRIC REVIEW 1
3.1 Information Used for the Review 1
3.2 Horizontal Alignment 2
3.3 Vertical Alignment 3
3.4 Cross Sections 4
3.4.1 Superelevation and Cross-Fall 5
3.5 Intersections 5
3.5.1 Signalized Intersections 6
3.5.2 Un-signalized Intersections 11
4. SUMMARY 15
5. CLOSING 16
List of Tables
Table 3-1 - Summary of Horizontal Curve Review on Mayfield Road. 2
Table 3-2 - Summary of Vertical Curves on Mayfield Road within Study Limits 3
Table 3-3-Summary of Signalized Intersection Configuration 9
Table 3-4 - Summary of Sight Distance Review at Signalized Intersections for Right Turning Vehicles 11
Table 3-5 - Summary of Unsignalized Intersection Configurations 13
Table 3-6 - Summary of Sight Distance Review at Unsignalized Intersections for Right-Turning Vehicles 15
Table 3-7 - Summary of Sight Distance Review at Unsignalized Intersections for Left-Turning Vehicles 15

List of Appendices

Appendix A Horizontal Alignment Information

Appendix B Vertical Alignment Information

1. Introduction

The Regional Municipality of Peel (Peel Region) has initiated a Class Environmental Assessment (EA) Study for Mayfield Road, from Chinguacousy Road to Heart Lake Road, in order to address road network needs and accommodate growth in the area.

GENIVAR was retained by Peel Region to undertake the study.

2. Purpose of the Report

As an initial step of the study, existing geometrics along Mayfield Street within the Study Area were assessed to identify locations of non-conformance with current Peel Region design standards.

This report documents the results of the geometric assessment.
The deficiencies identified in this report will be considered when generating potential design alternatives within the corridor during this EA Study.

3. Geometric Review

Mayfield Road has a posted speed of $80 \mathrm{~km} / \mathrm{h}$ between Chinguacousy Road to 305 m west of Hurontario Street, and 610 m east of Hurontario Street to Heart Lake Road. Mayfield Road between 305 m west of Hurontario Street and 610 m east of Hurontario Street has a posted speed of $60 \mathrm{~km} / \mathrm{h}$.

Design speeds of $70 \mathrm{~km} / \mathrm{h}$ (where posted speeds are $60 \mathrm{~km} / \mathrm{h}$) or $90 \mathrm{~km} / \mathrm{h}$ (where posted speeds are $80 \mathrm{~km} / \mathrm{h}$) were utilized as the basis for the geometric review of Mayfield Road.

Mayfield road is classified as a Major Road by the Region of Peel's Official Plan (November 2005). It is to be designed to carry high volumes of traffic between significant activity nodes. The classification of a Major Road by the Region of Peel is similar to the classification of a Major Arterial by the Transportation Association of Canada (TAC) Geometric Design Guide for Canadian Roads (1999)

The geometric review undertaken included the following components:
\rightarrow Horizontal Alignment;
\rightarrow Cross Section; and
\rightarrow Vertical Alignment; $\quad \rightarrow$ Intersections.

The following sections summarize the review of each component.

3.1 Information Used for the Review

The following information was used to identify horizontal and vertical alignments, cross section widths and intersection configurations and sight distances.
\rightarrow Photomapping undertaken by Northway Photomap, dated March 2011; and
\rightarrow The TAC Geometric Design Guide for Canadian Roads (1999);
For the purposes of the review, a horizontal alignment was developed using the crown of the existing roadways as a reference to create an existing centreline alignment.

3.2 Horizontal Alignment

In accordance with Section 2.1.2.6 of the TAC Manual, horizontal curves should be provided when deflection angles exceed $0^{\circ} 30^{\prime}$. The minimum radius for a design speed of $80 \mathrm{~km} / \mathrm{h}$ is 250 m , and for $100 \mathrm{~km} / \mathrm{h}$ is 440 m , as shown in Table 2.1.2.6 of the TAC Manual.

The desirable curve length on rural roads and intermediate class urban roads, horizontal curves should be at least 150 m for curve angles greater than 5°, increasing by 30 m for every 1° decrease. A minimum length of horizontal curve should be three (3) times the design speed (in m / s). Table 3-1 summarizes the results of the horizontal alignment review.

There are two sets of broken back curves within the study limits located between STAs 11+720 $-12+440$ and STAs $14+920-15+500$. While it is generally not desirable to use broken back curves they can be accommodated if a spiral curve is used to connect them. However, for ease of construction tangent lengths can be used, if they provide a driver with enough sight distance to see the change in curvature. In the cases of the broken back curves within the study limits the curves at STA $11+720-12+440$ are separated by 50 m . At STA $14+920-15+500$ the curves are separated by 100 m . Due to the large radii at each set of curves, sufficient sight distance is available.

Since all existing radii are large (with the exception of the curves at STA $15+042$ and STA $15+377$), the length of curve does not cause a reduction in safety when considering the stopping or decision sight distance. Therefore, at stations where the length of the horizontal curve is substandard, the exceptionally large radius creates an almost flat and unnoticeable change in the alignment.

Table 3-1 - Summary of Horizontal Curve Review on Mayfield Road

| PI Station | Existing
 Radius | Actual
 of
 Curve | Angle | Delta | Design
 Speed | Desirable
 Length of
 Curve | Minimum
 Length
 of Curve |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Meet or
 Exceeds
 Minimum
 Standard |
| :---: |
| |
| |
| |
| (m) |

3.3 Vertical Alignment

A maximum road grade of 5% is acceptable for design speeds of $90 \mathrm{~km} / \mathrm{h}$ and higher (TAC Page 2.1.3.3). For the design speed of $70 \mathrm{~km} / \mathrm{h}$ a maximum road grade of 6% is acceptable. Road grades should not fall below 0.5% to ensure positive drainage of the roadway. However, in retrofit areas, the minimum grade can be lowered if adequate drainage is provided.

The minimum K-values for crest and sag vertical curves as identified in Table 2.1.3.2, 2.1.3.3 and 2.1.3.4 of the TAC were used for the vertical alignment assessment. For design speed of $80 \mathrm{~km} / \mathrm{h}$, the K-values ranges from 24-36 m for crest curves (for stopping sight distance), and 30-40 m for sag curves (for headlight control).

For the design speed of $90 \mathrm{~km} / \mathrm{h}$, K-values range from 32-53 m for crest curves (for stopping sight distance), and $30-40 \mathrm{~m}$ for sag curves (for headlight control).

There are eight (8) vertical curves within the Study Area. Four (4) are crest curves and four (4) are sag curves. As long as the K-Values are met, or exceeded, the length of the curve can be less than the stopping sight distance. All curves within the Study Area exceed the required design K-values.

Table 3-2 summarizes the results of the vertical alignment review.
While maximum grades are not exceeded, minimum grades have not been achieved. However, Mayfield Road has not shown any signs of distress as a result of poor drainage.

Table 3-2 - Summary of Vertical Curves on Mayfield Road within Study Limits

Station	Vertical VPI	Approximate Curve Type Vertical of Curve ($\mathbf{m})$	K-Value	Design Speed
Entrance Grade: $10+430.115$	-0.03% Sag	11	Meets or Exceeds Minimum Standard (yes/no)	
Entrance Grade: $11+080.158$	0.25% Crest	23	± 45	90

Station VPI	Vertical Curve Type (crest/sag)	Approximate Length of Vertical Curve (m)	K-Value	Design Speed (km/h)	Meets or Exceeds Minimum Standard (yes/no)
Entrance Grade: $14+852.848$	4.84% Crest	485	± 60	70	Yes
Exit Grade:	-3.24\%				
Entrance Grade: $15+212.897$	$\begin{array}{r} -3.24 \% \\ \text { Sag } \end{array}$	183	± 55	70	Yes
Exit Grade:	0.07\%				

Note: Bolded values do not meet the minimum desirable standards

3.4 Cross Sections

Mayfield Road between Chinguacousy Road and 160 m west of Hurontario Street is generally a 2-lane rural section with turning lanes at selected intersections. From 160 m west of Hurontario Street to 330 m west of Heart Lake Road, Mayfield Road is an urbanized 4-lane section with turning lanes at selected intersections. The last 330 m of Mayfield Road, up to Heart Lake Road intersection, is a 6-lane urban section with turning lanes.

The through lane widths vary from 3.2 m to 4.1 m and generally do meet TAC standards for minimum lane width of 3.75 m of a major arterial (TAC Table 2.2.2.3).

Currently, there are exclusive left turn lanes at ten (10) intersections:

```
 McLaughlin Road; }->\mathrm{ Summer Valley Drive;
 Van Kirk Drive; }\quad->\mathrm{ Inder Heights Drive;
Cresthaven Road/Robertson Davies Drive; }->\mathrm{ Kennedy Road;
Hurontario Street; }\quad\mathrm{ Stonegate Drive; and
C Colonel Bertram Road; }\quad->\mathrm{ Heart Lake Road.
```

In addition, there are exclusive right turn lanes at six (6) intersections:

```
 Van Kirk Drive }\quad->\mathrm{ Colonel Bertram Road;
> Cresthaven Road/Robertson Davies Drive; }\quad->\mathrm{ Kennedy Road; and
Hurontario Street; }\quad->\mathrm{ Heart Lake Road.
```

The right and left-turn lane widths were compared to section 2.2.3.2 of the TAC.
All of the left turn lanes along Mayfield Road within the project limits meet the minimum width of 3.3 m or more when not adjacent to a raised median and at least 3.0 m when adjacent to a raised median.

The southbound right turn lane at Van Kirk Drive intersection is currently 3.1 m and the northbound right turn lane at Hurontario Street intersection is only 3.0 m. Both right turn lanes are not in conformance with the standard lane width as indicated in TAC Geometric Design

Guide for a turn lanes. Right-turn lanes are to be no more than 0.2 m than through lanes but not less than 3.3m. However, left-turn lanes if adjacent to raised medians can be as narrow as 3.0 m , unless they are dual or triple left-turn lanes,

For the rural sections along Mayfield Road, shoulders widths measured between 2.5-4.0m. This range of shoulder widths is acceptable, as existing shoulders erode over time and a minimum or 3.0 is usually designed for high volume roadways as per section 2.2.4.2.

3.4.1 Superelevation and Cross-Fall

For urban high volume, arterial roadways a maximum superelevation rate of 6% is utilized. The introduction of spiral curves is reserved for major arterials, expressways and freeways where the design speed is $70 \mathrm{~km} / \mathrm{h}$ or greater. Superelevation is generally used to aid drivers through a circular or spiral curve. When a vehicle enters a circular curve it experiences a radial acceleration towards the centre of the curve. This in turn causes a centripetal force on the vehicle pushing it towards the outside of the curve. Using the weight of the car to counteract this, a superelevated section is introduced. However, if the horizontal curve is of sufficient size (large radius) then superelevation may not be required. Since the majority of the curves along Mayfield road are greater than 4000 m , no superelevation is required (TAC Table 2.1.2.6)

At STA $15+042$ and STA $15+377$ the radii are both 1200 m . For the design speed of $90 \mathrm{~km} / \mathrm{h}$ the superelevation rate should be 3.4%. The superelevation was measured between 2-2.5\%.

Normal cross-fall along tangent sections of roadway should be 2%. Along Mayfield road, with the exception of intersections and superelevated sections, all tangent sections meet this requirement.

3.5 Intersections

At intersections, consideration of storage length, parallel lane length and taper lengths must be considered when exclusive turn lanes are introduced. The storage length is a calculated value based on forecast traffic volumes. Parallel and taper lengths are calculated based on the design speed of the roadway. Parallel and taper lengths must be of sufficient length to accommodate the stopping sight distance. This value is exclusive of the storage length requirements. Since the original storage length design calculations were not available, a minimum 15 m storage length was used, the remaining length would be considered parallel lane.

There are a total of eight (8) signalized and four (4) unsignalized intersections within this section of Mayfield Road. The following attributes of each intersection are listed in the following sections:
\rightarrow Turning Sight Distance - Sight distance required for a driver to safely see an approaching vehicle and to complete the turning manoeuvre (these values are calculated using Figure 2.3.3.4 of the TAC Manual). The height of the approaching vehicle was set at 1.30 m (Table 1.2.5.1)
\rightarrow Intersection Configuration - existing number of approaches at each intersection (i.e. TIntersection or Cross-Intersection)
\rightarrow Intersection Skew Angle - Angle between intersecting roads. Should be no more than 20° from 90° (measured as 70° or 110°). Intersection skew angles greater than 20° from 90° are considered unsafe.
\rightarrow Right-Turn Taper and Parallel Lane Lengths - using the minimum standard values shown in Table 2.3.5.1 of the TAC Manual, the length of parallel and taper lanes will be assessed.
\rightarrow Left-Turn Deceleration Lengths - Parallel lanes are sometimes not included in built-up or urban areas due to physical constraints such as property or intersections spacing. Therefore, the taper may be used for deceleration requirements. Therefore, the taper and parallel lane must be of sufficient length such that the stopping sight distance can be accommodated. Table 1.2.5.3 of the TAC provides these values.

For a design speed of $50 \mathrm{~km} / \mathrm{h}$, the minimum left-turn taper length is 30 m and the deceleration length is 60 m . The minimum right turn parallel and taper lengths are 35 m and 39 m , respectively.

For a design speed of $70 \mathrm{~km} / \mathrm{h}$, the minimum left-turn bay taper length and approach taper length are 35 m and 53 m respectively. The deceleration Length is 95 m . The minimum right turn parallel and taper lengths are 50 m and 60 m , respectively.

For a design speed of $80 \mathrm{~km} / \mathrm{h}$, the minimum left-turn taper length is 53 m and the deceleration length is 115 m . The minimum right turn parallel and taper lengths are 60 m and 60 m , respectively.

For a design speed of $90 \mathrm{~km} / \mathrm{h}$, the minimum left-turn bay taper length and approach taper length are 46 m and 95 m respectively. The deceleration Length is 130 m . The minimum right turn parallel and taper lengths are 60 m and 85 m , respectively.

The right-turning sight distances, Figure 2.3.3.4 (Line Cb) of the TAC Geometric Design Guide for Canadian Roads was utilized for this review. The minimum desirable length is 200 m for a design speed of $70 \mathrm{~km} / \mathrm{h}, 247 \mathrm{~m}$ for design speed of $80 \mathrm{~km} / \mathrm{h}$, and 305 m for a design speed of $90 \mathrm{~km} / \mathrm{h}$.

For the left-turning sight distances, Figure 2.3.3.4 (Lines B-1 and B-2b) of the TAC Geometric Design Guide for Canadian Roads was utilized for this review.

Based on a design speed of $70 \mathrm{~km} / \mathrm{h}$, the minimum desirable lengths are 140 m (Line B-1) and 200 m (Line B-2b) for vehicles approaching from the left and right of the intersection, respectively.

The minimum desirable lengths are 165 m (Line B-1) and 305 m (Line B-2b) for vehicles approaching from the left and right of the intersection, respectively, based on a design speed of $90 \mathrm{~km} / \mathrm{h}$.

3.5.1 Signalized Intersections

While taper lengths may be of sufficient length, deceleration lengths at all signalized intersections are of insufficient in length with the exception of the west and north approach at Hurontario Street, the west and north approach at Summer Valley Drive, the east approach at Kennedy Road, and all approaches at Heart Lake Road.

Only right-turning sight distances were reviewed at signalized intersections. Since vehicles are permitted to turn on a red light, this review will determine if sufficient sight distance is available for vehicles to safely complete the turning manoeuvre.

Only the north approach at Summer Valley Drive lacked sufficient sight distance. A tree is located within the required sight triangle. However, a proper sight triangle at this intersection has not been obtained and the tree is on private property. Obtaining additional property for a sight triangle should be undertaken. However, the sight line can also be improved without additional property requirements if the stop bar is moved closer to the intersection.

Table 3-3 and Table 3-4 on the following pages summarize the findings of the current signalized intersection configurations within the study limits.

THIS PAGE LEFT INTENTIONALLY BLANK

 Geometric Review ReportTable 3-3-Summary of Signalized Intersection Configuration

 |l ○ n

 No. of Lanes (4)

-

(imm

\bigcirc

10
. *
85.0°
65
む̈
$-$

10

105
-
40
40

South Approach
45**
*

$-\sim 0$
$0 \sim 0$
00

\bigcirc	O

8	¢

앙

응.1. 응.. *
8.1 *
$\stackrel{\circ}{\circ}$
.

1

165
-
90

165
-
110

West Approach
Summer Valley Drive (13+207) (T-Intersection)

	West Approach	
Left-Turn Lane	1	50

Left-Turn Lane
Through Lane
Right-Turn Lane
Left-Turn Lane
Through Lane
Right-Turn Lane
Kennedy Road (14+222)
Heart Lake Road (15+588)
Left-Turn Lane
Through Lane
Left-Turn Lane
Through Lane
Right-Turn Lane
Left-Turn Lane
Through Lane
Right-Turn Lane
Left-Turn Lane
Through Lane
Right-Turn Lane
Notes: Bolded values do not meet the minimum standards.

* Through lane is dropped at the intersection
${ }^{*}$ Insufficient deceleration length

GENIVAR

Table 3-4-Summary of Sight Distance Review at Signalized Intersections for Right Turning Vehicles

Intersection	Approach	Required Turn Sight Distance (m)	Actual Turn Sight Distance (m)	Meet Minimum Desirable Standard?	Notes
Chinguacousy Road	North	305	>305	Yes	
	South	305	>305	Yes	
McLaughlin Road	North	305	>305	Yes	
	South	305	>305	Yes	
Cresthaven Road / Robertson Davies Drive	North	305	>305	Yes	
	South	305	>305	Yes	
Hurontario Street	North	200	>250	Yes	
	South	200	>250	Yes	
Colonel Bertram Drive	North	200	>250	Yes	
	South	200	>250	Yes	
Summer Valley Drive	North	200	146	No	Tree obstructing view
Kennedy Road	North	305	290	No	Intersection is far from crest curve (STA $13+922$). However, it is still impacted as it is on the downside of the tangent.
	South	305	>305	Yes	
Heart Lake Road	North*	305			
	South	305	>305	Yes	

Note: Bolded values do not meet the minimum standards.
*approaching sight line is beyond project limits.

3.5.2 Un-signalized Intersections

Table 3-5, Table 3-6, and Table 3-7 on the following pages summarize the findings of the current unsignalized intersection configurations within the study limits.

While taper lengths may be of sufficient length, deceleration lengths at all unsignalized intersections are of insufficient in length with the exception of Valley View Intersection.

Both left and right-turning sight distances were reviewed for approaches which were stop controlled. Uncontrolled approaches were not reviewed. All of the intersections met or exceeded the right-turning sight distance, with the exception of Valley View Road. Only Van Kirk Drive met the requirements for left-turning sight distances.

A minor sub-standard crest vertical curve at STA 13+278 causes a minor reduction of sightlines at Valley View Road.

The intersection at Stonegate Drive is on a crest vertical curve. Therefore, sight lines will be restricted

THIS PAGE LEFT INTENTIONALLY BLANK

101-17262 April 30, 2012

THIS PAGE LEFT INTENTIONALLY BLANK

Table 3-6 - Summary of Sight Distance Review at Unsignalized Intersections for Right-Turning Vehicles

Intersection	Approach	Required Turn Sight Distance (\mathbf{m})	Actual Turn Sight Distance (\mathbf{m})	Meet Minimum Desirable Standard	Notes
Van Kirk Drive	South	305	>305	Yes	
Valley View Road	South	200	220	Yes	
Inder Heights Drive	South	305	>305	Yes	
Stonegate Drive	South	305	>305	Yes	

Note: Bolded values do not meet the minimum standards.
Table 3-7 - Summary of Sight Distance Review at Unsignalized Intersections for Left-Turning Vehicles

Intersection	Approaching Vehicle	Required Turn Sight Distance (\mathbf{m})	Actual Turn Sight Distance (\mathbf{m})	Meet Minimum Desirable Standard?	Notes
	Right	305	>305	Yes	
	Left	305	>305	Yes	
Valley View Road	Right	200	220	Yes	
	Left	200	>200	Yes	
Inder Heights Drive	Right	Left	305	>305	Yes
Stonegate Drive	Right	Left	305	$\mathbf{2 4 9}$	No
		305	>305	Yes	

Note: Bolded values do not meet the minimum standards.

4. Summary

Within the study limits, the following deficiencies were found:

- Superelevation at STA 15+042 and STA 15+377 was found to range between 2-2.5\%, for the design speed of $100 \mathrm{~km} / \mathrm{h}$ the rate of superelevation should be 3.4%.
- Deceleration length requirements for exclusive turn lanes at the following signalized intersections are not met:
- All approaches at McLaughlin Road
- All approaches at Cresthaven Road / Roberston Davies Drive
- East, south, and north approaches at Hurontario Street
- All approaches at Colonel Bertram Road
- West, north and south approaches at Kennedy Road
- North and south approaches at Heart Lake Road
- Deceleration length requirements for exclusive turn lanes at the following unsignalized intersections are not met:
- West approach at Van Kirk Drive
- East Approach at Inder Heights Drive
- East Approach at Stonegate Drive
- Sightlines at the following intersections are restricted:
- Summer Valley Road
- Valley View Drive
- Stonegate Drive and
- Kennedy Road

5.
 Closing

This report summarizes the existing geometrics along Mayfield Road, from Chinguacousy Road to Heart Lake Road. Opportunities exist to upgrade the existing roadway geometrics.

Appendix A

Horizontal Alignment Information

Project Name: Mayfield

Description: Horizontal Alignment
Name: Mayfield
Description:
Style: Default

STATION			NORTHING
Element: Linear	$10+000.000$	4840717.9450	592915.3787
POB	$10+561.807$	4841159.6836	593262.5021
BC	N 38^09'38.44" E		
Tangent Direction:	Tangent Length:	561.807	

			STATION		NORTHING	EASTING
Element: Linear	$10+715.362$	4841281.8582	593355.5098			
EC	$10+837.519$	4841380.1801	593428.0018			
BC	$\mathrm{N} 36^{\wedge} 24^{\prime} 03.87^{\prime \prime} \mathrm{E}$					
Tangent Direction:	122.157					
Tangent Length:						

			STATION			NORTHING	EASTING
Element: Circular	$10+837.519$	4841380.1801	593428.0018				
BC	$10+904.429$	4841434.0354	593467.7089				
PI	$10+971.332$	4838413.0102	597452.4151				
CC	4841486.8088	593508.8429					
EC	5000.000						
Radius:							

Delta:	1^32'00.20" Right
Degree of Curvature(Arc):	1^08'45.30"
Length:	133.813
Tangent:	66.911
Chord:	133.809
Middle Ordinate:	0.448
External:	0.448
Tangent Direction:	N 36^24'03.87" E
Radial Direction:	S 53^35'56.13" E
Chord Direction:	N 37^10'03.97" E
Radial Direction:	S 52^03'55.93" E
Tangent Direction:	N 37^56'04.07" E

STATION			NORTHING
Element: Linear	$10+971.332$	4841486.8088	593508.8429
EC	$11+726.762$	4842082.6274	593973.2508
BC	$\mathrm{N} 37 \wedge 566^{\prime} 04.07{ }^{\prime} \mathrm{E}$		
Tangent Direction:			
Tangent Length:	755.430		

	STATION	NORTHING	EASTING
Element: Circular			
BC	11+726.762	4842082.6274	593973.2508
PI	11+918.848	4842234.1283	594091.3375
CC		4845156.4260	590029.6786
EC	12+110.745	4842394.2423	594197.4528
Radius:	5000.000		
Delta:	4^24'00.43" Left		
Degree of Curvature(Arc):	1^08'45.30"		
Length:	383.983		
Tangent:	192.086		
Chord:	383.889		
Middle Ordinate:	3.686		
External:	3.688		
Tangent Direction:	N 37^56'04.07" E		
Radial Direction:	S 52^03'55.93" E		
Chord Direction:	N 35^44'03.86" E		
Radial Direction:	S 56^27'56.36"E		
Tangent Direction:	N 33^32'03.64" E		

STATION			NORTHING
Element: Linear	EASTING		
EC	$12+110.745$	4842394.2423	594197.4528
BC	$12+161.907$	4842436.8886	594225.7165
Tangent Direction:	$\mathrm{N} 33^{\wedge} 32^{\prime} 03.64 " \mathrm{E}$		
Tangent Length:	51.162		

	STATION	NORTHING	EASTING
Element: Circular			
BC	12+161.907	4842436.8886	594225.7165
PI	12+304.357	4842555.6288	594304.4113
CC		4840227.1416	597559.9358
EC	12+446.687	4842668.4703	594391.3534
Radius:	4000.000		
Delta:	4^04'45.05" Right		
Degree of Curvature(Arc):	1^25'56.62"		
Length:	284.781		
Tangent:	142.450		
Chord:	284.720		
Middle Ordinate:	2.534		
External:	2.536		
Tangent Direction:	N 33^32'03.64" E		
Radial Direction:	S 56^27'56.36" E		
Chord Direction:	N 35^34'26.17" E		
Radial Direction:	S 52^23'11.31" E		
Tangent Direction:	N 37^36'48.69" E		

STATION			NORTHING
Element: Linear	EASTING		
EC	$12+446.687$	4842668.4703	594391.3534
BC	$13+368.313$	4843398.5318	594953.8510
Tangent Direction:	$\mathrm{N} 37 \wedge 36{ }^{\prime} 48.69 " \mathrm{E}$		
Tangent Length:	921.625		

	STATION	NORTHING	EASTING
Element: Circular			
BC	13+368.313	4843398.5318	594953.8510
PI	13+413.176	4843434.0698	594981.2324
CC		4844314.0301	593765.6326
EC	$13+458.012$	4843471.1807	595006.4408
Radius:	1500.000		
Delta:	3^25'34.53" Left		
Degree of Curvature(Arc):	3^49'10.99"		
Length:	89.699		
Tangent:	44.863		
Chord:	89.686		
Middle Ordinate:	0.670		
External:	0.671		
Tangent Direction:	N 37^36'48.69" E		
Radial Direction:	S 52^23'11.31" E		
Chord Direction:	N 35^54'01.43" E		
Radial Direction:	S 55^48'45.84" E		
Tangent Direction:	N 34^11'14.16" E		

Element: Linear			
EC	$13+458.012$	4843471.1807	595006.4408
BC	$13+646.550$	4843627.1404	595112.3803
Tangent Direction:	$\mathrm{N} 34^{\wedge} 11^{\prime} 14.16 " \mathrm{E}$		
Tangent Length:	188.538		

	STATION	NORTHING	EASTING
Element: Circular			
BC	13+646.550	4843627.1404	595112.3803
PI	13+685.157	4843659.0761	595134.0734
CC		4842784.2910	596353.1885
EC	13+723.746	4843689.8536	595157.3806
Radius:	1500.000		
Delta:	2^56'55.28" Right		
Degree of Curvature(Arc):	3^49'10.99"		
Length:	77.196		
Tangent:	38.607		
Chord:	77.188		
Middle Ordinate:	0.497		
External:	0.497		
Tangent Direction:	N 34^11'14.16" E		
Radial Direction:	S 55^48'45.84" E		
Chord Direction:	N 35^39'41.80" E		
Radial Direction:	S 52^51'50.56" E		
Tangent Direction:	N 37^08'09.44" E		

			STATION		NORTHING	EASTING
Element: Linear	$13+723.746$	4843689.8536	595157.3806			
EC	$14+116.594$	4844003.0334	595394.5457			
BC	N 37^08'09.44" E					
Tangent Direction:	392.847					
Tangent Length:						

			STATION			NORTHING	EASTING
Element: Circular	$14+116.594$	4844003.0334	595394.5457				
BC	$14+201.233$	4844070.5088	595445.6436				
PI		4840984.4915	599380.5719				
CC	$14+285.857$	4844136.2161	595498.9959				
EC	5000.000						
Radius:	$1^{\wedge} 56^{\prime} 22.63^{\prime \prime}$ Right						
Delta:	$1^{\wedge} 08^{\prime} 45.30^{\prime \prime}$						
Degree of Curvature(Arc):	169.264						
Length:	84.640						
Tangent:	169.256						
Chord:	0.716						
Middle Ordinate:	0.716						

Tangent Direction:	N $37^{\wedge} 08^{\prime} 09.44^{\prime \prime} \mathrm{E}$
Radial Direction:	$\mathrm{S} 52^{\wedge} 51^{\prime} 50.56^{\prime \prime} \mathrm{E}$
Chord Direction:	$\mathrm{N} 38^{\wedge} 06^{\prime} 20.75^{\prime \prime} \mathrm{E}$
Radial Direction:	$\mathrm{S} 50^{\wedge} 55^{\prime} 27.93^{\prime \prime} \mathrm{E}$
Tangent Direction:	$\mathrm{N} 39^{\wedge} 04^{\prime} 32.07^{\prime \prime} \mathrm{E}$

	STATION	NORTHING	EASTING
Element: Linear			
EC	14+285.857	4844136.2161	595498.9959
BC	14+404.907	4844228.6366	595574.0386
Tangent Direction:	N 39^04'32.07" E		
Tangent Length:	119.050		

	STATION	NORTHING	EASTING
Element: Circular			
BC	14+404.907	4844228.6366	595574.0386
PI	14+419.150	4844239.6936	595583.0166
CC		4844985.0505	594642.4604
EC	14+433.392	4844250.9606	595591.7296
Radius:	1200.000		
Delta:	1^21'36.14" Left		
Degree of Curvature(Arc):	4^46'28.73"		
Length:	28.485		
Tangent:	14.243		
Chord:	28.484		
Middle Ordinate:	0.085		
External:	0.085		
Tangent Direction:	N 39^04'32.07" E		
Radial Direction:	S 50^55'27.93" E		
Chord Direction:	N 38^23'44.00" E		
Radial Direction:	S 52^17'04.07" E		
Tangent Direction:	N 37^42'55.93" E		

STATION			NORTHING
Element: Linear	$14+433.392$	4844250.9606	595591.7296
EC	$14+918.959$	4844635.0719	595888.7710
BC	N 37^42'55.93" E		
Tangent Direction:	Tangent Length:	485.567	

STATION			NORTHING
Element: Circular			$14+918.959$
BC	$15+042.002$	4844635.0719	595888.7710
PI		4844732.4061	595964.0415
CC	$15+164.188$	4843900.9821	596838.0402
EC	4844812.4396	596057.4986	

Radius:	1200.000
Delta:	$11^{\wedge} 42^{\prime} 31.76^{\prime \prime}$ Right
Degree of Curvature(Arc):	$4^{\wedge} 46^{\prime} 28.73^{\prime \prime}$
Length:	245.229
Tangent:	123.043
Chord:	244.803
Middle Ordinate:	6.259
External:	6.292
Tangent Direction:	$\mathrm{N} 37^{\wedge} 42^{\prime} 55.93^{\prime \prime} \mathrm{E}$
Radial Direction:	$\mathrm{S} \mathrm{52}^{\wedge} 177^{\prime} 04.07^{\prime \prime} \mathrm{E}$
Chord Direction:	$\mathrm{N} 43^{\wedge} 34^{\prime} 11.81^{\prime \prime} \mathrm{E}$
Radial Direction:	$\mathrm{S} 40^{\wedge} 34^{\prime} 32.30^{\prime \prime} \mathrm{E}$
Tangent Direction:	$\mathrm{N} 49^{\wedge} 25^{\prime} 27.70^{\prime \prime} \mathrm{E}$

	STATION	NORTHING	EASTING
Element: Linear			
EC	15+164.188	4844812.4396	596057.4986
BC	15+256.592	4844872.5439	596127.6839
Tangent Direction:	N 49^25'27.70" E		
Tangent Length:	92.404		

	STATION	NORTHING	EASTING
Element: Circular			
BC	$\begin{aligned} & 15+256.592 \\ & 4844872.5439 \\ & 596127.6839 \end{aligned}$		
PI	$\begin{aligned} & 15+377.304 \\ & 4844951.0611 \\ & 596219.3703 \end{aligned}$		
CC		$\begin{aligned} & 4845784.0014 \\ & 595347.1423 \end{aligned}$	
EC	$\begin{aligned} & 15+497.206 \\ & 4845046.2665 \\ & 596293.5815 \\ & \hline \end{aligned}$		
Radius:	1200.000		
Delta:	11^29'18.55" Left		
Degree of Curvature(Arc):	4^46'28.73"		
Length:	240.614		
Tangent:	120.712		
Chord:	240.211		
Middle Ordinate:	6.026		
External:	6.056		
Tangent Direction:	N 49^25'27.70" E		
Radial Direction:	S 40^34'32.30" E		
Chord Direction:	N 43^40'48.42" E		
Radial Direction:	S 52^03'50.86" E		
Tangent Direction:	N 37^56'09.14" E		

	STATION	NORTHING	EASTING

Element: Linear	$15+497.206$	4845046.2665	596293.5815
EC	$15+681.839$	4845191.8863	596407.0900
BC	N $37^{\wedge} 566^{\prime} 09.14^{\prime \prime} \mathrm{E}$		
Tangent Direction:	184.633		
Tangent Length:			

Appendix B

Vertical Alignment Information

Project Name: Mayfield
Description: Horizontal Alignment
Name: Mayfield
Description:
Style: Default
Vertical Alignment Name: Mayfield K-Value
Description:
Style: Default

	STATION	ELEVATION
Element: Linear	$10+000.000$	
POB	$10+425.076$	256.489
BVC	-0.03	256.346
Tangent Grade:		425.076
Tangent Length:		

	STATION	ELEVATION
Element: Parabola		
BVC	10+425.076	256.346
VPI	10+430.115	256.345
EVC	10+435.153	256.357
VLOW	10+426.251	256.346
Length	10.077	
Entrance Grade	-0.03	
Exit Grade	0.25	
$\mathrm{r}=(\mathrm{g} 2-\mathrm{g} 1) / \mathrm{L}$	2.86	
$\mathrm{K}=\mathrm{l} / \mathrm{l}$ (g2-g1)	35.00	
Middle Ordinate	0.004	

	STATION	ELEVATION
Element: Linear		
EVC	$10+435.153$	256.357
BVC	$11+068.976$	257.970
Tangent Grade:	0.25	
Tangent Length:	633.823	

	STATION	ELEVATION
Element: Parabola		
BVC	$11+068.976$	257.970
VPI	$11+080.158$	257.998
EVC	$11+091.341$	257.971
VLOW	$11+080.422$	257.984

Length	22.365
Stopping Sight Distance	553.102
Entrance Grade	0.25
Exit Grade	-0.24
$\mathbf{r}=(\mathbf{g} 2-\mathbf{~ g} 1) / \mathrm{L}$	-2.22
$\mathrm{~K}=\mathrm{I} /(\mathbf{~} 2 \mathbf{- g 1})$	45.00
Middle Ordinate	-0.014
Middle Ordinate	

	STATION	ELEVATION
Element: Linear		
EVC	$11+091.341$	257.971
BVC	$13+226.595$	252.790
Tangent Grade:	-0.24	
Tangent Length:	2135.254	

	STATION	ELEVATION
Element: Parabola		
BVC	$13+226.595$	252.790
VPI	$13+278.856$	252.663
EVC	$13+331.117$	250.975
Length	104.523	
Stopping Sight Distance	142.449	
Entrance Grade	-0.24	
Exit Grade	-3.23	
$\mathbf{r}=$ (g2 - $\mathbf{~} 1$) $\mathbf{~ L ~}$	-2.86	
K = I (g2 - 1)	35.00	
Middle Ordinate	-0.390	

	STATION	ELEVATION
Element: Linear	$13+331.117$	
EVC	$13+415.108$	250.975
BVC	-3.23	248.263
Tangent Grade:	83.991	
Tangent Length:		

	STATION	ELEVATION
Element: Parabola	$13+415.108$	
BVC	$13+567.788$	248.263
VPI	$13+720.468$	243.333
EVC	$13+544.269$	250.059
VLOW		

Length	305.360
Headlight Sight Distance	168.489
Entrance Grade	-3.23
Exit Grade	4.40
$\mathbf{r}=(\mathbf{g} 2-\mathbf{g} 1) / \mathrm{L}$	2.50
$\mathrm{~K}=\mathrm{I} /(\mathbf{g} 2-\mathbf{~} 1)$	40.00
Middle Ordinate	2.914

	STATION	ELEVATION
Element: Linear	$13+720.468$	
EVC	$13+782.144$	250.059
BVC	4.40	252.776
Tangent Grade:	61.676	
Tangent Length:		

	STATION	ELEVATION
Element: Parabola		
BVC	13+782.144	252.776
VPI	13+922.906	258.976
EVC	14+063.669	258.572
VHIGH	14+046.443	258.597
Length	281.524	
Headlight Sight Distance	179.777	
Entrance Grade	4.40	
Exit Grade	-0.29	
$\mathrm{r}=(\mathrm{g} 2-\mathrm{g} 1) / \mathrm{L}$	-1.67	
$\mathrm{K}=\mathrm{l} / \mathrm{l}$ (g2-g1)	60.00	
Middle Ordinate	-1.651	

	STATION	ELEVATION
Element: Linear	$14+063.669$	
EVC	$14+404.841$	258.572
BVC	-0.29	
Tangent Grade:		341.172
Tangent Length:		

	STATION	ELEVATION
Element: Parabola	$14+404.841$	
BVC	$14+507.340$	257.593
VPI	$14+609.840$	257.298
EVC	$14+416.324$	262.257
VLOW		257.576

Length	204.999
Headlight Sight Distance	168.489
Entrance Grade	-0.29
Exit Grade	4.84
$\mathrm{r}=(\mathrm{g} 2-\mathrm{g} 1) / \mathrm{L}$	2.50
$\mathrm{K}=\mathrm{l} / \mathrm{l}$ g2-g1)	40.00
Middle Ordinate	1.313

	STATION	ELEVATION
Element: Linear		
EVC	$14+609.840$	262.257
BVC	$14+610.371$	262.283
Tangent Grade:	4.84	
Tangent Length:	0.531	

	STATION	ELEVATION
Element: Parabola		
BVC	$14+610.371$	262.283
VPI	$14+852.848$	274.014
EVC	$15+095.324$	266.146
VHIGH	$14+900.645$	269.304
Length	484.953	
Headlight Sight Distance	179.777	
Entrance Grade	4.84	
Exit Grade	-3.24	
$\mathbf{r}=($ g2 - g1 $)$ /L	-1.67	
K = I/ (g2 - g1 $)$	60.00	
Middle Ordinate	-4.900	

	STATION	ELEVATION
Element: Linear		
EVC	$15+095.324$	266.146
BVC	$15+121.696$	265.290
Tangent Grade:	-3.24	
Tangent Length:	26.372	

	STATION	ELEVATION	
Element: Parabola	$15+121.696$	265.290	
BVC	$15+212.897$	262.331	
VPI	$15+304.098$	262.397	
EVC			

	STATION	ELEVATION
Element: Linear		
EVC	$15+304.098$	262.397
POE	$15+640.452$	262.638
Tangent Grade:	0.07	
Tangent Length:	336.354	

